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HDAC1-3 inhibitor MS-275 
enhances IL10 expression in 
RAW264.7 macrophages and 
reduces cigarette smoke-induced 
airway inflammation in mice
Niek G. J. Leus1,*, Thea van den Bosch1,*, Petra E. van der Wouden1,*, Kim Krist1,*, 
Maria E. Ourailidou1, Nikolaos Eleftheriadis1, Loes E. M. Kistemaker2, Sophie Bos2, 
Rutger A. F. Gjaltema3, Solomon A. Mekonnen1, Rainer Bischoff4, Reinoud Gosens2, 
Hidde J. Haisma1 & Frank J. Dekker1

Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying 
molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, 
by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, 
among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by 
histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small 
molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could 
attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is 
an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, 
MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. 
Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the 
macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, 
and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 
mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. 
This study highlights for the first time the potential of isoform-selective HDACi for the treatment of 
inflammatory lung diseases like COPD.

Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammatory responses. For most 
COPD patients the currently available therapy is not effective due to reduced responsiveness to corticosteroids1–3. 
COPD constitutes a major health burden, and underlying molecular mechanisms that can be targeted to devise 
new therapeutic strategies need to be studied.

Cigarette smoke is a major etiological factor in COPD4, and in susceptible individuals results in severe lung 
inflammation characterized by influx of inflammatory cells and secretion of cytokines5. Lungs of COPD patients 
have increased numbers of macrophages, which may be explained by increased recruitment of monocytes in 
response to chemokines produced in the lungs. Macrophages play a pivotal role in COPD as they secrete both 
pro-inflammatory cytokines such as TNF-α , IL-1 and IL-8, as well as the anti-inflammatory cytokine IL-106,7. 

1Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), 
University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. 2Department of 
Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius 
Deusinglaan 1, 9713 AV, Groningen, The Netherlands. 3Department of Pathology & Medical Biology, University 
Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. 
4Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 
Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. *These authors contributed equally to this work. 
Correspondence and requests for materials should be addressed to F.J.D. (email: f.j.dekker@rug.nl)

Received: 12 October 2016

Accepted: 20 February 2017

Published: 27 March 2017

OPEN

mailto:f.j.dekker@rug.nl


www.nature.com/scientificreports/

2Scientific RepoRts | 7:45047 | DOI: 10.1038/srep45047

This suggests that underlying regulatory processes in macrophages are important in balancing between expres-
sion of pro- or anti-inflammatory genes.

The NF-κ B transcription factor regulates inflammatory gene transcription, and is involved in the expression 
of important pro-inflammatory cytokines in macrophages in COPD6,7. Interestingly, a role for the NF-κ B path-
way has been implicated in COPD, as reviewed elsewhere8. Increased nuclear localization of p65 was observed in 
sputum macrophages during exacerbations of COPD9, and in bronchial biopsies of COPD patients10. Research 
has focused on modulating NF-κ B activity as a therapeutic strategy for COPD treatment8, highlighting NF-κ B as 
a potential therapeutic target.

Lysine acetylation is an important post-translational modification found on numerous cellular pro-
teins, including both histone and non-histone proteins. Steady-state acetylation levels result from the balance 
between the opposing activities of enzymes called histone acetyltransferases (HATs) and histone deacetylases 
(HDACs)11. Lysine acetylations of histones are part of the epigenetic code for regulation of gene transcription12. 
For NF-κ B, the p65 subunit in particular is subject to dynamic lysine acetylations that affect transcriptional 
capacity, DNA binding and duration of action13. Acetylations of the NF-κ B p65 subunit on lysines 218, 221 and 
310 increase transcriptional activity14, whereas acetylations on lysines 122 and 123 decrease transcriptional 
activity15. HDAC-NF-κ B interactions are important in NF-κ B regulation but have not been fully understood. 
Studies indicate that some class I HDAC members could be important. It has been demonstrated that HDAC1 
knockdown reduced LPS-induced gene expression of iNOS and IL6 in bone marrow-derived macrophages16. In 
contrast it has been demonstrated that HDAC1 negatively regulated NF-κ B-mediated gene transcription through 
association with p65, whereas HDAC2 does not interact with NF-κ B directly but regulates NF-κ B activity via 
its interaction with HDAC117. HDAC3 has been reported to deacetylate specific lysines of NF-κ B p6518. It was 
shown that HDAC3 is required for IL-1-induced gene expression, where the positive regulatory role of HDAC3 
involves binding to the NF-κ B p65 subunit and deacetylation of various inhibitory lysine acetylations19. Also, 
HDAC3-deficient macrophages are unable to activate a subset of the LPS-induced inflammatory gene expression, 
and HDAC3 ensures that NF-κ B is kept in a primarily deacetylated active state20. Altogether, this suggests that 
selective inhibition of HDAC1-3 could alter the balance between pro- and anti-inflammatory gene expression via 
regulation of NF-κ B acetylation, thereby suppressing inflammation in COPD.

Small molecule HDAC inhibitors (HDACi) are used in the treatment of haematological cancers21. Among 
zinc-dependent HDACs, these FDA approved HDACi are non-selective; but a number of more selective HDACi 
are in clinical trials21. Interestingly, studies indicate that HDACi can suppress inflammatory responses at much 
lower concentrations than those used for cancer treatment22. MS-275 is a HDACi currently in clinical trials, 
which is selective for HDAC1, 2 and 321. Effects of MS-275 on NF-κ B have been reported before, as well as effects 
in various disease models characterized by inflammation. MS-275 inhibited LPS-induced NF-κ B p65 nuclear 
accumulation in human fibroblastic cells, gave rise to less acetylated NF-κ B p65 in the nucleus, and reduced the 
secretion of pro-inflammatory cytokines IL-6 and IL-1823. In sciatic nerves and lymph nodes of experimental 
autoimmune neuritis rats, MS-275 downregulated pro-inflammatory gene expression24. In a rat experimental 
autoimmune prostatitis model, MS-275 reduced infiltration of inflammatory cells into the prostate and reduced 
mRNA levels of inflammatory genes TNFα, IFNγ, IL17, and iNOS25. Together, these lines of evidence indicate that 
MS-275 has potential to modulate NF-κ B, and to attenuate inflammatory responses. Thus, we hypothesize that 
small molecules interfering with the activity of specific HDAC iso-enzymes, such as MS-275, have the potential 
to suppress inflammation in COPD model systems. We anticipate that the precise effects of HDACi depend on 
their selectivity for the HDACs that target specific NF-κ B acetylation sites, suggesting that selective inhibition of 
HDACs might result in selective effects on inflammatory responses.

Here, we studied MS-275 in model systems for inflammatory responses. Effects of MS-275 on pro- and 
anti-inflammatory gene expression were investigated in precision-cut lung slices (PCLS), and RAW264.7 mac-
rophages, that were stimulated with LPS/IFNγ . Increased IL10 expression was observed in PCLS as well as 
RAW264.7 macrophages upon MS-275 treatment. The underlying mechanism was studied in the macrophages, 
and was connected to increased NF-κ B p65 transcriptional activity, acetylation, nuclear localization and pro-
moter binding. Finally, MS-275 treatment was studied in cigarette smoke-induced neutrophilic airway inflam-
mation in C57Bl/6 mice; a relevant and commonly used COPD model26,27. MS-275 was nebulized, allowing for 
the advantage of local administration by inhalation. Importantly, in this model, inflammatory gene expression 
levels and inflammatory cell recruitment were reduced in the lungs upon MS-275 treatment. To our knowledge, 
this study is the first to demonstrate that MS-275 robustly attenuates cigarette smoke-induced neutrophilic airway 
inflammation in C57Bl/6 mice.

Results
MS-275 affects both pro- and anti-inflammatory gene expression in mouse PCLS and is particu-
larly effective in affecting inflammatory responses in macrophages. The selectivity of MS-275 as 
previously described28,29, was confirmed by determining IC50 values for recombinant human HDAC1-3, HDAC6 
and HDAC8. MS-275 indeed selectively inhibits HDAC1-3 at low micromolar concentrations, while HDAC6 and 
HDAC8 were not inhibited at such concentrations (Table 1). For comparison the well-studied pan-HDACi SAHA 
was included, which was indeed non-selective among these HDACs.

Mouse PCLS (Fig. 1A) stimulated with LPS/IFNγ  were used as a model system for inflammatory lung dis-
eases for our studies with MS-275. PCLS contain all cell types present in vivo and conserve the original archi-
tecture and matrix environment30. The viability of PCLS upon MS-275 and SAHA treatment was studied by 
measuring release of lactate dehydrogenase (LDH) into the culture medium. Both HDACi did not affect PCLS 
viability at concentrations ≤ 10 μ M (Figure S1). Expression of pro-inflammatory genes TNFα, IL1β and IL12b, 
and the anti-inflammatory gene IL10, were examined in PCLS. MS-275 upregulated IL10 expression by 3-fold in 
PCLS, which was accompanied by downregulation of TNFα at 10 μ M (Fig. 1B). The expression of IL1β was also 
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upregulated. SAHA did not affect gene expression in PCLS (Fig. 1B). This demonstrates that iso-enzyme selec-
tivity of HDACi is important to their influence on gene expression in this model; and that MS-275 has a mixed 
pro- and anti-inflammatory effect on gene expression.

Effects of MS-275 on histone acetylation in LPS/IFNγ -stimulated PCLS were investigated. Global histone 
acetylation was studied by Western blot (Fig. 1C) and quantified by densitometry (Fig. 1D). MS-275 at 10 μ 
M increased acetylation of histone H2A/B and H4 compared to vehicle-treated PCLS (Fig. 1D). No significant 
effect was observed on acetylation of histone H3. Acetylation of histone H3 and H4 was assessed in more detail 
using high-resolution mass spectrometry. A previously described approach was employed in which histones 
are fully acetylated using deuterated acetic anhydride ((CD3CO)2O) followed by tryptic digestion31 (histone 
H2A/B are not analyzed using this method). Using this method a relative quantification of acetylated versus 
non-acetylated lysines of histone H3 and H4 in PCLS was obtained. Compared to western blot this allows for a 
more precise allocation of the changes in acetylation to individual histone peptides, and could allow for monitor-
ing smaller changes in acetylation which could be missed by western blot. MS-275 dose-dependently increased 
acetylation of one peptide from histone H3 (res. 18–26: KQLATKAAR) and one from histone H4 (res. 4–17: 
GKGGKGLGKGGAKR) (Fig. 1E), whereas other peptides were unaffected (data not shown). Taken together, 
MS-275 increases histone acetylation in LPS/IFNγ -stimulated PCLS.

We moved on to study molecular consequences of HDAC1-3 inhibition in a cell-based model system for 
inflammatory lung diseases using mouse RAW264.7 macrophages stimulated with LPS and IFNγ . With this we 
aimed to unravel whether macrophages play an important role in the effects observed for MS-275. First, cell 
viability upon MS-275 or SAHA treatment was tested. MTS assays demonstrated no significant decreases in cell 
viability (Figure S1; Table S1). In LPS/IFNγ -stimulated RAW264.7 macrophages, MS-275 treatment upregulated 
expression of TNFα, IL1β, IL12b and IL10 (Fig. 2). Interestingly, SAHA, except for IL1β, did not affect gene 
expression in the macrophages (Fig. 2). The observed effects clearly demonstrate that HDAC1-3 inhibition is 
effective in affecting inflammatory responses in macrophages.

Taken together, the upregulation of both the anti-inflammatory gene IL10 and the pro-inflammatory gene 
IL1β and downregulation of the pro-inflammatory gene TNFα in PCLS, and upregulation of IL10, TNFα, IL1β, 
IL12b in RAW264.7 macrophages, indicates potential mixed effects for HDAC1-3 inhibition by MS-275 in 
inflammation. The upregulation of IL10 expression in the macrophages is particularly interesting because of its 
anti-inflammatory role. Therefore, the connection between MS-275 and IL10 upregulation was further investi-
gated in RAW264.7 macrophages, aiming to identify underlying molecular mechanisms.

MS-275 increases LPS/IFNγ-induced NF-κB p65 transcriptional activity, acetylation, nuclear 
translocation, and binding at the IL10 promoter in RAW264.7 macrophages. It has been 
described that LPS stimulation of macrophages activates NF-κ B, which induces the expression of IL10 along 
with TNFα, IL1β, and IL12b32. The observed mixed effects in RAW264.7 macrophages upon MS-275 treatment 
therefore fit a profile where NF-κ B activity is further enhanced by MS-275. Therefore, we set out to characterize 
the contribution of this pathway to the changes in gene expression, particularly the increased IL10 expression, 
induced by MS-275.

Transcriptional activity of NF-κ B p65 was studied using a reporter gene assay. NF-κ B p65 promoter activ-
ity was significantly increased by 50% upon MS-275 treatment, which was also observed for SAHA (Fig. 3A). 
Changes in NF-κ B p65 K310 acetylation status were studied by Western blot (Fig. 3B) and quantified by densi-
tometry (Fig. 3C). MS-275 increased NF-κ B p65 acetylation on K310 in LPS/IFNγ -stimulated RAW264.7 mac-
rophages. This shows that MS-275 increases both transcriptional activity and acetylation status of NF-κ B p65.

Histone acetylation was analyzed in RAW264.7 macrophages by Western blot. MS-275 increased acetyla-
tion of histone H3 and H4 compared to vehicle-treated cells (Fig. 3D). Acetylation of histone H3 and H4 was 
analyzed in more detail using mass spectrometry. Increased acetylation upon MS-275 and SAHA treatment was 
observed on one peptide from histone H3 (res. 18–26: KQLATKAAR) and one peptide from histone H4 (res. 
4–17: GKGGKGLGKGGAKR) (Fig. 3E). Other peptides did not show changes in acetylation upon MS-275 treat-
ment (data not shown). These observations are in line with the data for histone acetylation in PCLS. Altogether, 
these results demonstrated that both MS-275 and SAHA increased acetylation of one peptide on histone H3 and 
H4, whereas, interestingly, only MS-275, and not SAHA, affected NF-κ B p65 acetylation.

Effects of MS-275 on NF-κ B p65 nuclear translocation were studied using immunofluorescence microscopy. 
Interestingly, MS-275 increased NF-κ B p65 nuclear localization (Fig. 4A), which was confirmed by cellular frac-
tionation experiments in which the nuclear and cytosolic fractions were separated and blotted for NF-κ B p65 
(Fig. 4B and C). SAHA showed no effect (Fig. 4A–C). In addition, the total NF-κ B p65 protein content was 
studied by Western blot (Fig. 4D) and quantified by densitometry (Fig. 4E). Remarkably, total NF-κ B p65 protein 
content was significantly reduced by 30% in LPS/IFNγ -stimulated RAW264.7 macrophages treated with MS-275 

HDAC 1 HDAC 2 HDAC 3 HDAC 6 HDAC 8

MS-275 0.19 ±  0.04 0.41 ±  0.09 0.95 ±  0.19 ≥ 100 76.5 ±  10.1

SAHAa 0.07 ±  0.01 0.16 ±  0.05 0.05 ±  0.02 0.06 ±  0.01 1.52 ±  0.46

Table 1.  IC50 values of HDAC1-3-selective inhibitor MS-275 and pan-HDAC inhibitor SAHA for 
recombinant human HDAC1-3, HDAC 6 and HDAC 8. Data are presented as mean values (in μ M) of 3 
independent measurements ±  SD. ND =  not determined. aIC50 values for SAHA are taken from Szymanski  
et al.34.
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Figure 1. MS-275 affects inflammatory gene expression and histone acetylation in precision-cut lung 
slices. Schematic representation of the experimental setup and timeline (A). Mouse precision-cut lung slices 
(PCLS) were subjected to MS-275 (1 μ M or 10 μ M) or SAHA (0.41 μ M) for 20 h and stimulated with LPS/
IFNγ  the last 4 h of the experiment, and lysed. Gene expression was studied by RT-qPCR and expressed as fold 
change compared to control (LPS/IFNγ -treated) (B). Data are presented as mean ±  SD of 5–11 independent 
experiments. *p <  0.05, **p <  0.01; ***p <  0.001 compared to vehicle (LPS/IFNγ  and inhibitor solvent-treated). 
Under the same conditions, PCLS histones were extracted, resolved by SDS-PAGE, and effects of MS-275 on 
total histone acetylation were assessed by Western blot (dotted line indicates crop within the same blot; full 
length blot is presented in Figure S2) (C) and quantified by densitometry (D). Data are presented as mean ±  SD 
of 2–3 independent experiments. *p <  0.05 compared to vehicle (LPS/IFNγ  and inhibitor solvent-treated). 
Histones H3 and H4 were also excised from the gel and subjected to LC-MS/MS analysis (E). MS-275 increased 
acetylation on one peptide from histone H3 (res. peptide 18–26: KQLATKAAR) and one peptide from histone 
H4 (res. peptide 4–17: GKGGKGLGKGGAKR). Other peptides were not affected. Data are presented as 
mean ±  SD of 3 independent experiments. *p <  0.05; **p <  0.01; ***p <  0.001 compared to vehicle (LPS/IFNγ  
and inhibitor solvent-treated).
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(Fig. 4E). These experiments demonstrate that MS-275 increases the nuclear translocation of NF-κ B p65 but 
decreases total NF-κ B p65 content.

To investigate whether NF-κ B p65 acts on the IL10 promoter, chromatin immunoprecipitation (ChIP) was 
performed. Indeed, a significant increase in enrichment of NF-κ B p65 was found around the IL10 transcription 
start site (− 48 bp and − 220 bp upstream) upon MS-275 treatment (Fig. 4F). This indicates that the enhanced 
activity and nuclear localization of NF-κ B p65 in combination with the observed changes in NF-κ B and histone 
acetylation result in increased NF-κ B p65 binding to the IL10 promoter, which is a mechanism that could explain 
increased IL10 expression upon MS-275 treatment.

MS-275 robustly attenuates inflammatory gene expression and inflammatory cell recruitment 
in cigarette smoke-induced neutrophilic airway inflammation in C57Bl/6 mice. To shed more 
light on the mixed effects observed on pro- and anti-inflammatory gene expression in RAW264.7 macrophages 
and PCLS upon MS-275 treatment, studies were continued to elucidate whether in vivo lung inflammation 
could be dampened by MS-275 in an acute cigarette smoke-induced neutrophilic airway inflammation model in 
C57Bl/6 mice. For a validation of the transition from the LPS/IFNγ  to cigarette smoke exposure, RAW264.7 mac-
rophages were exposed to cigarette smoke extract (CSE). Increased IL10 expression by MS-275 was also found 
under these conditions (Figure S8). Mice were pre-treated with MS-275 prior to each cigarette smoke exposure 
using an experimental setup shown in Fig. 5A.

To study if MS-275 affects liver or kidney function in the mice, liver and kidney function parameters were 
analyzed (Table S2). No changes were observed. Also, no changes in the weight of the animals were observed 
(Figure S9). These data show that 10 μ M MS-275 does not affect liver and kidney function, or animal weight.

Figure 2. MS-275 enhances gene expression of pro- and anti-inflammatory genes in macrophages. 
RAW264.7 macrophages were  incubated with HDACi MS-275 (1 μM) or SAHA (0.41 μM) for 20 h and 
stimulated with LPS/IFNγ  the last 4 h of the experiment. Gene expression was studied by RT-qPCR and 
expressed as fold change compared to control (LPS/IFNγ -treated) group. Data are presented as mean ±  SD of 
4–8 independent experiments. *p <  0.05; **p <  0.01; ***p <  0.001 compared to vehicle (LPS/IFNγ  and inhibitor 
solvent-treated).
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Expression levels of the inflammatory genes TNFα, IL1β, IL6, KC (murine IL8), IL12b and the 
anti-inflammatory gene IL10 were examined in lung tissue homogenates. Cigarette smoke exposure significantly 
increased expression of IL1β and KC compared to air-exposed mice. MS-275 treatment resulted in a robust down-
regulation of IL1β and KC (Fig. 5B). An almost significant decrease was observed for IL6 expression (p = 0.059). 
While not significant, IL6 expression was reduced to levels observed in air-exposed mice, similar to IL1β and 
KC. MS-275 treatment did not affect expression of TNFα, IL12b or IL10 in whole lung tissue homogenates of 
cigarette smoke-exposed mice. The level of p65 was also measured but remained unchanged in the lung tissue 
homogenates (Figure S10). The lack of effect on IL10 and p65 expression could indicate that effects of MS-275 
on their expression are difficult to measure due to the presence of many different cell types in lung tissue. This 
stresses the need for studying specific cell types such as macrophages. Taken together this shows that MS-275 
attenuates inflammatory gene expression in a cigarette smoke-induced neutrophilic airway inflammation model 
in C57Bl/6 mice.

The acute cigarette smoke exposure model in C57Bl/6 mice is characterized by neutrophil infiltration. 
Neutrophil infiltration is also increased in patients with COPD and correlates with disease severity33. The increase 
in neutrophils is related to increased production of CXC-chemokines such as CXCL8 (also known as IL-8). IL-8 
attracts neutrophils, since it is a ligand for the CXCR2 receptor which is expressed predominantly by neutro-
phils33. The mouse orthologue of IL-8 is keratinocyte-derived chemokine (KC). Therefore, KC release in bron-
choalveolar lavage (BAL) fluid was determined. Levels of KC in BAL fluid of cigarette smoke-exposed mice were 

Figure 3. MS-275 enhances LPS/IFNγ-induced NF-κB p65 activity and increases NF-κB p65 acetylation 
and histone acetylation in RAW264.7 macrophages. RAW-Blue macrophages were subjected to 1 μ M MS-275 
or 0.41 μ M SAHA for 20 h and stimulated with LPS/IFNγ  the last 4 h of the experiment. Treatment of  
RAW-Blue cells with HDACi followed by LPS/IFNγ  significantly increased NF-κ B activity (A). Data are 
presented as mean ±  SD of 3–4 independent experiments and control (LPS/IFNγ -treated) cells were set at  
100%. **p <  0.01, compared to vehicle (LPS/IFNγ  and inhibitor solvent-treated) cells. For detection of  
NF-κ B p65 K310 acetylation, RAW264.7 macrophages were incubated with HDACi for 20 h, and lysed. Effects 
on NF-κ B p65 K310 acetylation were studied by Western blot (the blots were cropped; full length blots are 
presented in Figure S3) (B) and quantified by densitometry compared to p65 as loading control (C). Data are 
presented as mean ±  SEM expressed as fold change compared to vehicle (LPS/IFNγ  and inhibitor solvent-
treated) of 5–6 independent experiments. *p <  0.05, compared to vehicle (LPS/IFNγ  and inhibitor solvent-
treated). RAW264.7 histones were resolved by SDS-PAGE and blotted for detection of histone acetylation (blot 
was cropped; full length blot is shown in Figure S4) (D). Histones H3 and H4 were excised from the gel and 
subjected to LC-MS/MS analysis (E). MS-275 or SAHA increased acetylation on one peptide of histone H3 
(res. 18–26: KQLATKAAR) and one of histone H4 (res. 4–17: GKGGKGLGKGGAKR). Other peptides were 
not affected. Data are presented as mean ±  SD of 3–5 independent experiments. #p <  0.001 compared to vehicle 
(inhibitor solvent-treated). No significant differences were observed between untreated and vehicle-treated cells 
(Figure S5).



www.nature.com/scientificreports/

7Scientific RepoRts | 7:45047 | DOI: 10.1038/srep45047

Figure 4. MS-275 enhances the nuclear translocation of NF-κB p65 and enrichment of NF-κB p65 at 
the transcription start site of IL10 but reduces total NF-κB p65 protein content in LPS/IFNγ-stimulated 
RAW264.7 macrophages. After 20 h incubation with MS-275 (1 μM) followed by 1 h LPS/IFNγ  stimulation, 
RAW264.7 macrophages were prepared for immunofluorescence microscopy (A). Green signal represents NF-κ 
B p65 protein, while blue signal visualizes the Hoechst-stained nuclei. MS-275 enhanced the translocation of 
NF-κ B p65 compared to vehicle (LPS/IFNγ  and inhibitor solvent-treated) cells, while SAHA (0.41 μM) did not 
affect the nuclear translocation of NF-κ B p65. The presented data are representative images of 3 independent 
experiments, original magnification 400x. All images were taken under identical instrumental conditions. 
The effect of MS-275 on NF-κ B p65 translocation in LPS/IFNγ -stimulated RAW264.7 macrophages was also 
analyzed by immunoblotting cell fractions (the blots were cropped; full length blots are shown in Figure S6) 
(B) and quantified by densitometry (C). As controls for the fractionation PARP-1 (nucleus) and β -actin 
(cytosol) were used. Data are presented as mean ±  SD expressed as fold change compared to control (LPS/IFNγ 
-treated) cells of 4–5 independent experiments. *p <  0.05 compared to vehicle (LPS/IFNγ  and inhibitor solvent-
treated) cells. Effects of MS-275 on total NF-κ B p65 protein expression in LPS/IFNγ -stimulated RAW264.7 
macrophages were analyzed by Western blot (dotted line indicates crop within the same blot; full length blots 
are shown in Figure S7) (D) and quantified by densitometry (E). Protein levels were normalized against β -actin 
and control (LPS/IFNγ -treated) cells were set at 100%. Data are presented as mean ±  SD of 4 independent 
experiments and a representative blot is shown in (D). **p <  0.01 compared to vehicle (LPS/IFNγ  and inhibitor 
solvent-treated) cells. qChIP was performed on LPS/IFNγ -stimulated RAW264.7 macrophages treated with 
MS-275 or vehicle (inhibitor solvent) for 20 h with antibodies against NF-κ B p65 (F). Enrichment for IL10 
regions − 48 bp and − 220 bp relative to the transcription start site was analyzed by qPCR. Data are presented as 
mean ±  SEM of 2–3 independent experiments and represent fold enrichment compared to normal rabbit IgG 
(rIgG). *p <  0.05; **p <  0.01 compared to rIgG.
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Figure 5. Attenuation of cigarette smoke-induced neutrophilic airway inflammation by MS-275. 
Experimental procedure (A). Male C57Bl/6 mice were exposed to cigarette smoke twice daily on four 
consecutive days by whole body exposure. Mice were subjected to MS-275 (10 μ M by nebulization) or vehicle 
(inhibitor solvent) 30 min prior to each cigarette smoke exposure. Bronchoalveolar lavage (BAL) was performed 
and lungs were collected 16 h after the last smoke exposure. Gene expression in lung homogenates was studied 
by RT-qPCR and expressed relative to GAPDH (B). MS-275 robustly reduced IL1β and KC mRNA levels 
in cigarette smoke exposed mice. Data are presented as mean ±  SD; n =  4–5 animals per group. **p <  0.01 
compared to vehicle (smoke and inhibitor solvent-treated) group #p <  0.05 compared to air-exposed group. 
Release of KC in BAL fluid was determined by ELISA (C). MS-275 significantly reduced KC release in BAL 
fluid of cigarette-smoke exposed mice. Data are presented as mean ±  SD; n =  4–5 animals per group. *p <  0.05 
compared to vehicle (smoke and inhibitor solvent-treated) mice. Inflammatory cell count was performed in 
BAL fluid (D) and total cells, macrophages, lymphocytes and neutrophils were plotted as number of cells/ml 
(E). Total cell number in cigarette smoke exposed mice was not affected by MS-275. Neutrophilic infiltration 
was reduced by 60% in MS-275-treated mice compare to vehicle (smoke and inhibitor solvent-treated) mice. 
Data are presented as mean ±  SD; n =  4–5 animals per group. *p <  0.05 compared to vehicle (smoke and 
inhibitor solvent-treated) mice.
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30-fold higher compared to air-exposed mice (Fig. 5C). Interestingly, in line with the observed reduction of KC 
mRNA in whole lung tissue homogenates, KC release in cigarette smoke-exposed mice pre-treated with MS-275 
was significantly reduced by 40% (Fig. 5C). To study the effect of MS-275 on cigarette smoke-induced inflamma-
tory cell recruitment, cell counts were determined in BAL fluid. Mice exposed to cigarette smoke had an increased 
number of inflammatory cells compared to air-exposed animals (Fig. 5D and E). The predominant cell type in the 
BAL fluid was the macrophage, which was comparable between air-exposed and cigarette smoke-exposed mice. 
Neutrophilic infiltration was increased by 20-fold in cigarette smoke-exposed compared to air-exposed mice. 
In line with the observed reduction of KC mRNA in lung tissue homogenates and KC cytokine in BAL, a 55% 
decrease in neutrophil number was observed in cigarette smoke-exposed mice pre-treated with 10 μ M MS-275 
compared to cigarette smoke-exposed mice subjected to vehicle (Fig. 5D and E). Taken together, MS-275 reduces 
the KC release in BAL fluid of cigarette smoke-exposed mice, which correlates with inhibition of neutrophilic 
lung infiltration. These data demonstrate for the first time that MS-275 attenuates inflammatory responses in 
cigarette smoke-induced neutrophilic airway inflammation in mice via a mechanism in which the KC cytokine 
release is attenuated, which correlates with robust attenuation of neutrophilic influx.

MS-275 restores mRNA levels of IL-10 in vivo but does not affect the CD68+ or CD68+/IL-10+ 
cell number in cigarette smoke-induced C57Bl/6 mice. MS-275 increased IL10 levels in RAW264.7 
macrophages (Fig. 2). Therefore, we hypothesized that the anti-inflammatory effects of MS-275 in cigarette 
smoke-induced C57Bl/6 mice could be mediated by increased numbers of IL-10+ macrophages in the lungs. 
We studied the mRNA expression of IL10 in lung tissue of mice exposed to cigarette smoke and pre-treated with 
MS-275, relative to CD68 (macrophage marker). Interestingly, in cigarette smoke-exposed mice pre-treated with 
MS-275, mRNA expression of IL10 relative to CD68 was re-established to levels observed in air-exposed mice 
(Fig. 6A). This suggests that MS-275 restores the ability of cigarette smoke-exposed macrophages to produce 
IL-10. Next, we studied if the re-established IL10 mRNA level affects the number of IL-10+ macrophages. Lung 
cryosections were immunohistochemically stained for CD68+ and IL-10 (Fig. 6B). Cigarette smoke exposure 

Figure 6. MS-275 restored the in vivo mRNA levels of IL10 in macrophages but did not affect the CD68+ 
or CD68+/IL-10+ cell number in lungs of cigarette smoke-exposed mice. MS-275 restored IL10 mRNA levels 
of cigarette smoke-exposed mice to mRNA levels of air-exposed mice (A). Data are presented as means ±  SD; 
n =  4–5 animals per group. *p <  0.05 compared to vehicle (smoke and inhibitor solvent-treated) mice. Numbers 
of CD68+ and CD68+/IL-10+ macrophages in the lungs were determined by immunohistochemistry (B). 
Images were taken with identical instrumental conditions and representative images of 4–5 independent mice 
per group are shown (original magnification 200x). Immunohistochemical stainings were quantified manually 
and presented as number/mm2 lung tissue (C). Scatter plots showing an increase in CD68+ macrophages upon 
cigarette smoke exposure. CD68+/IL-10+ macrophages remained unaffected. MS-275 did not affect the influx of 
CD68+ or CD68+/IL-10+ macrophages. Data are presented as mean ±  SD; n =  4–5 animals per group. *p <  0.05 
compared to air-exposed animals.
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increased the CD68+ cell number compared to lung tissue of air-exposed mice (Fig. 6C). However, MS-275 did 
not affect the CD68+ or the CD68+/IL-10+ cell number in cigarette smoke-exposed mice (Fig. 6C). These data 
do not support the hypothesis that the observed anti-inflammatory effects of MS-275 in cigarette smoke-induced 
C57Bl/6 mice are mediated by increased numbers of CD68+/IL-10+ macrophages.

MS-275 restores overall histone acetylation in lung tissue of cigarette smoke-exposed 
mice. We anticipated that in mice treatment with MS-275 would result in decreased HDAC activity and 
increased histone acetylation. Thus, HDAC activity was determined in lung tissue homogenates using an HDAC 
activity assay employing the conversion of a pro-fluorogenic substrate as described previously34. Total HDAC 
activity was reduced in cigarette smoke-exposed mice compared to air-exposed mice (Fig. 7A). Although not sig-
nificant due to relatively large standard deviations, remarkably, total HDAC activity appeared to be re-established 
in cigarette smoke-exposed mice pre-treated with MS-275 compared to air-exposed mice. Subsequently, histone 
acetylation was studied by Western blot. In line with previous studies in cells35, acetylation of both histone H3 
and H4 was significantly increased in lung tissue of cigarette smoke-exposed mice compared to air-exposed mice. 
Excitingly, a decrease in H4 acetylation was observed upon MS-275 treatment (Fig. 7B), which was confirmed 
by densitometry (Fig. 7C). Acetylation of histone H3 and H4 was then analyzed using mass spectrometry. In line 
with the Western blots, decreased acetylation upon MS-275 treatment was observed on res. 4–17 from histone 
H4 (Fig. 7D). Other histone peptides were not affected. Altogether, this shows for the first time that histone H4 
acetylation is increased in cigarette smoke-induced C57Bl/6 mice, which is attenuated by MS-275.

Discussion
We studied the HDAC1-3-selective inhibitor MS-275 in ex vivo, in vitro and in vivo COPD models, to explore 
potential therapeutic applications. While mixed effects were observed in PCLS and RAW264.7 macrophages, in 
cigarette smoke-exposed C57Bl/6 mice there were robust anti-inflammatory effects.

Although MS-275 increased the expression of pro-inflammatory genes in PCLS (except TNFα) and RAW264.7 
macrophages, importantly, the anti-inflammatory expression of IL10 was upregulated. This may be particularly 
relevant in COPD, based on numerous examples. IL-10 can inhibit LPS-induced TNFα and IL8 expression36. 
Interstitial macrophages producing IL-10 negatively regulate T helper 2 and 17 cell-mediated inflammatory 
responses, which prevents neutrophilic asthma37. In COPD patients, the IL-10 concentration in serum and spu-
tum was decreased compared to non-smokers38. In lung tissue of COPD patients less IL-10 was found upon LPS 
stimulation than in lung tissue of patients with normal lung function39. Macrophages in COPD have lost the abil-
ity to produce anti-inflammatory cytokines like IL-10, and therefore cannot effectively dampen expression39,40. 
In summary, macrophages play an important role in COPD, and IL-10 can determine the functional role of mac-
rophages. Restoring IL10 expression could be relevant in resolving inflammation in COPD.

Effects of MS-275 on inflammatory gene expression in macrophages have been described before. MS-275 
was previously shown to upregulate IL-10 protein level in RAW264.7 macrophages25, but opposite to our obser-
vations, IL-1β  was downregulated. MS-275 also reduced nitric oxide (NO) concentration in the media and 
decreased mRNA levels of iNOS and TNFα, showing anti-inflammatory effects25,41. MS-275 reduced LPS-induced 
IL-1β , IL-6, IL-18 and TNF-α  secretion in THP-1 human monocytic cells; and NO secretion in RAW264.7 cells23. 
In bone marrow derived macrophages MS-275 showed mainly pro-inflammatory effects on gene expression42. 
MS-275 reduced poly(I-C)- induced release of TNF-α , IL-6, and IL-12 in dendritic cells. However, IL-10 was 
also reduced, indicating a mixed pro- and anti-inflammatory effect opposite to our findings (i.e. downregulation 
instead of upregulation)43. Thus, MS-275 gives rise to either pro- or anti-inflammatory effects in these cells. The 
exact experimental conditions are likely important to the outcome. Furthermore, future studies could include 
an assessment of the metabolism of macrophages to distinguish between different macrophage phenotypes, as a 
mixed population of macrophages could also explain these effects.

The molecular mechanism underlying the increased IL10 expression under the conditions applied in this 
study was studied in macrophages, focusing on NF-κ B as a potential regulator. MS-275 increased NF-κ B pro-
moter activity, acetylation, and nuclear translocation in RAW264.7 macrophages. The total NF-κ B p65 protein 
level was reduced. Importantly, MS-275 increased NF-κ B p65 binding to the IL10 promoter. This mechanism is 
in line with literature32. MS-275 was also previously shown to increase NF-κ B p65 nuclear translocation, DNA 
binding, acetylation, and activity in U937 human monocytes. The total p65 level was unchanged44. In mouse pri-
mary cortical neurons MS-275 increased global NF-κ B acetylation45. In contrast, MS-275 was previously shown 
to inhibit LPS-induced NF-κ B p65 nuclear accumulation and acetylation23. Taken together, this shows that the 
effects of MS-275 on NF-κ B p65 are complex. The different observations for effects of MS-275 on NF-κ B p65 
could be explained by the different concentrations of MS-275 that were used, different time points used, and dif-
ferences in the employed inflammatory stimulus. Also, effects may vary between cell types.

SAHA did not affect gene expression, NF-κ B p65 acetylation or translocation in macrophages, while a robust 
increase in histone acetylation was observed. These effects are distinct from those of MS-275. Thus, under 
the applied conditions, iso-enzyme selectivity of HDACi has important consequences for their effects. The 
iso-enzyme selectivity of MS-275, which inhibits HDAC1 and 2, and 3, is also important considering the role of 
HDAC2 in COPD. HDAC2 expression and activity are decreased in COPD, which is linked to steroid resistance46. 
For HDAC1 and 3, roles in COPD have not clearly been described. Altogether this shows that development of 
highly potent molecules selectively targeting specific HDACs is of interest. This could aid in obtaining selective 
anti-inflammatory effects via regulation of NF-κ B acetylation on specific lysines. Based on the important role of 
HDAC3 in deacetylation of specific NF-κ B p65 lysines18, HDAC3-selective inhibitors may be interesting candi-
dates for studies in mice. In support of this, the HDAC3-selective inhibitor RGFP966 was previously shown by us 
to increase IL10 expression and reduce pro-inflammatory gene expression in PCLS. In RAW264.7 macrophages, 
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pro-inflammatory gene expression was decreased, and correlated with reduced NF-κ B activity47. This is particu-
larly interesting considering the increased NF-κ B activity reported in COPD8.

Nevertheless, importantly, in cigarette smoke-exposed C57Bl/6 mice, MS-275 attenuated inflamma-
tory responses by robustly decreasing KC cytokine release and neutrophil influx. In line with this, reduced 

Figure 7. MS-275 reduced acetylation of histone H3 and H4 in cigarette smoke-exposed mouse lungs. 
To study the effect of MS-275 on total HDAC activity in nuclear lung extracts of cigarette smoke-exposed 
mice, HDAC activity was determined based on the conversion of a pro-fluorogenic substrate (A). MS-275 
restored HDAC activity compared to air-exposed mice. Data are presented as mean ±  SD of 4–5 animals per 
group. Effects of MS-275 on histone H3 and H4 acetylation were studied by Western blot (blots were cropped; 
full length blots are shown in Figure S11 (B) and quantified by densitometry (C). Total histone H3 and H4 
acetylation was increased in cigarette smoke-exposed mice lungs, and for histone H4 this was reduced by MS-
275. #p <  0.05 compared air-exposed animals **p <  0.01 compared to vehicle (smoke and inhibitor-solvent 
treated) animals. Histone acetylation of histone H3 and H4 was also analyzed by mass spectrometry (D). 
Histones were resolved by SDS-PAGE, histones H3 and H4 were excised from the gel and subjected to LC-MS/
MS analysis. Smoke exposure increased, and MS-275 reduced, acetylation on one peptide from histone H4 
(res. 4–17: GKGGKGLGKGGAKR). Other peptides were not affected. Data are presented as mean ±  SD of 
4–5 animals per group. *p <  0.05 compared to air-exposed animals. #p <  0.05 compared to vehicle (smoke and 
inhibitor-solvent treated) animals.
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inflammatory responses have been reported in various animal disease models characterized by inflamma-
tion24,25,48,49. This shows that in cigarette-smoke-exposed C57Bl/6 mice, but also in other disease models, MS-275 
can suppress inflammatory responses. This indicates the potential for development of selective HDACi for treat-
ment of inflammatory (lung) diseases.

Considering the increased IL10 expression in PCLS and RAW264.7 macrophages, we expected that MS-275 
also increases IL10 expression in macrophages in vivo, playing a role in the anti-inflammatory effects. Indeed, 
MS-275 restored mRNA levels of IL10 in macrophages in lungs from cigarette smoke-exposed mice to levels 
of macrophages in air-exposed mice. Despite this restoration, the CD68+/IL10+ cell number was unchanged. 
However, even though cell numbers were not increased, IL-10 levels could still have been increased. Previously, 
MS-275 was shown to increase IL10 expression in vivo in lymph nodes of experimental autoimmune neuri-
tis rats, and increase the proportion of macrophages expressing anti-inflammatory cytokines (compared to 
pro-inflammatory cytokine expressing macrophages)24. MS-275 also increased the proportion of macrophages 
expressing anti-inflammatory cytokines in prostates of experimental autoimmune prostatitis rats25. Our results 
and these studies combined suggest that MS-275 can increase IL-10 levels in macrophages in vivo, and lead to a 
(relative) increase in macrophages with an anti-inflammatory profile, in several rodent disease models character-
ized by inflammation.

The anti-inflammatory effects in vivo were not directly reflected in PCLS and RAW264.7 macrophages, 
where MS-275 increased expression of both pro- and anti-inflammatory genes. It is unclear why this is the 
case. Although our results in macrophages in vitro clearly indicate a mechanism in which MS-275 increases 
IL10 expression by increasing NF-κ B p65 activity and IL10 promoter binding, it is possible that MS-275 shows 
anti-inflammatory effects in vivo through other mechanisms. Nevertheless, we anticipate that the identified 
molecular mechanism could be one of the contributors. A possible future study to confirm this would be to assess 
isolated macrophages from smoke exposed mice or clinical COPD samples.

As expected, MS-275 increased histone acetylation in PCLS and RAW264.7 macrophages. In line with 
previous studies in cells35, cigarette smoke increased histone H4 acetylation in mouse lungs. Strikingly, and 
counter-intuitively, MS-275 reduced these acetylation levels. This suggests that the overall changes in histone 
acetylation are a consequence of processes brought about by cigarette smoke exposure, which are alleviated by 
MS-275; rather than a direct consequence of MS-275 treatment. The observations of less KC (murine IL-8) secre-
tion and neutrophil influx upon MS-275 treatment could be accompanied by reduced histone acetylation. This 
could be explained by increased IL-10 secretion by alveolar macrophages. In monocytes IL-10 has been described 
to locally decrease histone H4 acetylation at the IL8 promoter36. Compensation mechanisms could also take 
place upon MS-275 treatment to restore overall HDAC activity resulting in reduced acetylation levels. Previously, 
MS-275 increased histone acetylation in various tissue types in vivo in other disease models50–52. It is unclear why 
our results are not in line with this, and this requires further study.

In summary, MS-275 showed mixed effects on pro- and anti-inflammatory gene expression in PCLS and 
RAW264.7 macrophages. Importantly, anti-inflammatory IL10 expression was upregulated in these models. In 
macrophages this was connected to increased NF-κ B p65 transcriptional activity, acetylation, nuclear localiza-
tion, and binding to the IL10 promoter. This molecular mechanism could be relevant to COPD due to the crucial 
role of macrophages and IL-10 in COPD. Importantly, in cigarette smoke-induced C57Bl/6 mice, MS-275 reduced 
inflammatory gene expression of KC mRNA, KC cytokine level in BAL, and lung neutrophil influx. IL10 expres-
sion was upregulated in vivo in lung macrophages on the mRNA but not the protein level. Intriguingly, MS-275 
decreased histone acetylation in the lungs of cigarette smoke-exposed mice. To our knowledge, this study is the 
first to demonstrate that the HDAC1-3-selective inhibitor MS-275 robustly attenuates cigarette smoke-induced 
neutrophilic airway inflammation in C57Bl/6 mice. This highlights a potential alternative application area for 
isoform selective HDACi in the treatment of inflammatory lung diseases, which is a novel concept.

Materials and Methods
HDAC inhibition assay. The HDAC inhibition assay was performed in triplicate as described before34. 
Briefly, the respective human recombinant HDAC enzymes (BPS Bioscience, San Diego, CA, USA) were incu-
bated in absence and/or in presence of various concentrations MS-275, SAHA and the pro-fluorogenic substrate 
at room temperature for 60 min. Next, the deacetylation reaction was stopped with the addition of the HDAC 
Stop Solution (6 mg/mL trypsin, 0.3 mM SAHA) in all wells and the plate was incubated at 37 °C for 20 min. 
The release of the fluorescent 7-amino-4-methylcoumarin was monitored by measuring the fluorescence at  
λ em =  460 nm and λ ex =  390 nm using a Synergy H1 plate reader (BioTek Instruments, Winooski, VT, USA). The 
fluorescence value of the background wells was subtracted from the fluorescence of the positive control, blank 
and inhibitor wells. Nonlinear regression was used to fit the data to the log(inhibitor) versus response curve using 
GraphPad Prism (GraphPad software 5.00, San Diego CA, USA).

Precision-cut lung slices and treatment. C57bl/6 male mice (weight 24–28 g; age 8–10 weeks) were 
purchased from Harlan (Zeist, The Netherlands) and maintained on mouse chow and tap water ad libitum in 
a humidity- and temperature-controlled room at 24 °C with a 12 h light/dark cycle. All experiments were per-
formed according to national guidelines and upon approval of the experimental procedures by the local Animal 
Care and Use committee of Groningen University, DEC number 6962 A. Mice were randomly assigned to the 
experiments.

Mouse precision-cut lung slices (PCLS) were prepared as previously described53. Briefly, male mice were anes-
thetized by subcutaneous injection of ketamine (40 mg/kg, Alfasan, Woerden, The Netherlands) and dexdomitor 
(0.5 mg/kg, Orion Pharma, Mechelen, Belgium). Subsequently, the trachea was cannulated and the animal was 
exsanguinated by cutting the jugular vein, after which the lungs were filled trough the cannula with 1.5 mL low 
melting-point agarose solution (1, 5% final concentration) The lungs were placed on ice for 15 min to solidify the 
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agarose for slicing. The lobes were separated and tissue cores were prepared of the individual lobes, after which 
the lobes were sliced at a thickness of 250 μ m. Tissue slices were incubated at 37 °C in a humid atmosphere under 
5% CO2/95% air. In order to remove the agarose and cell debris from the tissue, slices were washed every 30 min 
(four times in total).

PCLS were incubated in DMEM supplemented with sodium pyruvate (1 mM), MEM non-essential amino 
acid mixture (1:100; Gibco® by Life Technologies), gentamycin (45 μ g/mL; Gibco® by Life Technologies), penicil-
lin (100 U/mL), streptomycin (100 μ g/mL) and amphotericin B (1.5 μ g/mL; Gibco® by Life Technologies). Slices 
were cultured at 37 °C in a humidified atmosphere under 5% CO2/95% air in 12-well tissue culture plates, using 3 
slices per well. Slices were treated with MS-275 (1 and 10 μ M) and SAHA (0.41 μ M) for 20 h and where indicated, 
stimulated with 10 ng/mL LPS/IFNγ .

Cell culture. RAW264.7 macrophages (mouse) were obtained from the American Type Culture Collection 
(ATCC, Wesel, Germany) and cultured in plastic tissue culture plates or flasks (Costar Europe, Badhoevedorp, 
The Netherlands) at 37 °C under 5% CO2/95% air in Dulbecco’s Modification of Eagle’s Medium (DMEM) con-
taining GlutaMAXTM (Gibco® by Life Technologies, Bleiswijk, The Netherlands) supplemented with 10% (v/v) 
heat inactivated fetal bovine serum (FBS; Invitrogen, Breda, The Netherlands), 2 mM additional GlutaMAXTM 
(Gibco® by Life Technologies), 100 U/mL penicillin (Gibco® by Life Technologies) and 100 μ g/mL streptomycin 
(Gibco® by Life Technologies). RAW264.7 macrophages were used between passage 5 and 16.

Where indicated, cells were stimulated with 10 ng/mL lipopolysaccharide (LPS, Escherichia coli, serotype 
0111:B4; Sigma-Aldrich, Zwijndrecht, The Netherlands) and 10 ng/mL interferon gamma (IFNγ , #315-05; 
PeproTech, Hamburg, Germany) for the last 4 h of the experiment. For exposure to cigarette smoke extract (CSE), 
RAW264.7, 5% CSE was used. CSE was prepared by a standardized method by combusting two 3R4F research 
cigarettes (University of Kentucky, Lexington, KY) (filter removed) using a peristaltic pump (Watson Marlow, 
Falmouth, Cornwall, England) and passing the smoke through 25 ml of the culture medium, at a rate of one 
cigarette per 5 min. The obtained solution was designated 100% CSE and diluted to working concentration in the 
culture medium. For all experiments, CSE was freshly prepared and used within 30 min after preparation.

Investigation of cellular toxicity by MTS assay. To investigate the influence of the HDACi on 
cell viability, RAW264.7 macrophages were seeded in 96-well plates. To obtain identical cell density at the 
start of the experiments, RAW264.7 macrophages were seeded at 25,000 cells/cm2, prior incubation with 
MS-275 and SAHA. Shortly before incubation with HDACi, medium was replaced by 100 μ L fresh culture 
medium. After 20 h of incubation with HDACi (and if appropriate the last 4 h supplemented with 10 ng/mL  
LPS/IFNγ ), 20 μ L of CellTiter 96 AQueous One Solution reagent (Promega) was added to each well and incubated 
at 37 °C for 1 h in the dark. The absorbance at 490 nm was measured using a Synergy H1 plate reader. LPS/
IFNγ -stimulated cells without addition of HDACi were considered 100%.

Gene expression analysis by RT-qPCR. RAW264.7 macrophages were washed twice with ice-cold 
Dulbecco’s Phosphate-buffered Saline (DPBS, Gibco® by Life Technologies) and total RNA was isolated using 
the SV Total RNA Isolation kit (Promega, Leiden, The Netherlands). RNA from mouse precision-cut lung slices 
(PCLS) and from mouse lung tissue (whole lung) was isolated using the Maxwell® 16 LEV simplyRNA Tissue 
Kit (Promega). Both RNA isolation procedures were performed according to the manufacturer’s protocol. RNA 
integrity was determined by 28 S/18 S ratio detection on an 1% agarose gel, which was consistently found intact. 
RNA concentration (OD260) and purity (OD260/OD280) were measured by NanoDrop ND-1000 UV-Vis spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA). For gene expression analysis, RNA was reverse 
transcribed using the Reverse Transcription kit (#A3500, Promega). Subsequently, 10 ng of cDNA was applied for 
each RT-qPCR, which was performed on an ABI Prism 7900HT Sequence Detection System (Applied Biosystems, 
Nieuwerkerk a/d IJssel, The Netherlands). The primers for TNFα  (Mm00443258_m1, IL-1β  (Mm00434228_m1), 
IL-6 (Mm00446190_m1), KC (Mm04208136_m1), IL-10 (Mm00439614_m1), IL-12b (Mm00434174_m1), CD68 
(Mm03047340_m1), p65 (Mm00501346) and GAPDH (Mm99999915_g1) were purchased as Assay-on-Demand 
(Applied Biosystems). For each sample, the real-time PCR reactions were performed in duplicate and the aver-
ages of the obtained Ct values were used for further calculations. Data analysis was performed with the relative 
quantification manager software (SDS 2.4; Applied Biosystems). Gene expression levels were normalized to the 
expression of the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which was not influ-
enced by the experimental conditions resulting in the Δ Ct value. Gene expression levels were calculated by the 
comparative Ct method (2−ΔΔCt)54.

Assessment of tissue viability using lactate dehydrogenase. To assess the viability of the PCLS 
subjected to MS-275 and SAHA, the amount of lactate dehydrogenase (LDH) released from the tissue slices into 
the incubation medium was analyzed. Maximal LDH release was determined by lysing 3 slices with 1% Triton 
X-100 for 30 min at 37 °C at the start of the experiments. Supernatants were stored at − 80 °C. LDH release was 
determined using an assay form Roche Diagnostics (Mannheim, Germany), and was measured using a Hitachi 
automatic analyzer (Modular Analytics, Roche Diagnostics). LDH release from the PCLS into the incubation 
medium was plotted relative to maximal LDH release.

Protein expression analysis by Western blot. RAW264.7 macrophages were washed twice with 
ice-cold DPBS and subsequently lysed in ice-cold cell lysis buffer (25 mM Hepes, 5 mM MgCl2, 5 mM EDTA, 
0.5% Triton X-100; supplemented with 1 mM DTT, 1 mM sodium butyrate, and protease inhibitors (#88266; 
Thermo Scientific, Rockford, IL, USA)). Next, lysates were freeze-thawed (4x) and centrifuged (10 min, 13,000 g) 
to remove cell debris. Protein concentrations were determined using the RC DC Protein Assay (Bio-Rad) 
according to the manufacturer’s protocol. Equal amounts of protein were loaded on a 10% polyacrylamide 
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gel, separated by SDS-PAGE with a Mini-Protean II apparatus (Bio-Rad Laboratories, Veenendaal, The 
Netherlands), and transferred with a Trans-Blot Electrophoretic Transfer system (Bio-Rad Laboratories) 
onto a polyvinylidene difluoride membrane (PVDF; Bio-Rad Laboratories). The membrane was blocked at 
room temperature for 1 h in DPBS/0.1% Tween 20 (Sigma-Aldrich; solution referred to as PBST) containing 
5% skimmed milk (Campina, Friesland, The Netherlands) and subsequently incubated overnight at 4 °C with 
the appropriate primary antibody in 5% BSA (Sigma-Aldrich) or 5% skimmed milk in PBST. The follow-
ing primary antibodies and dilutions were used: NF-κ B p65 (#8242, 1:2,500), PARP-1 (#9532, 1:1,000), and 
Histone H3 (#4499, 1:2,000); all from Cell Signaling, Leiden, The Netherlands and anti-acetyl lysine (AB3879, 
1:500; Millipore, Billerica, MA, USA). For loading control the lower part of the blot was incubated for 1 h at 
room temperature with monoclonal rabbit anti-β -actin (#4970, 1:10,000; Cell Signaling). Membranes were 
washed in PBST and incubated at room temperature for 1 h with peroxidase-conjugated secondary antibod-
ies. The following secondary antibodies were used: goat anti-rabbit IgG/HRP (#P0448), rabbit anti-goat 
IgG/HRP (#P0449) and rabbit anti-mouse IgG/HRP (#P0260, all 1:2,000; DakoCytomation, Glostrup, 
Denmark). The bands were visualized using the VisiGloTM Prime HRP Chemiluminescenct Substrate Kit 
(AMRESCO, Solon, OH, USA), quantified by imaging (GeneSnap from SynGene, Frederick, MD, USA), and 
processed using ImageJ software (1.48d; National Institute of Health, USA). For the Western blot of K310 
acetylated p65, RAW264.7 macrophages (from one 175 cm2 culture flask) were subjected to MS-275 (1 μ M)  
for 20 h, stimulated with 10 ng/mL LPS/IFNγ  for 4 h and subsequently lysed in lysis buffer (20 mM Tris-HCl pH 
7.5, 120 mM NaCl, 1% IGEPAL CA-630, 2 mM EDTA; all from Sigma-Aldrich) supplemented with PierceTM 
Protease Inhibitors (P.I.; #88266, Thermo Scientific). The lysates were loaded on a 10% polyacrylamide gel, and 
the same blotting and blocking procedures as described above were followed. The primary antibody that was 
used was #ab19870 from Abcam in 1:500 dilution. The same secondary antibody and visualization procedure as 
described above was used. The K310 acetylation signal was quantified using the p65 signal as a loading control.

Effect of HDACi on NF-κB transcriptional activity by QUANTI-Blue assay. RAW-BlueTM cells 
(InvivoGen, San Diego, CA, USA) were originally derived from mouse RAW264.7 macrophages which stably 
express a secreted embryonic alkaline phosphatase (SEAP) gene inducible by NF-κ B p65 and AP-1 transcrip-
tion factors. RAW-Blue cells were treated with MS-275 or SAHA for a total of 20 h from which the last 4 h sup-
plemented with 10 ng/mL LPS/IFNγ . The secretion of SEAP into the medium is therefore indicative of NF-κ B 
activity, and was determined using the QUANTI-BlueTM detection medium (InvivoGen) according to the manu-
facturer’s protocol. Briefly, 50 μ L of supernatant was added to 150 μ L of QUANTI-BlueTM detection medium and 
incubated at 37 °C for 1–2 h in the dark. Subsequently, SEAP activity was assessed by measuring the absorbance 
at 630 nm using an Synergy H1 plate reader. Results were plotted as % of control.

Histone extraction and Micro BCA™ Protein Assay. Histone extractions were performed as previ-
ously described in the literature with minor modifications55. After histone extractions the samples were diluted 
with Phosphate-Buffered Saline (PBS, PAA Laboratories GmbH, Austria) to determine the total protein concen-
tration using the micro BCA protein assay according to the manufacturer’s instructions (Pierce, Rockford, USA, 
# 23235). Absorbance was measured with a Synergy H1 plate reader at 562 nm. A bovine serum albumin standard 
(2 mg/mL, Pierce, Rockford, USA, # 23209) was used to calibrate the assay.

Acetylation of histones with acetic anhydride-d6. For the in-gel reaction of histones with acetic 
anhydride-d6, 7 μ g of histones were loaded on a 15% polyacrylamide gel and resolved by SDS-PAGE electropho-
resis. After Coomassie staining, bands for histones H3 and H4 were excised from the gel. Then 50 μ L of acetoni-
trile and 50 μ L of ammonium bicarbonate buffer (100 mM) were added to destain the gel bands. Gel bands were 
then dried in acetonitrile. Subsequently, 5 μ L of acetic anhydride-d6 was added, after which 100 μ L of ammonium 
bicarbonate (1 M) was added immediately. Subsequently, samples were incubated at 37 °C for 15 min. Gel bands 
were then washed 3 times with H2O. The acetic anhydride-d6 reaction was then repeated. After the second reac-
tion, gel bands were dried using acetonitrile and trypsin (Promega, Madison, Wisconsin, USA, # V511A) was 
added at a 1:20 ratio in ammonium bicarbonate (50 mM). Histones were digested at 37 °C for 16 h. Supernatants 
containing histone peptides were subjected to LC MS/MS analysis as described below.

NanoChip LC-MS/MS QTOF. A quadrupole time-of-flight mass spectrometer (QTOF, Agilent 6510) with 
a liquid chromatography-chip cube (# G4240) electrospray ionization interface was coupled to a nanoLC sys-
tem (Agilent 1200) composed of a nanopump (# G2226A), a capillary loading pump (#G1376A) and a solvent 
degasser (# G1379B). Injections were performed with an autosampler (# G1389A) equipped with an injection 
loop of 40 μ L and a thermostated cooler maintaining the samples in the autosampler at 4 °C during the analysis 
(#G1377A Micro WPS). The instrument was operated under the MassHunter Data Acquisition software (Agilent 
Technologies, Santa Clara, USA, version B.04.00, B4033.3). A chip (ProtID-Chip-150 II 300 A, #G4240-62006) 
with a 40 nl trap column and a 75 μ m ×  150 mm analytical column filled with Zorbax 300SB-C18, 5 μ m (Agilent 
Technologies) was used for peptide separation.

The identification of peptides was based on data collected in auto MS/MS 2 GHz mode using the follow-
ing settings; fragmentor: 175 V, skimmer: 65 V, OCT 1 RF Vpp: 750 V, precursor ion selection: medium (4 m/z), 
mass range: 200–2500 m/z, acquisition rate for MS: 2 spectra/sec, for MS/MS 3 spectra/sec; MS/MS range: 
50–3000 m/z; ramped collision energy: slope 3.8, offset: 0, precursor setting: maximum 3 precursors/cycle; abso-
lute threshold for peak selection was 1000; relative threshold was 0.01% of the most intense peak, active exclusion 
enabled after 1 selection, release of active exclusion after 0.6 min, precursors were sorted by abundance only. The 
MS/MS files were stored in centroid and profile mode. MS1 absolute threshold 50 and MS2 absolute threshold 
35 were applied to account for detector noise. Static exclusion range 200–350 m/z for precursor selection was 
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applied. Gas temperature (nitrogen) was 325 °C and gas flow was 5 l/min. The quantification of peptides was 
based on data collected in MS mode using the same settings except of the mass range 20–3000 m/z; acquisition 
rate 1 spectra/sec. In both cases lock masses 1221.990 m/z and 299.294 (Agilent) were used to recalibrate spectra 
during the acquisition. The area of the manually extracted ion chromatograms (0.1 m/z tolerance) of the selected 
peptides was used for quantification.

Database search. Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by the 
MassHunter Qualitative Analysis software version B.05.00 (Agilent) and saved as. mgf files. All MS/MS data were 
analyzed using Phenyx (GeneBio, Geneva, Switzerland); version CYCLONE (2010.12.01.1)). The fragment ion 
mass tolerance of 0.30 Da and a parent ion tolerance of 400 ppm were selected for a database search. The oxida-
tion of methionine (+ 15.99), light (+ 42.01) and heavy (+ 45.03) acetylation of lysine (K), heavy acetylation with 
light methylation (+ 59.045) of K, methylation (+ 14.01), dimethylation (+ 28.03), trimethylation (+ 42.04) of K, 
methylation of arginine (R) (+ 14.01), dimethylation of arginine (R) (+ 28.03) N-terminal acetylation (+ 42.01), 
deamidation (+ 0.98) of asparagine (N) and glutamine (Q) were specified in Phenyx as variable modifications.

Nuclear and cytosolic fractionation. RAW264.7 macrophages were subjected to 1 μ M MS-275 and 0.41 μ M  
SAHA for 20 h, stimulated with 10 ng/mL LPS and 10 ng/mL IFNγ  for 4 h and subsequently lysed. Nuclear 
and cytosol fractions of RAW264.7 macrophages were prepared using the NE-PER® Nuclear and Cytoplasmic 
Extraction kit (Thermo Scientific) according to the protocol of the manufacturer.

Confocal laser scanning microscopy (CLSM). The effect of the MS-275 and SAHA on the nuclear trans-
location of NF-κ B p65 was evaluated by immunofluorescence. 20,000 cells/cm2 cells were seeded in Lab-Tek 
chambers (#177445; Nunc, Rochester, NY, USA) and subjected to 1 μ M MS-275 and 0.41 μ M SAHA for 20 h. 
Cells were washed twice with ice-cold DPBS and fixed with 4% formaldehyde at room temperature for 20 min-
utes. Subsequently, cells were permeabilized with 0.25% Triton X‐100 in DPBS and blocked with DPBS/5% BSA 
for 30–60 min at room temperature (to minimize non-specific binding). NF-κ B p65 was detected with rabbit 
monoclonal NF-κ B p65 antibody (2 h incubation at 4 °C, 1:250; #8242, Cell Signaling), followed by 1 h incubation 
with goat anti-rabbit AlexaFluor488 (10 μ g/mL; A-11008, Molecular Probes, Leiden, The Netherlands). All anti-
body incubation steps were carried out in 5% BSA/DPBS and between incubation steps slides were washed with 
DPBS/0.5% BSA/0.05% Tween 20. For negative control, samples were processed omitting the primary antibody. 
At the end of the incubation steps, nuclei were stained with Hoechst 33342 (Molecular Probes) and mounted 
using Aqua Poly/Mount medium (Polysciences, Warrington, PA, USA), air dried for 24 h, and stored in the dark 
at 4 °C. Fluorescence was examined using a confocal laser scanning microscope (CLSM) equipped with true 
confocal scanner (TCS; SP8 Leica, Heidelberg, Germany), using a 63x oil immersion lens. Sequential scans were 
obtained to avoid bleed through. AlexaFluor488 was excited using the 488 nm blue laser line, AlexaFluor546 was 
excited using the 552 nm green laser line and Hoechst 33342 using the 405 nm UV laser line. All images were 
recorded in the linear range, avoiding local saturation, at an image resolution of 2048 ×  2048 pixels and with a 
pinhole size of 1 Airy unit. Presented images show a single z-scan. Images were further processed using ImageJ 
1.48d.

Chromatin Immunoprecipitation (ChIP). RAW264.7 macrophages were plated in 175 cm2 flasks and sub-
jected to 1 μ M MS-275 or vehicle for 20 h from which the last 4 h supplemented with 10 ng/mL LPS/IFNγ . RAWs 
were cross-linked for 20 min at RT with 1.5 mM EGS in PBS followed by 15 min with 1% formaldehyde (#28906, 
methanol-free; Thermo Scientific). Cross-linking was quenched with 200 mM glycine in PBS for 5 min and sub-
sequently cells were washed 3 times with ice-cold PBS. Per ChIP, 25–30 ×  106 cells were lysed with scrape buffer 
(PBS supplemented with 3 μ L PierceTM Protease Inhibitors (P.I.); #88266, Thermo Scientific) and centrifuged at 
500 g for 5 min at 4 °C. To isolate the nuclei, the pellets were incubated in 1 mL LB1 buffer (50 mM Hepes-KOH, 
pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% IGEPAL CA-630 and 0.25% Triton-X 100, supplemented 
with 3 μ L/mL P.I.)/25 ×  106 cells and rotated for 20 minutes at 4 °C to ensure efficient lysis. After centrifugation 
at 2000 g for 5 minutes at 4 °C, nuclei were washed in LB2 buffer (10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM 
EDTA and 0.5 mM EGTA, supplemented with 3 μ L/mL P.I.), for 5 minutes at 4 °C with rotation and afterwards 
centrifuged at 2000 g for 5 minutes at 4 °C. Nuclei were lysed in LB3 buffer (10 mM Tris-HCl, pH 8.0, 100 mM 
NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate and 0.5% lauroylsarcosine, supplemented with  
3 μ L/mL P.I.) and sonicated with a Bioruptor®  Plus device (Diagenode Inc., USA) to fragment the chromatin to a 
mean size of 300 bp. 25 μ g of pre-cleared sonicated chromatin was incubated overnight on a rotating platform at 
4 °C with Protein-A Dynabeads®  (#10001D, Thermo Scientific) prebound with 1–2 μ g of control IgG (#3900, Cell 
Signaling) or NF-κ B p65 (#8242, Cell Signaling) antibodies. Afterwards, the immune complexes were washed 
seven times with RIPA buffer (50 mM Hepes-KOH, pH 7.6, 1 mM EDTA, 0.7% Na-deoxycholate, 1% IGEPAL 
CA-630, 0.5 M LiCl) and two times with TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). ChIP DNA frag-
ments were eluted and decross-linked by incubation with elution buffer (1% SDS, 0.1 M NaHCO3) overnight at 
65 °C. Next the DNA fragments were incubated with 1 mg/mL RNase (#11119915001, Roche) for 1 h at 37 °C and 
subsequently incubated with 20 mg/mL Proteinase K (#03115887001, Roche) for 2 h at 55 °C to reduce residual 
RNA and protein. Finally, ChIP DNA fragments were isolated using the Wizard®  SV Gel and PCR Clean-Up 
System (Promega) according to the manufacturer’s protocol and quantified by RT-qPCR using an ABI Prism 
7900HT Sequence Detection System (Applied Biosystems) and a SensiMixTM SYBR®  Hi-ROX Kit (#QT605-05, 
Bioline, Alphen aan den Rijn, The Netherlands). The following IL-10 primers were used: −48 bp transcription start 
site, 5′ -TCAAAAATTGCATGGTTTAGAAGA-3′  (FW), 5′ -TGTTCTTGGTCCCCCTTTTA-3′  (RV); −220 bp 
transcription start site, 5′ -AGCTGTCTGCCTCAGGAAAT-3′  (FW), 5′ -TGGTCGGAATGAACTTCTGC-3′  
(RV). qChIP data were calculated as percent of input and plotted as fold enrichment.
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Mouse model of cigarette smoke exposure. Male mice were exposed (whole body) twice a day for 4 
consecutive days to cigarette smoke from research cigarettes (Kentucky 3R4F), as described previously56. In brief, 
on day 1, mice were exposed to the mainstream smoke of one cigarette in the morning and three cigarettes in the 
afternoon, and on day 2–4, five cigarettes in the morning and five cigarettes in the afternoon (Fig. 6A) (1 ciga-
rette corresponds to 5 minutes of exposure followed by 30 seconds of air exposure and subsequently 2 minutes of 
recovery). 30 minutes prior to each cigarette smoke exposure mice were subjected to 10 μ M MS-275 by nebuliza-
tion (using a PARI BOY SX pump type 085 (Pari GmbH, Starnberg, Germany) in PBS 1% DMSO for 15 minutes. 
Vehicle treated mice were exposed to PBS 1% DMSO (no MS-275) and cigarette smoke. Control mice were han-
dled in the same manner, however, exposed to fresh air only. 16 h after the last cigarette smoke/air exposure mice 
were anesthetized by subcutaneous injection of ketamine (40 mg/kg) and dexdomitor (0.5 mg/kg). Subsequently, 
BAL fluid was obtained and lungs were snap frozen on liquid nitrogen and stored at − 80 °C. Animal experiments 
were performed according to national guidelines and upon approval of the experimental procedures by the local 
Animal Care and Use committee of Groningen University, DEC number 6962B. Mice were randomly assigned to 
the experiments. The number of mice available for analysis per group is shown in the figures.

Analysis of BAL fluid. After anesthetizing the mice, lungs were gently lavaged through a tracheal cannula 
with 1 mL PBS containing 5% BSA supplemented with protease inhibitors (# 11836170001, Roche, 1 tablet per 
10 mL) and another 4 times with 1 mL PBS. Bronchoalveolar lavage (BAL) fluid was centrifuged at 290 g for 
10 minutes at 4 °C and the supernatants of the first fractions were stored at − 80 °C and analyzed for KC (IL-8) 
content by ELISA (#DY453-05, R&D Systems, Minneapolis, MN, USA). For each animal individually, BAL cells 
of the 5 different fractions were combined, resuspended in 500 μ L PBS, and total cell numbers were determined. 
For cytological determination, cytospin preparation were stained with May-Grünwald and Giemsa (both Sigma) 
and a differential cell count was performed by counting ≥ 400 cells in duplicate in a double blinded fashion.

Immunohistochemical staining and quantification of CD68+ and CD68+/IL-10+ macrophages 
in lung tissue of cigarette smoke-induced neutrophilic airway inflammation. To determine 
the number of CD68+ and CD68+/IL-10+ macrophages in lung tissue, 4 μ m-thick cryosections (n =  4–5) were 
stained with specific antibodies. First, cryosections were fixed for 10 minutes in 100% acetone and subsequently 
blocked for 30 minutes with 5% ELK and 1% BSA in PBS. Next, sections were incubated overnight at 4 °C with 
10 μ g/mL anti-human IL-10 rabbit IgG (#HP9016, Hycult Biotech, Uden, The Netherlands). Endogenous perox-
idase activity was blocked with 0.3% H2O2 and endogenous biotin was blocked using a Biotin Blocking System 
(#X0590, Dako). Subsequently, sections were incubated with 4 μ g/mL rat anti-mouse CD68 (#MCA1957GA, Abd 
Serotec® , Bio-Rad) for 1 h, followed by incubation with 7.6 μ g/mL polyclonal goat anti-rabbit immunoglobu-
lins/biotinylated (#E0432, Dako) for 30 minutes and 1:50 goat anti-rat IgG/HRP (#3050-05, Southern Biotech, 
Birmingham, USA) for 30 minutes. Immunoreactivity was visualized using a Vectastain ABC Kit (#PK-4000, 
Vector Laboratories, Burlingame, USA), an BCIP/NBT Alkaline Phosphatase Substrate Kit (#SK-5400, Vector 
Laboratories; 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) and an ImmPACTTM NovaREDTM 
Peroxidase Substrate Kit (#SK-4805, Vector Laboratories), according to manufacturer’s protocols. Finally, sec-
tions were dehydrated through 95% and 100% alcohol and mounted with VectaMountTM Permanent Mounting 
Medium (#H-5000, Vector Laboratories). As negative control, sections were processed omitting the primary anti-
body. CD68-positive cells and double-positive cells were counted manually and corrected for the total area of 
lung tissue section as measured by morphometric analysis using Aperio ImageScope viewing software 11.2.0.780 
(Aperio, Vista, USA).

HDAC activity in nuclear lung extracts. To determine the HDAC activity in lung tissue of cigarette 
smoke-exposed mice treated with HDAC1-3 inhibitor MS-275, nuclear fractions were prepared. First, 25 mg lung 
tissue was washed with 1 mL ice-cold PBS and centrifuged at 500 g for 5 min at 4 °C. Subsequently, the supernatant 
was removed and nuclear fractions were prepared using the NE-PER® Nuclear and Cytoplasmic Extraction kit 
(Thermo Scientific) according to the protocol of the manufacturer.

The HDAC activity in the resulting nuclear lung extracts was determined using an assay described before34. 
Shortly, nuclear extracts were serial diluted in 40 μ L of HDAC buffer (25 mM Tris-HCl, 137 mM NaCl, 2.7 mM 
KCl and 1 mM MgCl2). Negative control contained 40 μ L heat inactivated nuclear extracts; 100 °C for 10 min. 
Subsequently, 50 μ l of Boc-Lys(Ac)-AMC (100 μ M) and 10 μ l of HDAC buffer was added to all wells (final vol-
ume 100 μ L). The plates were gently shaken for 20 sec and incubated at room temperature for 1 h. Next, 50 μ l of 
HDAC stop solution (300 μ M SAHA supplemented with 6 mg/mL trypsin) was added to all wells and the plate 
was incubated at 37°C for 20 min. The fluorescence was measured at λem =  460 nm and λex =  390 nm. Arbitrary 
fluorescence units (AFU), corresponding to HDAC activity, were plotted versus mg protein for all samples.

Statistical analysis. The data are presented as mean ±  SD unless stated otherwise. Data are derived from 
three or more independent experiments (unless otherwise indicated) and were analyzed with the Prism 5.0 sta-
tistical program from GraphPad Software. Statistical analysis of the data was performed by a two-tailed unpaired 
Student’s t-test, assuming equal variances to compare two replicate groups. Analysis of differences between mul-
tiple replicate groups was analyzed with one-way ANOVA followed by Bonferroni or Tukey post hoc analysis.  
p values ≤ 0.05 were considered to be significant.
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