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Abstract

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic
caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However,
considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug
candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric commu-
nication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical meth-
ods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in
extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has pre-
viously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we
score the highest ranking sites against random sites at similar distances, and we identify four statistically
significant putative allosteric sites as good candidates for alternative drug targeting.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

The global pandemic of COVID-19 (coronavirus
disease 2019) is caused by SARS-CoV-2 (Severe
Acute Respiratory Syndrome Coronavirus 2),1–4 a
member of the coronavirus family of enveloped,
single-stranded ribonucleic acid (RNA) viruses that
also includes the virus responsible for the severe
acute respiratory syndrome (SARS) epidemic of
2003.5 Since coronaviruses have been known to
infect various animal species and share phyloge-
netic similarity to pathogenic human coronaviruses,
the potential of health emergency events had
already been noted.6 However, their high mutation
rate, similarly to other RNA viruses7 and particularly
of the SARS-CoV-2 Spike protein,8 made the devel-
opment of long lasting drugs challenging. Develop-
ing therapeutics against coronaviruses is of
renewed interest due to the ongoing global health
emergency.
rs. Published by Elsevier Ltd.This is an open acc
One of the main approaches for targeting
coronaviruses is to inhibit the enzymatic activity of
their replication machinery. The main protease
(Mpro), also known as 3C-like protease (3CLpro), is
the best characterised drug target owing to its
crucial role in viral replication.9–11 The Mpro is only
functional as a homodimer and the central part of
the active (or orthosteric) site is composed of a
cysteine-histidine catalytic dyad12 (see Figure 1
(B)) which is responsible for processing the polypro-
teins translated from the viral RNA.13

The Mpro of SARS-CoV-2 is very similar to that of
SARS-CoV: they share 96% sequence similarity,
and exhibit high structural similarity (the root mean
square deviation between Ca positions is only
0.53�A).12 Indeed, many of the residues that are
important for catalytic activity, substrate binding
and dimerisation are conserved between both pro-
teases.14 However, mutations in SARS-CoV-
2 Mpro (for a full list see Table S1) would indeed
ess article under the CC BY license (http://creativecommons.org/licenses/
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Figure 1. Overview of the SARS-CoV-2 main protease dimer. Atomic coordinates are obtained from the PDB file
(PDB ID: 6Y2E). (A) shows the full dimer with the active site residues and residues 285/286 on both monomers shown
as spheres. The second monomer is shown with increased transparency to visualise where the monomers interact.
Colours are according to domain: Domain I residues 10 to 99 - dark green, domain II residues 100 to 182 - dark blue,
domain III residues 198 to 303 - orange, loops in light green. (B) Zoom-in of the active site with histidine 41 and
cysteine 145 forming a catalytic dyad which is extended to a triad by a water molecule in close proximity.
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modulate distant regions via allosteric signalling.
Notably, two of those mutations at the dimer inter-
face (Thr285Ala and Ile286Leu, see Figure 1) have
been the object of particular interest: on one hand, it
has been suggested that they could be responsible
for closer dimer packing in SARS-CoV-2;12 on the
other hand, previous mutational studies on those
positions have revealed an impact on catalytic activ-
ity in SARS-CoVMpro.15 Currently, the development
of inhibitors for the Mpro of SARS-CoV-212,16–18

focuses on blocking the active sites to disrupt viral
replication,19similarly to the strategy followed for
the design of other inhibitors for coronavirus pro-
teases.20–22

Targeting the active site enables high affinity of
the drug molecules, but can also result in off-
target toxicity through binding to proteins with
similar active sites.23,24 Drug resistance is another
major concern, especially when the active site
may potentially change owing to mutations. Target-
ing an allosteric site distal from the main binding site
provides an alternative strategy by increasing the
range and selectivity of drugs that can fine-tune pro-
tein activity, yet circumventing some of the afore-
mentioned disadvantages. For reviews and recent
successes of allosteric drug design, see Wenthur
et al. and Cimermancic et al.25,26 This approach
also holds additional potential for drug repurposing
targeting binding at allosteric sites to reduce time
and costs for bringing new drugs to the market,27

an important consideration in the time-sensitive set-
ting of COVID-19.28

Encouragingly, following the very recent surge of
research around the Mpro of SARS-CoV-2, some
experimental studies have found drugs and small
fragments that bind to sites other than the
substrate binding site on this protein, and that
might have implications for allosteric
regulation.29,30 Preliminary studies have also simu-
2

lated binding events to distant areas of the protein
by using docking and molecular dynamics
(MD),31–33 MD34–38 or elastic network models
(ENMs).39,40 Moreover, there have already been
indications of allosteric processes mediated by the
extra domain in the protease of the old SARS-
CoV.41–43,15

We focus here on the allostericity of the SARS-
CoV-2 main protease, and specifically whether
there are potential allosteric sites strongly
connected to the active site that may offer
alternative ways to inhibit virus reproduction. The
identification of allosteric sites in enzymes remains
challenging and is still often done serendipitously.
Computational prediction of allosteric sites has
become an active field of research for drug design
(for reviews see44,45) as it promises to help reduce
the laborious and time-consuming process of com-
pound screening. Thermodynamic models, notably
the classic Monod-Wyman-Changeux46 and
Koshland-Némethy-Filmer47 models, offer insights
into the conformational changes of protein structure
upon ligand binding. However, they do not explain
the underpinning molecular signal transmission
within the protein, which has been argued as a
key structural component of allostery,48 nor the idea
of allosteric signals being propagated over bond
paths within the structure.49 Other studies have
used MD simulations, which model the dynamics
of proteins at the atomic level, to detect communica-
tion pathways in the protein structure that can be
exploited for allosteric residue and site identifica-
tion.50,51 To alleviate the substantial computational
resources required by MD simulations, as well as
their inability to explore all the required time and
length scales, variations of normal mode analysis
(NMA) or ENM are widely employed and have
achievedmoderate accuracy in allosteric site detec-
tion when tested on known allosteric proteins.52–55
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The toolbox for allosteric site prediction is continu-
ously growing, and new methods range from statis-
tical mechanical models56,57 to methods based on
graph theory.58 However, most of them overcome
the computational requirements of MD at the cost
of resolution by looking at coarse-grained represen-
tations of protein structures.59

To overcome some of these limitations, we have
recently introduced a suite of methods for the
analysis of high-resolution atomistic protein
graphs derived from structural data. The methods
are computationally efficient and can span across
scales in an unsupervised manner. The graphs
have atoms as nodes and retain key physico-
chemical detail through energy-weighted edges
obtained from structural information and
interatomic potentials of covalent and weak
interactions (hydrogen bonds, electrostatics and
hydrophobics) which are known to be important in
allosteric signalling.60–62 Here we apply two tech-
niques that take full advantage of this detailed ato-
mistic graph: bond-to-bond propensity (B2B-
prop)63 and Markov Transients (MT).61 Both meth-
ods share a common foundation, namely, a Markov
process sourced at atoms or bonds of interest dif-
fusing on the atomistic protein graph is used to
explore the structure and reveal important protein
regions regarding signal propagation. Yet, each
method evaluates different and complementary
properties.
B2B-prop quantifies how fluctuations at a given

set of bonds (the ‘source’) get redistributed to any
other bond in the protein graph and provides a
measure (with statistical significance) of
instantaneous connectivity as mediated by the
graph structure at stationarity. Unlike most
network approaches, B2B-prop is formulated on
the edges of the graph and thus makes a direct
link between energy and flow through bonds, i.e.,
physico-chemical interactions.63 B2B-prop is cap-
able of successfully predicting allosteric sites in a
wide range of proteins without any a priori knowl-
edge, other than the active site.63 Of particular rele-
vance to the obligate homodimeric protease studied
here, B2B-prop has been subsequently used to
show how allostery and cooperativity are inter-
twined in multimeric enzymes such as the well-
studied aspartate carbamoyltransferase
(ATCase).64 B2B-prop has been benchmarked
against two extensive allosteric protein
databases,65,66 and shown to outperform methods
that use simple distance cutoff for interactions or
coarse-grained descriptions.52,54,55

MT provides additional information by shedding
light on the catalytic aspects of allostery. MT
extract pathways implicated in allosteric regulation
by analysing the dynamical transients of
propagation from the active site as the diffusion
progresses on the atomistic graph.61 Specifically,
MT compute a statistical measure that highlight
atoms and residues that are reached significantly
3

fast by fluctuations propagating from the source.
Crucially, MT analysis takes into account all possi-
ble pathways, not just the shortest or optimal paths
— an important feature since allosteric communica-
tion is known to involve multiple paths across the
protein.67 MT analysis has been successful in iden-
tifying allosteric paths in caspase-1,61 as well as
previously unknown allosteric inhibitor binding sites
in p90 ribosomal s6 kinase 4 (RSK4) which comple-
mented and helped guide experimental and clinical
studies in drug repurposing for lung cancer.68

Both B2B-prop and MT share a common
foundation (namely, the use of diffusive processes
on the atomistic protein structure), yet they
evaluate different and complementary properties:
B2B-prop finds bonds and residues that
accumulate a disproportionate amount of
fluctuations injected at the ‘source’ at stationarity,
whereas MT highlights atoms and residues that
are reached particularly fast by the propagation of
fluctuations from the source. Mathematically,
bond-to-bond propensity reveals properties of the
stationary distribution of fluctuations, whereas
Markov Transients reflects properties of pathways
for signal propagation by concentrating on the
transient approach to stationarity. Therefore, each
method reveals different aspects of the underlying
allosteric mechanisms: B2B-prop analysis gives
insights into the effects of structural connectivity,
whereas MT analysis is better suited to capture
the time scales and catalytic effects of the
enzyme. As Mpro is a catalytic protein, we
expected both methods to prove valuable in
revealing regions of the protein (hotspots) that can
affect different aspects of allosteric regulation (i.e.,
sites and pathways). In both approaches we
employ an energy-weighted atomistic protein
graph and their low computational demands make
them suitable to be applied to large proteins and
complexes while retaining physico-chemical and
atomistic detail. Both methods have been recently
built into a web server65 that creates atomistic
graphs from PDB structures and analyses them
using B2B-prop and MT, thus facilitating their appli-
cation to user-provided biomolecular structures.
In this paper, we apply these two methodologies

in the setting of COVID-19. We analysed the
SARS-CoV-2 main protease and obtained bond-
to-bond propensities for all bonds as well as
Markov transient half-times t1=2 for all atoms in the
protein. Our results shed light on the allosteric
communication patterns in the Mpro dimer,
highlighting the role of the dimer interface. We use
our methods to show how the subtle structural
changes between SARS-CoV and SARS-CoV-2
affect the dimer properties.
By applying a rigorous scoring procedure, we

identify four statistically significant hotspots on the
protein that are strongly connected to the active
site and propose that they hold potential for
allosteric regulation of the main protease. Aligning
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our results to hits from the Diamond Light Source
XChem fragment screen,69 we find molecules that
could be a first starting point for allosteric drug
design. The inhibitory effect of some of these mole-
cules has been proven by mass spectrometry
based assays.29 By providing guidance for allosteric
drug design we hope to help drug targeting efforts to
combat COVID-19.

Results

Exploiting bond-to-bond propensity to provide
insights into the Mpro dimer at atomistic
resolution

We analysed the resolved apo structure of the
main protease Mpro of SARS-CoV-2 (PDB ID:
6Y2E).12 Although we concentrate our exposition
on 6Y2E, we have also repeated our analysis for
another structure (PDB ID: 7JP1) with the same
results, see SI Table S7, Figure S1 and S2.
In its active form, the protease forms a

homodimer, and each monomer has three
domains (Figure 1(A)). The active site in each
monomer forms a catalytic dyad, which is
expanded to a triad by the presence of a water
molecule12 (Figure 1(B)).
Our analysis starts with the PDB file, from which

we construct an atomistic graph that includes both
strong (covalent) bonds and weak interactions
(hydrogen bonds, electrostatic and hydrophobic
interactions) as well as structural water molecules,
which are known to be catalytically important (see
Methods and Figure 5).
We then employ B2B-prop and MT to

characterise the propagation of perturbations
emanating from the source residues across the
atomistic protein graph. To quantify these effects,
we use quantile regression to score all bonds and
atoms, and consequently all residues. This allows
us to identify statistically significant ‘hotspots’, i.e.,
regions of the protein that are affected more
strongly (using B2B-prop) or reached more quickly
(using MT) by perturbations emanating from the
source (see Methods).
We use these techniques in two ways: firstly, in a

forward step, we source perturbations at the two
active sites of the dimer and identify hotspots in
the rest of the protein, which we mark as putative
allosteric sites; secondly, in a reverse step, we
source perturbations at the obtained hotspots and
analyse the pattern of propagation back to the
active sites and to other regions of interest in the
dimer (e.g., the dimer interface).
We start with an exploration of the structure of the

Mpro of SARS-CoV-2 using bond-to-bond
propensity analysis. Figure 2 shows the forward
step of B2B-prop using the active sites in the
homodimer (specifically, the catalytically active
residues histidine 41 and cysteine 145 in both
monomers) as sources. The propensity of every
residue in the protein is regressed against their
4

distance to the active site using quantile
regression (Figure 2(C)), and the resulting quantile
score (QS) of every residue is shown on the
protein structure using a colour map (Figure 2(A-
B)). Quantile regression allows us to rank all
residues in the protein. The list of residues with
QSs above 95% (a total of 40 residues) is given in
Table S2.
This initial B2B-prop analysis reveals two main

areas of interest: a hot region at the back of the
monomer opposite to the active site (see Figure 2
(A)), which is a main focus of our study in the
sections below; and a hot region overlapping with
part of the dimer interface (see Figure 2(B)).
Protease dimerisation is under influence of
mutated residues. Given that Mpro is an obligate
dimer, the detection of a hot region at the dimer
interface points at the importance of cooperative
effects64 and we first explore further some of its
features.
The hot region at the dimer interface contains four

residues that form salt bridges between the two
monomers (serine 1 and arginine 4 from one
monomer connect to histidine 172 and glutamine
290 from the other monomer). These bonds have
been found experimentally to be essential for
dimer formation70,42 in the original SARS-CoV, an
obligate homodimer.
Furthermore, a comparison of the Mpro of SARS-

CoV-2 and SARS-CoV (see Table S1) shows that
there are two mutated residues at the dimer
interface: threonine 285 and isoleucine 286
(SARS-CoV protease) mutated to alanine 285 and
leucine 286 (SARS-CoV-2 protease). These two
residues have been shown to lead to closer dimer
packing in the Mpro of both SARS-CoV and SARS-
CoV-2.15,12

To further clarify the interactions between the
dimer halves (Figure 1(A)), and how the dimer
connectivity is changed in the SARS-CoV-2
protease, we carried out a comparative analysis of
the apo structures of the Mpro of SARS-CoV-2
(PDB ID: 6Y2E12) and SARS-CoV (PDB ID:
2DUC71). Specifically, we ran bond-to-bond
propensity analysis sourced from the two mutated
residues (285 and 286) in both structures. Table 1
shows the top 20 residues by B2B-prop QS
(sourced from 285/286) for both structures. We find
that 16 out of the top 20 residues are at the dimer
interface for 6Y2E compared to 8/20 for 2DUC.
Hence, although we find strong connectivity
towards dimer interface residues in both structures,
there is an increased connectivity in the SARS-
CoV-2 protease, including to important residues
such as serine 1 and arginine 4. This can be attrib-
uted to a closer dimer packing due to the two smal-
ler side chains of 285/286 in the new protease.12

A mutational study showed experimentally that
closer dimer packing led to increased activity in
SARS-CoV,15 yet this increase was not confirmed



Figure 2. B2B-prop analysis of the SARS-CoV-2 Mpro sourced from the orthosteric sites. The residues of the
protease (PDB ID: 6Y2E12) viewed from the front (A) and top (B) are coloured according to their propensity value. The
source sites (shown in green) are the catalytically active residues His41 and Cys145 in both chains of the homodimer.
All other residues are coloured by their QS as per the colourbar. There are two main areas of interest with high
propensity (Hotspot 1 indicated in A; Hotspot 2 indicated in (B) with important residues labelled. (C) The propensity of
each residue,PR , is plotted against the distance of the residue from the orthosteric site. The dashed line indicates the
quantile regression estimate of the 0.95 quantile cutoff used to identify the significant residues in Table S2.

Léonie Strömich, N. Wu, M. Barahona, et al. Journal of Molecular Biology 434 (2022) 167748
experimentally in the SARS-CoV-2 protease.12 Our
computations reveal this effect: the average quan-
tile score of the active site of SARS-CoV-2 Mpro

for B2B-prop sourced at 285/286 is 0.26, which is
below a randomly sampled site score of 0.48
(95% CI: 0.47–0.49) and makes the active site a
coldspot. On the other hand, the average quantile
score of the active site of SARS-CoV Mpro for
B2B-prop sourced at 285/286 is 0.50, slightly above
a random site score of 0.48 (95% CI: 0.47–0.48).

Identification and scoring of putative allosteric
sites
Predicted sites using bond-to-bond propen-
sity. Based on our B2B-prop analysis we detected
two main hot regions on the protease, each of
which contains a ‘hotspot’ or site with contiguous
high-scoring residues (see Table S2) which could
be targetable for allosteric regulation of the
protease (Figure 3):

� Site 1 (Figure 3(A) framed in yellow) is located at the
back of the monomer with respect to the active site
and is formed by 9 residues from domain I and II (full
list in Table S3).
5

� Site 2 is located at the dimer interface and contains 6
residues (listed in Table S3) which are located on
both monomers (Figure 3(B) framed in pink). Two of
these residues, glutamine 290 and arginine 4 of the
respective second monomer form a salt bridge which
is essential for dimerisation.42

Sites 1 and 2 have a high average residue
quantile score of 0.97 and 0.96, respectively,
which is much higher than random as quantified
by a statistical comparison to 1000 random sites
with 10,000 bootstrap resamples (see Methods)
which gives a QS of 0.53 (95% CI: 0.53–0.54) for
a random site of the size of Site 1, and a QS of
0.52 (95% CI: 0.51–0.53) for a site of the size of
site 2.
Next, we investigated the connectivity of the

putative allosteric sites using B2B-prop in its
reverse step, i.e., we carry out a full B2B-prop
analysis using as source all the residues within
each of the identified sites and rank all residues
using quantile regression. The average residue
quantile score of the active site for the reverse
B2B-prop sourced at site 1 is 0.64, which is above
a randomly sampled site score of 0.47 (95%
CI:0.47–0.48) obtained by our statistical bootstrap.



Figure 3. Putative allosteric sites identified by bond-to
dimer coloured by quantile score (as shown in the legend). (A
on the opposite of the orthosteric site (coloured in green). (B)
A detailed view of both sites is provided with important resid

Table 1 Comparison of Top 20 residues between
Covid-19 and SARS main protease. Highlighted in blue
are residues which are in the dimer interface.
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Therefore there is a significant bi-directional
coupling between the active site and site 1.
However, the same score for site 2 is only 0.49,

which is only marginally above a randomly
sampled site score of 0.48 (95% CI:0.47–0.48).
As site 2 is located at the dimer interface, this
finding is in line with the above described
suggestion that the allosteric effect is not
conferred by direct signalling from the dimer
interface towards the catalytic centre but rather
indirectly through strengthening of cooperative
effects. Nonetheless, site 2 might provide scope
for inhibiting the Mpro by disrupting dimer
formation, and could help elucidate the link
between domain III and the catalytic activity of the
Mpro.

Predicted sites using Markov Transients. Over-
all, the observed asymmetry, from and to the
active site, in the B2B-prop connectivity hints to
complex communication patterns in this catalytic
protein. This motivated our use of MT to reveal
fast signal propagation which happens often along
allosteric communication pathways. MT have
-bond propensities. Surface representation of the Mpro

) Rotated front view with site 1 (yellow) which is located
Top view with site 2 (pink) located in the dimer interface.
ues labelled.
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been effective in predicting relevant sites in catalytic
enzymes such as caspase-161 and RSK4.68

We performed a full MT study in the forward step
(i.e., source at the active site) including quantile
regression of Markov half-times against distance
to find residues that are reached significantly
faster than expected by perturbations emanating
from the active site (see Methods and Figure 4).
The QSs of all residues are shown in Figure 4(A)
(as a colourmap), and the top-scoring residues
(30 in total with QS > 0.95) are listed in Table S2.
This MT analysis led us to the detection of two

more putative sites in the SARS-CoV-2 Mpro,
which are located at the back of the monomer
relative to the active site, as shown in Figure 4(C):

� Site 3 (Figure 4(C), framed in turquoise) is located
solely in domain II and consists of 10 residues, as
listed in Table S4. One of the residues is a cysteine
at position 156 which might provide a suitable anchor
point for covalent drug design.
Figure 4. MT analysis of Mpro sourced from the orthos
and include His41 and Cys145 in both chains of the homodim
sticks. (B) The t1=2 values of each residue are plotted agains
indicates the quantile regression estimate of the 0.95 quan
quantile scores of all residues are mapped onto the structur
the legend. (C) Surface representation of a rotated front view
4 (orange) are located on the opposite side of the active s
provided with important residues labelled.
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� Site 4 (Figure 4(C), framed in orange) has 11 resi-
dues (list in Table S4) and and is located further down
the protein in domain I.

Both sites have high average residue MT QSs of 0.87,
significantly higher than the bootstrapped random site
scores of 0.50 (95% CI: 0.49–0.50) and 0.49 (95% CI:
0.49–0.50), respectively.
Following the same thought process as for sites 1

and 2, we investigated the reverse step by sourcing
our computations from the residues in each of sites
3 and 4 and scoring the active site to measure the
impact of the putative sites on the catalytic centre.
With source at site 3, the active site has an

average residue MT quantile score of 0.66, well
above a random site score of 0.53 (95% CI: 0.52–
0.53) thus indicating a significant reciprocal link
between site 3 and the active site. For site 4 (as
for site 2), on the other hand, the average residue
MT quantile score of the active site is 0.52, similar
to a randomly sampled site score of 0.50 (95% CI:
0.50–0.51), hence we do not detect a significant
teric sites. (A) The orthosteric sites are shown in green
er (front view). Residues with QS > 0.95 are shown as

t their distance from the orthosteric site. The dashed line
tile cutoff used for identifying significant residues. The
e of the Mpro dimer (front A) view), coloured as shown in
of the Mpro dimer coloured by QS. Site 3 (turquoise) and
ite (coloured in green). A detailed view of both sites is
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connectivity from this site back to the active site.
Judging from previous experience in multimeric
proteins64 this might be due to another structural
or dynamic factor not yet uncovered between site
4 and the active site.
Summary of predicted sites and evaluation of
small fragment binding. We summarise the
information of the predicted sites in several tables.
The list of residues is presented in Tables 1,
which also include the solvent accessible surface
area (SASA) as a coarse indicator of targetability.
Table 2 presents the average residue quantile
scores for the four sites obtained with the forward
step of either B2B-prop or MT compared against
the statistical bootstrap. The average residue
quantile scores of the active site for the reverse
step (i.e., source at the identified sites) is
presented in Table S5 with the corresponding
statistical bootstrap values.
To provide a first indication of the druggability of

the identified sites, we used the experimental
results from the Diamond Light Source XChem
fragment screen.69 This screen identified 25 small
fragments that bind outside of the active site of
and 15 of these bind within 4 �A of at least one of
the four putative allosteric sites predicted here.
Due to the computational efficiency of our

methodologies, we were able to conduct a full
analysis of all 15 structures using both our
methods. Specifically, we used B2B-prop and MT
analyses using the small fragments as sources
and scored the connectivity to the active site. The
results are presented in Table S6. We found that
several fragments have high connectivity to the
active site according to one or both of our
methods. The fragment deposited with PDB
dentifier5RE8 might be of particular interest as it
has the highest connectivity to the active site
taking both methods together. Moreover, one
fragment (PDB ID: 5RFA), which is located at the
dimer interface, has been found experimentally to
act as a destabiliser of dimerisation and an
inhibitor of Mpro. 29 Fragment 5RFA is only
5.8�A away from site 2 and overlaps spatially with
another fragment (PDB ID: 5RGQ) that is less than
4�A away from site 2.
Table 2 Scoring of the 4 identified putative allosteric
sites (source at the active site). Included is a statistical
score computed from 1,000 randomly sampled sites (with
10,000 bootstrap resamples) to obtain the 95% confi-
dence interval (CI).

Quantile Score

from active site

Quantile Score of

random site [95% CI]

Site 1 0.97 (B2B-prop) 0.53 [0.53, 0.54]

Site 2 0.96 (B2B-prop) 0.52 [0.51, 0.53]

Site 3 0.87 (MT) 0.50 [0.49, 0.51]

Site 4 0.87 (MT) 0.49 [0.49, 0.51]
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Taken together, this indicates that disrupting
dimerisation provides scope for inhibition of the
Mpro. Furthermore, in the same experimental
study,29 one of the fragments (PDB ID: 5RGJ) binds
within 4�A of site 1 and has been shown to inhibit the
proteolytic activity of the Mpro. Fragment 5RGJ has
a relatively high connectivity to the active site
(Table S6).
Since the posting of our original preprint, potential

allosteric pockets have been published by other
research groups. Several have identified binding
pockets at the dimer interface, which partially
overlap or are in close proximity to our site
2.31,32,36,38 This is in line with our conclusion above
that disrupting dimerisation could inhibit Mpro. Shi
et al.42,43 found regulation of SARS-CoV Mpro by
its extra domain, and cryptic sites involving the extra
domain have been proposed for SARS-CoV-
2 Mpro.31,34–36,39 In this regard, B2B-prop highlights
five residues, Asp229, Phe230, Tyr239, Lys269 and
Leu272 (all with QS > 0.95), which are within the
extra domain and align with pockets proposed by
others. On the other hand, our sites 1, 3 and 4 all
lie within domain I, and only Komatsu et al.34 have
suggested a putative site in domain I, although on
the opposite side of the sites 1,3,4 found here.
Therefore, our finding of sites 1, 3 and 4 suggests
that more attention would be required to examine
the potential of domain I to modulate Mpro activity.
Discussion

During the global pandemic of COVID-19 that
started in January 2020, we have seen an
increase of research to develop new drugs against
the disease-causing virus SARS-CoV-2. A wide
range of approaches from chemistry, structural
biology and computational modelling have been
used to identify potential protease inhibitors.
However, most of these initiatives focus on
investigating the active site as a drug target,12,17

high-throughput docking approaches to the active
site,16 or re-purposing approved drugs72 and pro-
tease inhibitors73 which bind at the active site.
To increase the targetable space of the SARS-

CoV-2 main protease and allow a broader
approach to inhibitor discovery, we have provided
a full computational analysis of the protease
structure which gives insights into allosteric
signalling and identifies potential putative target
sites. Our methodologies are based on concepts
from graph theory and the propagation of
perturbations on a protein graph. We have
previously demonstrated the applications of B2B-
prop and MT analyses for the identification of
allosteric sites and communication pathways in a
range of biological settings61,63,64,68 and have been
benchmarked on extensive databases.65,66 Apply-
ing B2B-prop to the SARS-CoV-2 Mpro revealed a
hot region of connectivity at the dimer interface.
Since dimerisation is known to be essential for the



Léonie Strömich, N. Wu, M. Barahona, et al. Journal of Molecular Biology 434 (2022) 167748
proteolytic activity of the SARS-CoV Mpro,15 we car-
ried out a comparative analysis with the SARS-
CoV-2 protease. Important for dimer packing and
mutated in SARS-CoV-2 are residues 285 and
286.12 When sourced from these residues, we find
a higher proportion of dimer interface residues
within the top 20 scoring residues for SARS-CoV-
2, confirming a stronger dimer connectivity as
described in literature.12

Therefore targeting sites at the dimer interface
might provide scope for inhibitor development.74 It
is also worth remarking that, beyond the study of
the dimer interface, we see a similar overall pattern
of hot and cold regions in the SARS-CoV Mpro. In
particular, we find high overlap for the four identified
sites (Figure S3) which gives us confidence that a
potential drug effort on allosteric sites would find
applications both in COVID-19 as well as SARS.
Using our approaches we identified four allosteric

binding sites on the protease: Sites 1 and 2 were
identified using B2B-prop (forward step) and
hence have a strong connectivity to the active site
at stationarity. Using our reverse step from both
sites, we found that site 1 displays reciprocal
connectivity to the active site, whereas site 2
(which sits at the dimer interface) is indirectly
connected to the active site.
This suggests that site 1 might be a functional site

and any perturbation at site 1 would induce a
structural change of the protease thereby
impacting the active site directly. Our methods
measure connectivity through perturbations. Yet
proteins can be both inhibited or activated over
allosteric mechanisms, and we can not tell from
our results alone whether a perturbation would
lead to an up- or down-regulation of activity.
However, a fragment near site 1 has been shown
experimentally to exhibit some inhibitory effect on
the Mpro by El-baba et al.29

Notably, site 2, although not directly coupled to
the active site as a functional site, is located at the
dimer interface (Figure 3(B)) and provides a deep
pocket for targeting and potentially disrupting
dimer formation. Targeting site 2 could thus result
in a conformational change of the protease and
inhibition of dimerisation.29

We identified two further sites using MT. These
sites are reached the fastest by a signal sourced
from the active site and are both located at the
back of each monomer relative to the active site.
Using the reverse step, Site 3 is found to display
reciprocally fast propagation back to the active
site; hence perturbations at site 3 would thus
potentially affect the catalytic activity of Mpro. Site
3 (Figure 4(C)) contains a cysteine residue
(Cys156) which provides an anchor point for
covalently binding inhibitors.75 Similar to site 2, site
4 does not display a reciprocally fast connection to
the active site; hence actions exerted at site 4 could
affect other parts of the protein which in turn could
lead to an altered activity of Mpro.
9

We also include the analysis of structures
containing small fragments bound to the structure
of SARS-CoV-2 Mpro from the Diamond Light
Source XChem experimental fragment screen.69

We analysed 15 PDB structures with fragments that
bind in proximity (less than 4�A to the putative sites,
and we scored the active site using the fragments
as the source. We find that several fragments dis-
play strong connectivity to the the active site, as
measured by B2B-prop and MT, and some have
been investigated in experimental studies29 where
their binding leads to a decrease in protease activ-
ity. Moreover, the X-ray screening study by Günther
et al.30 identified an allosteric site which overlaps
with our allosteric hotspot 3 around residues 151
to 153. Taken together, these results show the pro-
mise of our approach, which might provide a start-
ing point for rational drug design.
Our methods provide in depth insights into the

global connectivity and have been used to
propose putative allosteric sites on the main
protease which could be combined with drug
repurposing for approved and investigational
drugs to target potential allosteric sites.27,68

Although B2B-prop and MT are based on static
structures, they can be readily applied to ensembles
of structures obtained from solution nuclear mag-
netic resonance (NMR) or MD. 63 We hope our
methods can help broaden the space of druggable
targets in proteins, and aid in the development of
effective medications for COVID-19 that can inter-
fere with the main protease of SARS-CoV-2. Addi-
tionally, the high mutation rate of SARS-CoV-2
adds a further motivation to study the effect exerted
by residue mutations on allostery. The computa-
tional efficiency of our methods allows further in-
depth exploration of mutational analyses,61,76,77 a
direction that we leave for further research.
Methods

Protein Structures. We analysed the X-ray
crystal structures of the apo conformations of the
SARS-CoV-2 (PDB ID: 6Y2E12) and the SARS-
CoV (PDB ID: 2DUC71) main proteases (Mpro).
The dimeric structure of the SARS-CoV-2 with
PDB ID 6Y2E was constructed using the MakeMul-
timer.py webserver based on the BIOMT records
contained in PDB files. All residues of the Mpro pro-
teins that are mutated between the two viruses are
listed in Table S1. Both structures contained a water
molecule in proximity to the catalytic dyad formed
by histidine 41 and cysteine 145. These water mole-
cules were kept while all other solvent molecules
were removed. Atom and residue, secondary struc-
tural names and numberings are in accordance with
the original PDB files. The dimer interface was
investigated using the online tool PDBePISA78 (for
a full list of the resulting dimer interface residues
see https://doi.org/10.6084/m9.figshare.
12815903). We have checked for the robustness

https://doi.org/10.6084/m9.figshare.12815903
https://doi.org/10.6084/m9.figshare.12815903


Léonie Strömich, N. Wu, M. Barahona, et al. Journal of Molecular Biology 434 (2022) 167748
of our results by analysing a second published
structure of the SARS-Cov-2 Mpro with PDB ID
7JP1. The results of B2B-prop and MT analyses
for both wild type structures are highly coincident
as shown in Figure S1. No major differences in
the spatial patterns of hot and cold regions were
observed, especially in relation to the identified hot-
spots as seen in Figure S2 and Table S7.
Atomistic Graph Construction. Instead of the

coarse-grained descriptions typical of most
network methods for protein analysis, we use
protein data bank (PDB)79 structure files to derive
fully atomistic protein graphs from the three-
dimensional protein structures. In our graph, the
nodes are atoms and the weighted edges represent
interactions, both covalent bonds and weak interac-
tions, including hydrophobic, hydrogen bonds and
salt bridges (See Figure 5). The edges are weighted
with physico-chemical energies obtained from well
studied potentials, as discussed below. Details of
earlier versions of this approach can be found in
Refs.60,61,63 We summarise briefly the main fea-
tures below and we note three further improve-
ments in the current version: (i) the stand-alone
detection of edges without need of third-party soft-
ware; (ii) the many-body detection of hydrophobic
edges across scales; and (iii) the improved compu-
tational efficiency of the code. For further details of
the updated atomistic graph construction used in
this work see.65,62

Figure 5 gives an overview of the workflow. We
start from atomistic cartesian coordinates of a
PDB file. Since X-ray structures do not include
hydrogen atoms and NMR structures may not
report all of them, we use the software Reduce80

to add any missing hydrogen atoms. Hydrophobic
interactions and hydrogen bonds are identified with
a cutoff of 9�A and 0.01 kcal/mol respectively. In
addition, hydrogen bonds are also identified based
on the angles related to the hybridisation of the
donor - acceptor atoms. The edges are weighted
by their energies: covalent bond energies from their
Figure 5. Atomistic Graph Construction. We showcas
SARS-Cov-2: Atomic coordinates are obtained from the PD
Edges are identified and the weights are assigned, as de
covalent bonds as well as weak interactions: hydrogen bon
which are colour.ed as indicated.

10
bond-dissociation energies;81 hydrogen bonds and
salt bridges by the modified Mayo potential;82,83

hydrophobic interactions by using a hydrophobic
potential of mean force.84

Bond-to-bond propensity. Bond-to-bond
propensity (B2B-prop) analysis was first
introduced in Ref. 63 and further discussed in
Ref.64, hence we only briefly summarise it here.
This edge-space measure evaluates the redistribu-
tion of perturbations introduced at the source
towards every bond in the protein graph at station-
arity. The edge-to-edge transfer matrixM was intro-
duced to study non-local edge-coupling and flow
redistribution in graphs85 and an alternative inter-
pretation of M as a Green’s function is employed
to analyse the atomistic protein graph. The element
Mij describes the effect that a perturbation at edge i
has on edge j. M is given by

M ¼ 1

2
WBTLyB: ð1Þ

Here B is the n �m incidence matrix for the
atomistic protein graph with n nodes and m
edges; W = diag(wij ) is an m �m diagonal matrix
where wij is the weight of the edge connecting
nodes i and j, i.e. the bond energy between those

atoms; and Ly is the pseudo-inverse of the
weighted graph Laplacian matrix L86 and defines
the diffusion dynamics on the energy-weighted
graph.87

To evaluate the effect of perturbations from a
group of bonds b 0 (i.e., the source), on bond b of
other parts of the protein, we define the bond
propensity as:

Pb ¼
X

b02source
Mbb0j j ð2Þ

and then calculate the residue propensity of a
residue R:

PR ¼
X
b 2 R

Pb : ð3Þ
e the general procedure here on the main protease of
B (ID: 6Y2E12) and hydrogens are added by Reduce.80

scribed in the methods section, by taking into account
ds, electrostatic interactions and the hydrophobic effect



Table 3 XChem fragments in 4�A proximity to the
identified allosteric sites.

Site Fragment PDB ID

Site 1 5RGJ, 5RE8, 5RF4, 5RF9, 5RFD,

5RED, 5REI, 5RF5, 5RGR

Site 2 5RF0, 5RGQ

Site 3 5RF9

Site 4 5RGG, 5RE5, 5RE7, 5RFC, 5RE8, 5RF4, 5RFD
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Markov Transients. A complementary, node-
based method, Markov Transients (MT) identifies
areas of the protein that are significantly connected
to the source, usually a site of interest such as the
active site, by computing the speed of signal
propagation at the atomistic level. The method was
introduced and discussed in detail in Ref.61 and
has successfully identified allosteric hotspots and
pathways without a priori knowledge.61,68 Impor-
tantly, it captures all paths that connect the two sites.
The contribution of each atom in the communication
pathway between the active site and all other sites in
a protein or protein complex is measured by the
characteristic transient time t1=2 (or thalf):

t
ðiÞ
1=2 ¼ arg mint p

ðiÞ
t P

pðiÞ

2

� �
; ð4Þ

where t
ðiÞ
1=2 is the number of time steps in which the

probability of a random walker to be at node i
reaches half its stationary value. This provides a
measure of the speed by which perturbations
originating from the active site diffuse into the rest
of the protein by a random walk on the above
described atomistic protein graph. To obtain the
transient time t1=2 for each residue, we take the
average t1=2 over all atoms of the respective
residue.
Quantile Regression. To determine the

significant bonds with high bond-to-bond
propensity and atoms with fast transient times t1=2
at the same geometric distance from the source,
we use conditional quantile regression (QR),88 a
robust statistical measure widely used in different
areas of science.89 In contrast to standard least
squares regressions, QR provides models for con-
ditional quantile functions which are obtained by
solving an optimisation problem (a linear program).
This is significant here because it allows us to iden-
tify not the ”average” atom or bond but those that
are outliers from all those found at the same dis-
tance from the active site and because we are look-
ing at the tails of highly non-normal distributions.
As the distribution of propensities over distance

follows an exponential decay, we use a linear
function of the logarithm of propensities when
performing QR for B2B-prop, whereas in the case
of the t1=2 of MT, which do not follow a particular
parametric dependence on distance, we use cubic
splines to retain flexibility. From the estimated
quantile regression functions, we then compute
the quantile score (QS) for each atom or bond. To
obtain residue QSs, we use the minimum distance
between each atom of a residue and those of the
source. Further details of this approach for B2B-
prop analysis can be found in Ref.63 and for MT
analysis in Ref.76.
Site scoring with structural bootstrap

sampling. To assess the statistical significance of
a site of interest, we score the site against 1000
randomly sampled sites of the same size. For this
purpose, the average residue QS of the site of
11
interest is calculated. After sampling 1000 random
sites on the protein, the average residue QSs of
these sites are calculated. By performing a
bootstrap with 10,000 resamples with replacement
on the random sites average residue QSs, we are
able to provide a 95% confidence interval to
assess the statistical significance of the site of
interest score in relation to the random site score.
Residues used when scoring the active site

(reverse step). To identify the residues that are
used as the active site to be scored in the reverse
step of both B2B-prop and MT analyses, we
proceed as follows. First, we found all structures
with non-covalent hits bound in the active site from
the XChem fragment screen against the SARS-
CoV-2Mpro.69 There were 22 such structures. These
structures were further investigated using PyMOL
(v.2.3)90 to identify residues that have atoms within
4�A of any of the bound fragments. These residues
are Thr25, Thr26, His41, Cys44, Thr45, Ser46,
Met49, Tyr54, Phe140, Leu141, Asn142, Ser144,
Cys145, Met162, His163, His164, Met165, Glu166,
Leu167, Pro168, Asp187, Arg188, Gln189,
Thr190. This list constitutes the active site as a site
of interest in all scoring calculations.
XChem fragment screen hits selection. From

the above mentioned XChem fragment screen
against the SARS-CoV-2 Mpro,69 25 hits were found
at regions other than the active site. The 15 frag-
ments which contain atoms that are within 4�A from
any of the putative allosteric site residues we
obtained were selected as candidates for further
investigation as shown in Table 3.
For each of these fragment-bound structures, we

performed bond-to-bond propensity and Markov
transient analyses to evaluate the connectivity to
the active site. The active site was scored as
described above.
Visualisation and Solvent Accessible Surface

Area. We use PyMOL (v.2.3)90 for structure visual-
isation, and presentation of Markov Transients and
bond-to-bond propensity scores on the structure.
PyMOL was also used to calculate the residue sol-
vent accessible surface area (SASA) with a rolling
probe radius of 1.4 and a sampling density of 2.
Data Availability

All data presented in this study are available at
figshare with DOI: 10.6084/m9.figshare.12815903.
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