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Abstract 

Background:  Quantitative proteomics studies are often used to detect proteins 
that are differentially expressed across different experimental conditions. Functional 
enrichment analyses are then typically used to detect annotations, such as biological 
processes that are significantly enriched among such differentially expressed pro‑
teins to provide insights into the molecular impacts of the studied conditions. While 
common, this analytical pipeline often heavily relies on arbitrary thresholds of signifi‑
cance. However, a functional annotation may be dysregulated in a given experimental 
condition, while none, or very few of its proteins may be individually considered to be 
significantly differentially expressed. Such an annotation would therefore be missed by 
standard approaches.

Results:  Herein, we propose a novel graph theory-based method, PIGNON, for the 
detection of differentially expressed functional annotations in different conditions. 
PIGNON does not assess the statistical significance of the differential expression of 
individual proteins, but rather maps protein differential expression levels onto a pro‑
tein–protein interaction network and measures the clustering of proteins from a given 
functional annotation within the network. This process allows the detection of func‑
tional annotations for which the proteins are differentially expressed and grouped in 
the network. A Monte-Carlo sampling approach is used to assess the clustering signifi‑
cance of proteins in an expression-weighted network. When applied to a quantitative 
proteomics analysis of different molecular subtypes of breast cancer, PIGNON detects 
Gene Ontology terms that are both significantly clustered in a protein–protein inter‑
action network and differentially expressed across different breast cancer subtypes. 
PIGNON identified functional annotations that are dysregulated and clustered within 
the network between the HER2+, triple negative and hormone receptor positive sub‑
types. We show that PIGNON’s results are complementary to those of state-of-the-art 
functional enrichment analyses and that it highlights functional annotations missed by 
standard approaches. Furthermore, PIGNON detects functional annotations that have 
been previously associated with specific breast cancer subtypes.

Conclusion:  PIGNON provides an alternative to functional enrichment analyses and a 
more comprehensive characterization of quantitative datasets. Hence, it contributes to 
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yielding a better understanding of dysregulated functions and processes in biological 
samples under different experimental conditions.

Keywords:  Protein–protein interactions, Graph theory, Quantitative proteomics, 
Functional enrichment analysis, Network biology, Differential expression, Breast cancer

Background
High throughput quantitative proteomics studies provide an overview of the activity 
of different processes and functions in a biological sample. Mass spectrometry-based 
quantitative proteomics approaches are routinely used to quantify proteins in biologi-
cal samples [1–4]. Strategies involving both stable isotope labelling [5–8] and label-free 
mass spectrometry [9] can be used to compare the expression of proteins across differ-
ent samples and experimental conditions. When contrasting protein expression in differ-
ent experimental conditions, it is common to use univariate statistical tests, such as the 
Student’s t test and Mann Whitney U test to assess the significance of protein differential 
expression. Arbitrary thresholds are then typically established (e.g. a p value < 0.05, and/
or expression fold-change ≥ 1.5 or ≤ 0.6 ) to determine the set of proteins deemed dif-
ferentially expressed. Functional enrichment analyses are then often applied to the set of 
differentially expressed proteins in order to provide insights into the role they play in the 
biological samples and about the molecular impacts of the studied experimental condi-
tions. Functional annotations investigated may take the shape of Gene Ontology (GO) 
terms [10], KEGG [11] and REACTOME [12] pathways, or MSigDB signatures [13].

Computational tools such as Ontologizer [14], GoMiner [15], and DAVID [16] are 
often applied to compare the occurrences of functional annotations among the set of 
significantly differentially expressed proteins against all of those in the entire set of 
quantified proteins using statistical tests such as the Fisher’s exact test to determine the 
significance level of the enrichment. Such a functional enrichment strategy is limited 
by the use of arbitrary cut-offs determining whether a protein is significantly differen-
tially expressed or not. Two proteins may achieve very similar significance values, but 
if they sit on different sides of the established cut-offs, they end up being treated very 
differently, with one being considered for functional enrichment and the other not. Fur-
thermore, many proteins sharing a given annotation may show some level of differential 
expression, but not sufficient to pass the chosen threshold. Such an annotation would 
therefore not be considered by the functional enrichment analysis even though a moder-
ate differential expression of many proteins in a given pathway could contribute to the 
dysregulated phenotype. Methods such as Gene Set Enrichment Analysis (GSEA) [13] 
and GOrilla [17] have been proposed to counter such a loss of information by assessing 
whether genes sharing a given annotation are enriched towards the top or bottom of a 
ranked list of genes based on a given property of interest, such as differential expression. 
Similarly, PSEA-Quant [18, 19] was also proposed to evaluate the enrichment of a given 
annotation among abundant proteins that are reproducibly quantified in a set of rep-
licate mass spectrometry analyses. Such methods are capable of detecting annotations 
for which the members are showing a moderate level of differential expression, but not 
necessarily a significant one for most individual genes or proteins. Nevertheless, some of 
the annotations can be quite general. Indeed, GO include terms such as “cytoplasm” or 
“metabolism”. The relationship between the proteins that share such annotations can be 
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quite weak. One might therefore be more interested in proteins that do not only share a 
given annotation and show some degree of differential expression, but also have some 
sort of relationship, such as interacting together or being part of a given molecular path-
way or protein complex.

Relationships between proteins can be derived from protein–protein interactions 
(PPIs). Indeed, proteins typically interact with one another to perform their functions, 
whether those interactions are transient or form protein complexes. Methods such as 
yeast two-hybrid [20], affinity purification [21, 22] and proximity labelling coupled to 
mass spectrometry [23], and have led to the mapping of large networks of PPIs [24–28]. 
Such PPI networks can therefore help to guide functional enrichment analyses by pro-
viding a structure to the data and focusing their results on annotations involving pro-
teins with some level of relationships. Interesting relationships could be represented by 
proteins that are densely connected or clustered in the PPI network. We have previously 
developed an approach named GoNet that detected GO terms that annotate proteins 
that are significantly clustered in PPI networks [29]. Furthermore, PPI networks are not 
the only types of biological networks that can provide additional information in the con-
text of functional enrichment analyses. Alexeyenko et al. proposed a Network Enrich-
ment Analysis (NEA), which investigates the connectivity in biological networks of genes 
or proteins that are significantly differentially expressed in a quantitative dataset under 
different experimental conditions [30, 31]. Such groups of genes or proteins are of great 
interest since they share a relationship, such as PPIs or a cellular localization, depending 
on the type of biological network used as input. However, this approach still suffers from 
the same limitations as standard functional enrichment analyses, since it relies on arbi-
trary significance cut-offs to determine a set of differentially expressed genes or proteins 
and on an individual assessment of the significance level for each gene or protein. Simi-
larly, EnrichNet evaluates a graph theory-based statistic for a set of genes or proteins of 
interest (e.g. significantly differentially expressed) in a molecular network and provides 
a visualization of sub-networks of interest that are associated with a given annotation 
involving the inputted genes or proteins [32]. Much like NEA, it also relies on a list of 
genes or proteins of interest that is defined using some arbitrary threshold and requires 
a minimum of 10 genes or proteins as input, thereby limiting the usage of the approach. 
Similarly, Signorelli et al. proposed NEAT, another network-based enrichment approach 
relying on a list of genes of interest determined using a cut-off [33]. Interestingly, NEAT 
however has a short running time and can be applied in networks in which edges are 
directed (i.e. the relationship between genes or proteins is directional, such as a gene 
regulating the expression of another), unlike most methods. Finally, more recently, 
NGSEA was proposed to address the limitation of a selection of a gene set of interest 
for which the enrichment analysis must be performed [34]. Much like GSEA, NGSEA 
performs a ranking of genes based on a property of interest. NGSEA ranks a given gene 
based on its differential expression ratio in different experimental conditions, but also 
integrates in this ranking criterium the differential expression ratios of its immediate 
neighbors in a molecular network. However, NGSEA makes a limited use of the ana-
lyzed molecular networks by only considering the direct interactors of a gene and does 
not take advantage of other genes that may be in the vicinity. Such other genes could 
be part of the same pathway without such a direct relationship. The sole integration of 
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direct relationships also makes NGSEA less effective when using incomplete networks 
that comprise large numbers of false negative relationships.

Herein, we propose a novel alternative approach for functional enrichment analysis: 
PIGNON, a Protein–protein Interaction-Guided fuNctiOnal eNrichment analysis for 
quantitative proteomics datasets. PIGNON investigates whether the proteins annotated 
by a given GO term are significantly clustered within a PPI network that is weighted 
by the level of differential expression of its constituting proteins. PIGNON does not 
require the identification of a set of proteins that are differentially expressed accord-
ing to some threshold and explores the entirety of the PPI network topology when 
assessing the enrichment of a given GO term. We applied this approach to a quanti-
tative proteomics analysis of different breast cancer subtypes from Tyanova et al. [35] 
We compared the results of PIGNON against those of a standard functional enrichment 
analysis techniques, an approach performing functional enrichment analysis on protein 
clusters derived from the Markov Clustering algorithm [36], the Gene Set Enrichment 
Analysis (GSEA) algorithm [13], as well as the NEA biological network-based functional 
enrichment analysis [30, 31]. We show that our tool uniquely detects annotations whose 
associated proteins are significantly clustered and show a differential level of expression. 
Indeed, PIGNON identifies dysregulated functional annotations in the hormone recep-
tor positive (HR+), human epidermal growth factor receptor 2 (HER2+) and triple neg-
ative (TN) breast cancer subtypes, providing insights into the molecular mechanisms of 
these conditions. These results demonstrate that PIGNON represents an alternative tool 
to rudimentary and sophisticated functional enrichment analyses and that it can provide 
a more comprehensive understanding of biological samples analyzed using quantitative 
proteomics.

Results
We present a novel functional enrichment analysis tool named PIGNON, which iden-
tifies functional annotations for which the proteins are differentially expressed and 
clustered in a PPI network. To demonstrate PIGNON’s capabilities, we analyzed a 
quantitative proteomics dataset from Tyanova et al. [35], where breast cancer tumours 
from the HER2+, HR+ and TN subtypes were analyzed. We integrated this dataset 
with two PPI networks derived from the BioGRID [37] and STRING [38] repositories. 
The BioGRID PPI network contained 266,136 PPIs involving 16,563 proteins, while the 
STRING PPI network included 959,614 PPIs implicating 19,028 proteins (see Methods 
for processing steps). Protein expression values are used to weight PPIs in these net-
works such that interacting partners with similar levels of differential expression become 
“closer” in the network. The clustering of 14,211 GO terms was investigated by PIGNON 
in the BioGRID PPI network and 14,273 GO terms in the STRING PPI network. Figure 1 
provides a graphical representation of PIGNON’s methods.

PIGNON’s normal approximation provides accurate clustering p values

Since the Monte Carlo sampling approach can hardly estimate the p values of very small 
clusterings with a p value < 10–7, PIGNON estimates a null model of clustering for each 
protein set sizes using a normal distribution. When comparing the distribution of total 
pairwise distances (TPD) obtained using Monte Carlo sampling to the one generated 
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from a normal approximation, we see that the normal approximation can be a good 
estimate of the Monte Carlo-derived distribution in the BioGRID PPI network. While 
the fit between the two distributions is not ideal for a small protein set size such as 5, 
the normal distribution appears to be a tight upper bound on the probability of strong 
clusterings (i.e. small TPDs) (Additional file 1: Figure S1A and S1B). It therefore yields a 
conservative estimate of the clustering p values, which is desirable. The fit between the 
two distributions also appears to increase as the protein set size grows (Additional file 1: 
Figure S1C–F). Given these results, we chose to estimate clustering significance p values 
using the normal approximation of the TPD null distributions.

PIGNON can accurately estimate the statistical significance of clusterings

Given the fact that PIGNON’s p values are estimations from a normal approxima-
tion, we estimate the false discovery rate (FDR) associated with a given p value signifi-
cance threshold (see Methods). We compared the FDRs associated with the p value 
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Fig. 1  Illustrated overview of PIGNON. Step 1 PIGNON builds a graph representation of the protein–protein 
interaction (PPI) network. Here, every node is a protein, and the edges between them a PPI. Edges can be 
weighted based on the fold-change (FC) of the protein expression measured between condition 1 (c1) and 
condition 2 (c2). Step 2 PIGNON annotates the proteins of the PPI network using Gene Ontology terms, and in 
parallel, the network is annotated with a shuffled set of these annotations. Here, annotations are represented 
by the various colours (blue, yellow and green). The clustering of proteins associated with a given annotation 
is measured using the Total pairwise distance (TPD). A Monte Carlo sampling approach followed by an 
approximation using normal distributions is then performed to assess the clustering statistical significance. 
Step 3 We assess the clustering confidence through a false discovery rate estimation. Step 4 Significantly 
dysregulated GO terms in the expression-weighted PPI network are reported following filtering of significant 
GO terms identified in the unweighted PPI network
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significance threshold achieved by PIGNON using both sampling strategies (unweighted 
and weighted) and both types of BioGRID networks (expression-weighted and 
unweighted). As expected, the FDRs drop as p values decrease for all approaches. (Addi-
tional file 2: Figure S2) Here, the performances of PIGNON when processing the expres-
sion-weighted and unweighted networks are similar, which indicates that the weighting 
of PPIs does not greatly alter the accuracy of the p value estimations. Interestingly, at the 
same p value threshold, the FDRs of the weighted sampling approach are significantly 
lower than those of the unweighted sampling method. For instance, the weighted sam-
pling approach yields a FDR of 0.004 at a p value threshold of 0.0014 when analyzing 
the expression-weighted network comparing the HER2+ and TN subtypes, while the 
unweighted sampling method yields a FDR of 0.37 at a similar p value cut-off of 0.0015. 
This result is likely indicating that the weighted-sampling approach is a more accurate 
null model for clustering significance estimation. We observe a similar behaviour when 
we compare the number of significantly clustered GO terms under a given FDR thresh-
old (Fig. 2). Specifically, the number of significant GO terms at various FDR levels are 
comparable when PIGNON analyzes expression-weighted and unweighted BioGRID 
networks, while the weighted sampling approach identifies more significant GO terms 
than the unweighted sampling approach at similar FDR levels. For instance, the weighted 
sampling detected 2212 significantly clustered GO terms in the expression-weighted net-
work of HER2+ subtype compared to TN at a FDR < 0.001 (Additional file 3: Table S1). 
At a similar FDR threshold (< 0.0018), the unweighted sampling approach only detected 
517 clustered GO terms in the same network (Additional file 4: Table S2). These results 
indicate that PIGNON can reliably identify GO terms that are significantly clustered in 
the PPI network. A similar trend is observed when analyzing the unweighted BioGRID 
PPI network (Additional file 5: Table S3, Additional file 6: Table S4).

PIGNON detects functional annotations for which the associated proteins are clustered 

and dysregulated in the PPI network

Since PIGNON evaluates for a functional annotation both the clustering of its associ-
ated proteins and their level of dysregulation, we looked to assess the role of the PPI 
network connectivity on the identification of a significant GO term. This is important, 
because proteins that are annotated with the same GO term are likely to be more clus-
tered than a randomly selected set of proteins, since they are likely involved in simi-
lar biological processes, part of the same protein complex or co-localizing in a given 
cell compartment. To do so, we compared the GO terms identified with our approach 
using the expression-weighted and unweighted BioGRID PPI networks at similar sig-
nificance threshold. For all three breast cancer subtype comparisons, the majority of the 
GO terms detected were also found to be clustered in the unweighted network. Spe-
cifically, at a FDR < 0.001, 2212 GO terms were detected in the HER2+/TN expression-
weighted PPI network, while 2165 of these GO terms were detected to be clustered by 
PIGNON in the unweighted network at the same FDR threshold (Fig. 3a). Similar results 
are obtained when comparing the other breast cancer expression-weighted networks 
to their unweighted counterparts. At a FDR < 0.0029, 1934 GO terms were found to be 
clustered in the unweighted network out of the 1953 GO terms detected in the HR+/TN 
expression-weighted network. (Fig. 3b) (Additional file 7: Table S5). On the other hand, 
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1773 of the 1792 GO terms detected in the HER2+/HR+ expression-weighted network 
were also clustered in the unweighted network at a FDR < 0.0013 (Fig.  3c) (Additional 
file 8: Table S6). These shared GO terms are likely consequences of the innate clustering 
of their annotating proteins in the PPI network and display a bias in GO term clustering 
in the network. Hence, the 47 GO terms that are unique to PIGNON’s analysis of the 
HER2+/TN expression-weighted network are likely consequent of the dysregulation of 

expression-weighted network weighted sampling
expression-weighted network unweighted sampling

unweighted network unweighted sampling
unweighted network weighted sampling

a

b

Fig. 2  PIGNON identifies significant GO terms using different sampling approaches and different versions 
of the BioGRID PPI network. Number of significant GO terms identified at various a FDR and b logged (base 
10) FDR cut-offs for the HER2+/TN expression-weighted and unweighted BioGRID networks analyzed with 
PIGNON using both the unweighted and weighted Monte Carlo sampling strategies
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the annotated proteins in these breast cancer subtypes. The same applies to the two sets 
of 19 GO terms that are unique in the PIGNON analysis of the HR+/TN and HER2+/
HR+ expression-weighted PPI networks. Of note, the above FDR thresholds for the dif-
ferent breast cancer subtype comparison consist of the lowest FDR above zero that could 
be estimated by PIGNON in the respective expression-weighted networks (i.e. the high-
est level of confidence).

PIGNON identifies functional annotations using the STRING PPI network.

To assess PIGNON’s generalizability, we ran its analysis on the STRING PPI network. 
In this network, 7225, 5935 and 7391 GO terms were found to be significantly clustered 
(FDR < 0.001), respectively in the HER2+/TN, HER2+/HR+, and HR+/TN+ expres-
sion-weighted STRING PPI networks (Additional Files 9, 10, 11, Tables S7–9). When 
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Fig. 3  Filtering significant GO terms identified by PIGNON enables the identification of dysregulated 
biological processes in breast cancer subtypes. Venn diagram comparing the significant GO terms identified 
in the unweighted BioGRID network to a the HER2+/TN (FDR < 0.001), b the HER2+/HR+ (FDR < 0.0029), 
and c the HR+/TN (FDR < 0.0013) expression-weighted BioGRID networks using weighted Monte Carlo 
sampling. d Venn diagram comparing the overlap between GO terms only found to be significant in the 
expression-weighted BioGRID networks comparing the different breast cancer subtypes



Page 9 of 22Nadeau et al. BMC Bioinformatics          (2021) 22:302 	

filtered against the 8296 significantly clustered GO terms identified at a FDR < 0.001 in 
the unweighted STRING PPI network (Additional file 12: Table S10), 138, 29 and 160 
GO terms were unique to the PIGNON’s analysis of the HER2+/TN, HER2+/HR+ and 
HR+/TN expression-weighted STRING PPI networks, respectively (Additional Files 
13, 14, 15, Figures  S3–5). These results show that PIGNON is equally able to identify 
significantly dysregulated pathways in the BioGRID and STRING expression-weighted 
networks.

Furthermore, we compared the GO terms identified uniquely in the expression-
weighted network of both BioGRID and STRING. In the HER2+/TN networks, “ErbB-3 
class receptor binding”, was highlighted from both networks. In addition, the HR+/TN 
expression-weighted BioGRID and STRING networks both guided the discovery of 
the “cell–cell junction” cellular component annotation. Interestingly, both of these GO 
terms have been well characterized to play a role in breast cancer [39, 40]. These results 
also suggest that as expected, the annotations identified by PIGNON may change based 
on the type of PPI network used and its topology.

PIGNON detects functional annotations that are not highlighted by standard approaches.

We first benchmarked our approach against a standard statistical pipeline, where the 
significance of differential protein expression is assessed using a Student’s t test, and a 
GO enrichment analysis is then performed using Ontologizer [14] on the significantly 
differentially expressed proteins (see Methods). This approach deemed 3 proteins to be 
significantly differentially expressed between HER2+ and TN as well as 4 and 0 between 
HER2+/HR+ and HR+/TN, respectively, at a FDR-adjusted p value < 0.05 (Additional 
file 16: File S1). From these proteins, no GO terms were found to be enriched among the 
differentially expressed proteins between any of the conditions (Additional file 17: File 
S2). In order to enable a comparison with PIGNON’s results, we loosened up the cut-off 
for protein differential expression to a FDR-adjusted p value ≤ 0.2 and a fold-change ≤ 0.6 
or ≥ 1.5. With these criteria 13, 19 and 34 proteins were deemed differentially expressed 
between the HER2+/TN, HER2+/HR+, and HR+/TN conditions, respectively (Addi-
tional file 16: File S1). No GO terms were found to be significantly enriched among the 
proteins differentially expressed when comparing the HER2+/TN or the HER2+/HR+ 
conditions using the Ontologizer method. Three GO terms, “regulation of protein bind-
ing”, “regulation of binding”, “catalytic activity, acting on DNA” were highlighted in the 
comparison of the HR+/TN subtypes at a FDR-adjusted p value < 0.05 (Additional File 
18: File S3).

We also executed the GSEA algorithm [13] on the Tyanova et  al. quantitative prot-
eomics dataset. However, this approach did not reveal any significant GO terms in any 
of the three breast cancer subtype comparisons. (Additional file 19: File S4).

We then benchmarked PIGNON against the NEA [30, 31] network-based functional 
enrichment approach using the BioGRID PPI network. This analysis was performed 
on the same loose differential expression criteria that were used for the Ontologizer 
functional enrichment analysis (FDR-adjusted p value ≤ 0.20 and a fold change ≤ 0.6 
or ≥ 1.5) in order to supply sufficient input to the NEA algorithm. In this study, 129 
GO terms were identified by NEA in the HER2+/TN conditions at an FDR < 0.001, 34 
of which were also identified by PIGNON at the same threshold in the HER2+/TN 
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expression-weighted BioGRID network (Fig. 4a). Similar results in terms of overlap-
ping were obtained when contrasting the other conditions. Indeed, for the HR+/TN 
conditions 240 GO terms were identified by NEA (FDR < 0.0029) and 71 of those were 
also identified by PIGNON at the same threshold (Fig.  4c). Finally, for the HER2+/
HR+ conditions, 300 GO terms were found to be significant by NEA (FDR < 0.0013), 
37 of which were also identified by PIGNON at the same FDR (Fig. 4e) (for all results 
see Additional file  20: File S5). These results highlight that while both approaches 
shared a certain subset of GO terms that they deemed interesting, they still show a 
strong level of orthogonality in the reported results. This is likely due to the fact that 
NEA only considers a subset of the proteins from the quantitative proteomics studies 
in its analysis, while PIGNON uses the entire dataset.

PIGNON MCL-Ontologizer

PIGNON MCL-Ontologizer

PIGNON MCL-Ontologizer

PIGNON NEA

PIGNON NEA

PIGNON NEA

ba

dc

fe

1241 971 17222178 34 95

952 1001 23931882 71 169

905 887 20161755 37 269

Fig. 4  PIGNON identifies different GO terms than the NEA and MCL-Ontologizer approaches. Venn diagrams 
comparing the overlap of significant GO terms identified by PIGNON against the MCL-Ontologizer or NEA 
approach comparing the a, b HER2+/TN (PIGNON FDR < 0.001; MCL-Ontologizer FDR adjusted-p < 0.001; 
NEA FDR < 0.001), c, d HR+/TN (PIGNON FDR < 0.0029; MCL-Ontologizer FDR adjusted-p < 0.0029; NEA 
FDR < 0.0029), and e, f HER2+/HR+ (PIGNON FDR < 0.0013; MCL-Ontologizer FDR adjusted-p < 0.0013; NEA 
FDR < 0.0013) subtypes at comparable confidence thresholds
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Finally, we also benchmarked PIGNON against an in-house approach combin-
ing the Markov Clustering (MCL) algorithm [36] to identify protein clusters in the 
expression-weighted BioGRID PPI network and Ontologizer to detect GO enrich-
ments among these clusters. This approach should therefore highlight GO terms 
that are clustered in such expression-weighted network. At comparable thresholds 
(i.e. FDR-adjusted  p value < 0.001 and FDR < 0.001), the MCL-Ontologizer approach 
identified 2693 GO terms in the HER2+/TN expression-weighted network, while our 
approach identified 2212 GO terms, of which 971 of these GO terms were identified 
in both approaches (Fig.  4b) (Additional file  21: File S6). Hence, PIGNON detected 
1067 GO terms deemed to be clustered in the HER2+/TN expression weighted net-
work that this approach failed to detect. Similar results were obtained in the HR+/
TN and HER2+/HR+ expression-weighted BioGRID networks. Specifically, 3394 GO 
terms were identified in the MCL-Ontologizer approach while 1953 GO terms were 
identified by PIGNON in the HR+/TN expression-weighted BioGRID network at 
comparable thresholds (i.e. FDR-adjusted p value < 0.0029 and FDR < 0.0029). In the 
HER2+/HR+ expression-weighted network, the MCL-Ontologizer approach identi-
fied 2903 GO terms, while PIGNON detected 1792 GO terms at comparable thresh-
olds (i.e. FDR-adjusted p value < 0.0013 and FDR < 0.0013). This translated to 1001 and 
887 GO terms identified by both approaches in the HR+/TN and HER2+/HR+ net-
works, respectively (Fig. 4d, f ) (Additional file 22: File S7; Additional file 23: File S8). 
Interestingly, between the GO terms reported in both approaches 10, 4 and 7 GO 
terms were uniquely detected respectively in the HER2+/TN, HR+/TN and HER2+/
HR+ expression-weighted networks, respectively compared to the unweighted net-
work (Additional Files 24, 25, Figure S6–7). Of note, both approaches highlighted the 
“ADP metabolic process” GO term when comparing the HR+ and TN conditions, 
which was not clustered in the unweighted BioGRID network. The detection of such 
a GO term with both approaches is likely significant to the biology of the different 
conditions and has been implicated in breast cancer [41]. Overall, these results sug-
gest that PIGNON highlights unique information about the dataset investigated that 
standard and currently used approaches do not. It further illustrates that it can serve 
as an additional approach in the data mining of quantitative datasets.

PIGNON identifies GO terms that are known to be affected in different breast cancer 

subtypes

To limit GO terms to those of the highest biological relevance to the studied breast can-
cer subtypes, we filtered the GO terms identified by PIGNON to those that are unique 
to the analysis of the expression-weighted networks when compared to that of the 
unweighted network. We identified 47 dysregulated GO terms between the HER2+ and 
TN subtypes (FDR < 0.001), 19 between the HER2+ and HR+ subtypes (FDR < 0.0013), 
and 19 as well between the HR+ and TN subtypes (FDR < 0.0029) (Fig. 3a–c).  For the 
most part, the GO terms detected by PIGNON as being dysregulated have been previ-
ously characterized in breast cancers in the past, but have not necessarily been associ-
ated with these particular subtypes. Biological processes revealed in the HER2+ and TN 
subtypes included “vascular endothelial cell proliferation” and “stress granule assembly” 
(Fig. 5), while the HER2+ and HR+ subtypes showed a dysregulation of “Titin binding”, 
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all of which are involved in tumorigenesis of breast cancers [42–44]. On the other hand, 
the comparison of HR+ and TN detected the “laminin-10 complex” term, for which 
downregulation is known in HR+ breast cancer [45]. (For cellular components, see 
Additional file 26: Figure S8; for molecular functions see Additional file 27: Figure S9).

We combined the results of the PIGNON analyses comparing the different breast can-
cer subtypes to compare the GO terms overlapping between subtypes and those that are 
unique to each breast cancer subtype (Fig. 3d). Common functional annotations to all 
breast cancer subtypes include “cell–cell junction” and “plasma membrane raft”, which 
are known factors of cancer progression [40]. Furthermore, PIGNON highlighted GO 
terms that were previously characterized in specific breast cancer subtypes, such as “epi-
dermal growth factor receptor binding”, the “inactivation of MAPK activity” and “vesicle 
targeting” when analysing expression-weighted networks involving the HER2+ subtype 
[39, 46, 47]. PIGNON’s analysis of TN involved expression-weighted networks was char-
acterized by “purine ribonucleotide triphosphate biosynthesis”, “regulation of metallo-
peptidase activity” and “cortical actin cytoskeleton” (Fig. 5), which have been shown to 
be major regulators of triple negative breast cancer pathogenesis [48–50]. Finally, the 
HR+ subtype was characterized by “adherence junction organization”, for which the 
dysregulation is implicated in lobular type breast cancers [51] and “caveolin-mediated 
endocytosis”, which is prevalent in non-HER2+ cancers [52]. Furthermore, our analyses 
revealed functional annotations related to vesicle transport and import, as well as stress 
responses that are known regulators of breast cancer progression [43, 47], but were not 
revealed by the original study conducted by Tyanova et al. It is worth noting that given 

HER2+/TN
positive regulation of cardiac muscle hypertrophy in response to stress, 24.6%
positive regulation of metallopeptidase activity, 23.9%
stress granule assembly, 19.8%
purine ribonucleoside monophosphate biosynthesis, 11.9%
vesicle targeting, 11.8%
phenotypic switching, 4.4%
regulation of vascular endothelial cell proliferation, 3.7%

HR+/TN

HER2+/HR+
adherens junction organization, 64.2%
caveolin-mediated endocytosis, 26.9%
inactivation of MAPK activity, 8.9%

adherens junction organization, 29.8%
purine ribonucleoside monophosphate biosynthesis, 21.8%
positive regulation of metallopeptidase activity, 10.1%
phenotypic switching, 10.1%
maintenance of protein location in nucleus, 9.7%
regulation of striated muscle cell apoptotic process, 9.3%
caveolin-mediated endocytosis, 9.3%

a

b

c

Fig. 5  Biological processes identified by PIGNON in breast cancer subtype comparisons that were 
unique to the expression-weighted BioGRID networks. CirGO visualization of uniquely identified GO 
biological processes in a HER2+/TN (FDR < 0.001), b HR+/TN (FDR < 0.0029), c HER2/HR+ (FDR < 0.0013) 
expression-weighted BioGRID networks. The size of the pieces of the pies are proportional to the level of 
enrichment statistical significance and are also denoted as percentages next to the GO term names
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the stringent FDR control imposed on PIGNON’s results (FDR < 0.001 for HER2+/TN, 
0.0029 for HR+/TN, and 0.0013 for HER2+/HR +) one would expect roughly only 2, 
6, and 2 of the GO terms identified by PIGNON’s analyses of each of the subtype com-
parisons, respectively to be false discoveries, since PIGNON reported 2212, 1953, 1792 
in each comparisons. Hence, previously unreported functional associations with breast 
cancer subtypes reported by PIGNON are of high confidence.

Discussion
Alternative PPI weighting strategies

PIGNON weights PPIs in networks based on the fold-change of their interacting pro-
teins between two compared experimental conditions. The algorithm treats both low 
and high fold-changes the same way. This approach enables us to look at both up- and 
down-regulation without prioritizing a given state and focuses on the detection of 
functional annotations that are simply dysregulated. An alternative method could have 
looked at these states independently. Indeed, PIGNON could be used to detect only 
annotations that are down-regulated and clustered in the network or, on the other hand, 
only up-regulated. Furthermore, the fold-change is not the only measure that could be 
used to integrate a notion of differential expression into a PPI network. For instance, the 
t-statistic or a p value resulting from a statistical test such as the Student’s t test could 
also be used as weights in a PPI network. Such measures have the advantage of capturing 
the variance in expression differences between the two samples.

Alternative clustering measures

Alternative methods to the total pairwise shortest paths could have been used to provide 
a measure of clustering in a PPI network for the set of proteins annotated by a GO term. 
For instance, the sum of the weights of the minimum spanning tree of the proteins anno-
tated by a GO term could be used instead. This would only consider a subset of the edges 
considered by the total pairwise shortest paths and would therefore be less sensitive to 
outliers that are very distant from the other proteins in the network. Nevertheless, the 
running time of this approach could become prohibitive, since minimum spanning trees 
need to be computed for each set of proteins being sampled, while the shortest path 
between all proteins is only computed once for a given network.

Both the shortest path-based measure and the minimum spanning tree approaches 
consider that all proteins contribute to the differential expression and clustering of a 
given annotation. However, not all proteins of a given annotation need to be dysregu-
lated for the overall annotation to be significantly dysregulated. Therefore, a clustering 
measure that looked only at a fraction of the most clustered proteins in an annotation, 
similar to the approach adopted by LESMoN [53], may allow the detection of supple-
mental dysregulated annotations.

Running time considerations and possible improvements.

Given the large number of samplings performed by PIGNON, its running time can be 
considerable. Here, we report the results of a Monte Carlo procedure sampling 107 ran-
dom protein sets for all protein set sizes. Reducing the number of samplings by 10- or 
even 100-fold can decrease the running time of the algorithm, while still enabling the 
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approximation of normal distribution parameters. This parameter is adjustable in 
PIGNON’s implementation. Furthermore, in this analysis, we investigated GO terms 
that annotate as much as 1000 proteins. GO terms with such a large number of annota-
tions are typically not of great biological interest. Reducing the maximum size of pro-
teins sets for which PIGNON builds a null model using Monte Carlo sampling would 
therefore also decrease the running time of the algorithm. This is another parameter that 
is adjustable in PIGNON’s software package.

PIGNON can be applied on any quantitative datasets

PIGNON was developed to perform functional enrichment analyses in quantitative 
proteomics datasets. We applied this method on a mass spectrometry investigation of 
breast cancer tumour subtypes. However, it can be used on any quantitative proteomics 
dataset that compares a least two conditions of interest. Furthermore, while the associa-
tion between quantified proteins and PPI networks is natural, PIGNON could certainly 
be used to perform functional enrichment analyses in quantitative transcriptomics data-
sets, such as those generated using RNA-sequencing. Obviously, the expression of a 
transcript does not necessarily equate to the translation of its corresponding protein. 
Nevertheless, PIGNON could still be used to identify transcripts that are differentially 
expressed and for which the associated proteins are clustered in PPI networks. Such sets 
of transcripts would be likely to play an important role in the experimental conditions 
studied in the quantitative transcriptomics analysis. Finally, while this analysis focused 
on a human quantitative proteomics dataset, PIGNON can also analyze quantitative 
datasets originating from different species. The only requirement is that the PPI net-
work used by PIGNON originates from the same species as the quantitative proteomics 
dataset.

Conclusions
We have designed a novel PPI-guided functional enrichment analysis for quantitative 
proteomics datasets. Our approach, PIGNON represents an alternative strategy to iden-
tify significantly dysregulated functional annotations in between two different experi-
mental conditions. Finally, PIGNON increases our ability to characterize quantitative 
proteomics datasets and therefore helps to provide a better understanding of the pro-
cesses and mechanisms at work in biological samples under different conditions.

Methods
Method overview

Our approach, named PIGNON, identifies differentially expressed functional annota-
tions by assessing the clustering of proteins associated with a given GO term within an 
expression-weighted PPI network. The network is weighted such that interacting pro-
teins that are differentially expressed are connected using edges with a small weight. 
Our method measures the clustering of proteins sharing a given functional annotation 
by computing the total pairwise distance between the proteins. It then assesses the sta-
tistical significance of this clustering using a Monte Carlo sampling approach. Finally, it 
estimates a false discovery rate (FDR) for the annotations deemed significantly clustered 
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in the expression-weighted network. Figure  1 provides a graphical representation of 
PIGNON’s methods.

Quantitative proteomics dataset

To test our methods, we used a quantitative proteomics analysis of breast cancer 
tumours from three different subtypes performed by Tyanova et  al. [35]. This study 
assessed the proteomics profile of whole tumours diagnosed as hormone receptor posi-
tive (HR+), human estrogen receptor 2 positive (HER2+), or triple negative breast can-
cer (TN) subtypes using super-SILAC coupled to mass spectrometry [54]. Weights are 
assigned to edges based on protein differential expression between two of the above 
breast cancer subtypes.

Protein–protein interaction network and expression weighted interactions.

In the context of this study, we combined the above quantitative proteomics dataset with 
a human PPI network obtained either from the BioGRID PPI public repository (version 
3.4.161) [37, 55], which contains 330,754 individual PPIs and 22,733 unique proteins, 
or from the STRING repository (version 11) [38], which encompasses 996,192 PPIs and 
19,216 proteins. The following inclusion criteria were applied to generate the BioGRID 
and STRING PPI networks. Firstly, only human-to-human protein PPIs were consid-
ered, since the quantitative proteomics study involved human samples. Secondly, only 
PPIs that constituted the largest connected components of the  networks were kept, a 
requirement of our statistical approach. Thirdly, only proteins that interacted with less 
than 1000 other proteins are kept in the networks, eliminating 12 and 189 overly con-
nected proteins that condense and could mask clusters that are present the BioGRID and 
STRING networks respectively. In addition, to build the STRING network, only interac-
tions with a medium confidence score above 0.4 were used. These filters resulted in a 
reduced network of 16,563 proteins involved in 266,136 PPIs for the BioGRID PPI net-
work and 19,028 proteins involved in 959,614 PPIs for the STRING PPI network. These 
networks are represented as undirected graphs, G = (V ,E) , where v ∈ V  , the set of ver-
tices (proteins) and e ∈ E , the set of edges connecting two vertices, (PPIs) ( e = v1, v2, 
where v1, v2 ∈ V ).

Based on the Tyanova et al. quantitative proteomics analysis, we assign weights to the 
edges of the networks as follows. The level of protein differential expression of a pro-
tein vi is defined as the fold-change, f (vi) . f (vi) is calculated as the ratio of the average 
expression of vi in one experimental condition (e.g. HER2+ tumours) over the average 
expression of vi in another condition (e.g. TN tumours) as provided by Tyanova et al.’s 
super-SILAC experiments. In the event that a protein in the network vi was not quanti-
fied by Tyanova et  al., f (vi) was set to 1, indicating no differential expression. When 
comparing the HER2+/TN conditions 2883 proteins in the BioGRID PPI network have 
a f (vi)  = 1, while 2597 and 2613 proteins were weighted in the HR+/TN and HER2+/
HR+ networks respectively. For the STRING PPI network, 3897, 3740, 3807 proteins 
were weighted in the HER2+/TN, HR+/TN and HER2+/HR+ networks. Edge weights, 
w(e) , for all e ∈ E were then defined as follows:
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and where m is the mean fold-change of connected vertices, v1 and v2, (i.e., the mean of 
f(v1) and f(v2)).

Measuring the clustering of protein annotations in a weighted PPI network

The objective of PIGNON is to identify annotations for which the associated proteins 
show a level of differential expression and are clustered in a PPI network. In this study 
we focus on functional annotations derived from Gene Ontology [10]. For every GO 
term T out of the set of GO terms O, we measure the clustering of its associated set of 
proteins ST and assess their significance. Propagated GO terms, (i.e. where proteins are 
annotated by all of the parent GO terms of its annotations) were obtained from Him-
melstein et al. (accessed 2018-10-26) [56]. PIGNON assesses the clustering of GO terms 
for which a minimum of 50% of their associated proteins are present in the PPI network 
and that annotates between 3 and 1000 proteins. This ensures a significant representa-
tion of the GO terms analyzed and also that very general GO terms, which typically have 
little biological interest, are not considered. The clustering of GO terms satisfying these 
criteria is measured using the total pairwise distance (TPD), a measured inspired by our 
previously published tool GoNet [29]. Formally, the TPD of the set of proteins ST associ-
ated with a GO term T is defined as:

where s
(

vi, vj
)

 is the weighted shortest path distance between the two proteins vi and 
vj . Hence proteins that show an important level of differential expression will be con-
nected with edges with a small weight, thereby reducing their shortest path distances. 
The weighted shortest path between all pairs of proteins in the network are computed 
using the Floyd-Warshall algorithm [57, 58].

Assessing the clustering significance of annotations in an expression‑weighted PPI 

network

To assess the significance of protein clustering of a GO term in a network, PIGNON 
builds a null model of the TPD for each size of set of proteins ST ranging from 3 to 1000, 
as described above. Here, we present two methods to build these null models, which 
are both based on a Monte Carlo sampling strategy. The first is inspired by the sampling 
strategy from GoNet and randomly samples proteins with a uniform probability, with 
the exception that only proteins annotated by at least 1 GO term can be sampled [29] 
and computes the TPD of each sample to build a null distribution of the TPD for a given 
number of proteins. We will refer to this approach as the unweighted sampling. The 
second is inspired by another clustering approach, LESMoN [53], and samples proteins 
with a probability that is roughly proportional to their number of annotations. We will 
refer to this approach as the weighted sampling. A weighted approach enables the distri-
bution to be more reflective of the impact of proteins that are annotated with multiple 
GO annotations can have on the clustering results, since such proteins would influence 

w(e) =

{

m if m ≤ 1
1
m if m > 1

TPD(ST ) =
∑

vi ,vj∈ST ,i<j

s
(

vi, vj
)



Page 17 of 22Nadeau et al. BMC Bioinformatics          (2021) 22:302 	

the TPD of multiple GO terms. A null model more often selecting such proteins is there-
fore likely to be a more accurate model for statistical assessment. For both method 107 
random samplings are performed.

The main limitation of these sampling strategies is that they are unable to capture 
very rare events (i.e. very small TPDs with extremely small p values:  < 10–7). In order to 
address this issue, one can approximate the null distribution of TPDs using a distribu-
tion that has a defined cumulative distribution function. PIGNON therefore computes 
the TPD mean and standard deviation from the Monte Carlo samples and approximate 
a normal distribution as the null model. From this normal distribution, we assess the p 
value of obtaining a given TPD α as the probability of obtaining a TPD at least as small 
as α when randomly selecting a set of proteins in the network.

Estimating a false discovery rate for a given level of statistical significance

Given the large number of GO terms for which clustering will be assessed, multiple 
hypothesis testing is an important consideration. However, a large number of GO terms 
share many annotating proteins and therefore the clustering statistical assessment of 
these GO terms is far from being independent. Consequently, p value correction meth-
ods such as Bonferroni are likely too stringent. Furthermore, the approximation using a 
normal distribution may introduce inaccuracies in the estimation of the statistical signif-
icance of a given GO term. Therefore, we restrict reported clustered annotations using 
an estimated FDR.

In order to estimate this FDR, associations between GO terms and their proteins are 
shuffled. This shuffling process takes place by selecting at random a pair of GO term-
protein association and swapping the protein annotations. This process is repeated 
687,855,000 times (a 1000 times the number of GO term-protein associations)  in the 
BioGRID network and  766,371,000 times  in the STRING network. For this shuffling, 
GO terms are not swapped if one of them annotates both proteins in the pair. When 
this process is completed the clustering statistical significance of the set of shuffled GO 
terms O* is assessed using the same method as above. We estimate the FDR at a given p 
value threshold p, as the proportion of sets of proteins ST*, from shuffled GO terms T*, 
over the number of sets of proteins from actual GO terms, ST, with a clustering p value 
smaller than p. Specifically,

 
GO terms, ST, for which the proteins are associated with a FDR < 0.001, or the small-

est FDR estimated above 0 if this FDR is greater than 0.001, are deemed significantly 
clustered in an expression-weighted network. Since shuffled GO terms have no biologi-
cal relevance, their identification provides an estimation of the false discovery rate. This 
procedure therefore enables a control on the false discoveries that could be generated by 
PIGNON.

FDR(p) =

∑

T∗∈O∗ 1p−value(ST∗)<p
∑

T∈O 1p−value(ST )<p
.
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Benchmarking approaches

Unweighted network

PIGNON can be modified such that it solely evaluates the clustering of GO terms 
and does not consider any differential expression. The network effectively becomes 
unweighted, where all edges have a weight of 1. The TPD and its statistical assess-
ment can be computed as described above on this unweighted network. PIGNON’s 
unweighted network analysis is used to contrast PIGNON’s weighted network analysis.

Standard functional enrichment analysis

We analyzed the Tyanova et al. dataset using a standard statistical approach, where 
differentially expressed proteins between the different breast cancer subtypes are 
detected using a two-tail Student’s t test and adjusted for multiple hypothesis testing 
using the Benjamini–Hochberg method [59]. Ontologizer [14] is then used to statisti-
cally assess the level of enrichment of GO terms within the set of significantly differ-
entially expressed proteins, using the entire set of quantified proteins as background. 
Ontologizer uses a modified Fisher exact test to assess such statistical significance. 
Two sets of criteria of differential expression were defined: the first required proteins 
to have a FDR-adjusted p value < 0.05, while the second required proteins to have a 
FDR-adjusted p value ≤ 0.20 and a fold change ≤ 0.6 or ≥ 1.5.

Gene set enrichment analysis

The GSEA [13] software was executed to identify GO terms that are differentially reg-
ulated between the HER2+/TN, HER2+/HR+ and HR+/TN conditions. GSEA was 
run with 1000 permutations using the signal to noise of classes as a ranking metric. 
GO terms of size 3 to 1000 were considered in the analysis. The remaining parameters 
were set to default values.

Network enrichment analysis

We analysed the Tyanova et  al. dataset using NEA [31], which identifies enriched 
functional annotations in gene sets based on a list of significantly differentially 
expressed proteins using a biological network. We executed this procedure using 
the NEArender R package (version 1.5) [30] on the BioGRID PPI network and using 
GO terms as functional annotations. The same criteria for statistically assessing pro-
tein differential expression as for the standard functional enrichment analysis were 
employed. Namely, differentially expressed proteins were defined by an FDR-adjusted 
p value ≤ 0.20 and a fold-change ≤ 0.6 or ≥ 1.5.

Markov clustering algorithm coupled to ontologizer

We compared our PIGNON algorithm to a topological clustering algorithm followed 
by a GO enrichment analysis. We used the Markov Clustering (MCL) algorithm [36] 
to identify clusters in the PPI network. MCL was executed on the same BioGRID net-
work produced with the filtering procedures described above with one exception. 
Edge weights were inverted since MCL clusters proteins based on similarity, not dis-
tance. The inflation hyperparameter was set to 2.0. The MCL analysis yielded 1462 
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clusters containing 3 or more proteins in the HER2+/TN weighted network and 
1499 clusters in both the HR+/TN and HER2+/HR+ weighted network. (Additional 
file 28: File S9). These clusters were analyzed using the GO enrichment analysis tool 
Ontologizer. Ontologizer assessed the GO term enrichments among the MCL clus-
ters using as background the 16,563 proteins in the BioGRID PPI network.

When correcting for multiple hypothesis testing, we considered each GO term 
identified in the Ontologizer analysis in all MCL clusters as an individual statistical 
tests. We performed a Benjamini–Hochberg correction on the resulting p values and 
report the smallest FDR-adjusted p value of each GO term.

Visualization of significant GO term enrichments

We summarized the significant GO terms obtained by each analysis using REVIGO 
[60] allowing 0.7 SimRel semantic similarity to reduce the redundancy in the reported 
results. REVIGO’s output is then fed to the CirGO software package [61] to generate a 
Pie Chart visualization of the results.

Software availability

PIGNON is implemented as an open-source platform-independent Java program and 
is available at this address: https://​github.​com/​Laval​leeAd​amLab/​PIGNON. An execut-
able.jar file is also provided along with a “Read Me” documentation.

Abbreviations
GO: Gene ontology; PPI: Protein–protein interaction; HR+: Hormone receptor positive; HER2+: Human estrogen receptor 
2 positive; TN: Triple negative breast cancer; TPD: Total pairwise distance; FDR: False discovery rate; MCL: Markov Cluster‑
ing; NEA: Network Enrichment Analysis; GSEA: Gene Set Enrichment Analysis.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04042-6.

Additional file 1: Figure S1. Approximated normal distributions provide a good estimate of Monte Carlo sampling 
distributions

Additional file 2: Figure S2. PIGNONs FDR performance decreases as significance scores increase

Additional file 3: Table S1. PIGNON results on HER2+/TN expression-weighted BioGRID network with weighted 
sampling

Additional file 4: Table S2. PIGNON results on HER2+/TN expression-weighted BioGRID network with unweighted 
sampling

Additional file 5: Table S3. PIGNON results on unweighted BioGRID network with unweighted sampling

Additional file 6: Table S4. PIGNON results on unweighted BioGRID network with weighted sampling

Additional file 7: Table S5. PIGNON results on HR+/TN expression-weighted BioGRID network with weighted 
sampling

Additional file 8: Table S6. PIGNON results on HER2+/HR+ expression-weighted BioGRID network with weighted 
sampling

Additional file 9: Table S7. PIGNON results on HER2+/TN expression-weighted STRING network with weighted 
sampling

Additional file 10: Table S8. PIGNON results on HER2+/HR+ expression-weighted STRING network with weighted 
sampling

Additional file 11: Table S9. PIGNON results on HR+/TN expression-weighted STRING network with weighted 
sampling

Additional File 12: Table S10. PIGNON results on unweighted STRING network with weighted sampling

https://github.com/LavalleeAdamLab/PIGNON
https://doi.org/10.1186/s12859-021-04042-6


Page 20 of 22Nadeau et al. BMC Bioinformatics          (2021) 22:302 

Additional File 13: Figure S3. Significantly dysregulated GO terms identified by PIGNON in the HER2+/TN breast 
cancer subtype comparisons that were unique to the expression-weighted STRING network

Additional File 14: Figure S4. Significantly dysregulated GO terms identified by PIGNON in the HER2+/HR+ breast 
cancer subtype comparisons that were unique to the expression-weighted STRING network

Additional File 15: Figure S5. Significantly dysregulated GO terms identified by PIGNON in the HR2+/TN breast 
cancer subtype comparisons that were unique to the expression-weighted STRING network

Additional File 16: File S1. t-test results on protein expression values from Tyanova et al.’s dataset

Additional File 17: File S2. Ontologizer results of significantly dysregulated proteins from t-test results in Tyanova 
et al.’s dataset

Additional File 18: File S3. Ontologizer results of significantly dysregulated proteins with loosened-up cut-offs from 
t-test results in Tyanova et al.’s dataset

Additional File 19: File S4. GSEA results on Tyanova et al.’s dataset

Additional File 20: File S5. NEA results on Tyanova et al.’s dataset using the BioGRID network

Additional File 21: File S6. Ontologizer results on clusters identified by MCL with >= 3 proteins in the HER2+/TN 
expression-weighted BioGRID network

Additional File 22: File S7. Ontologizer results on clusters identified by MCL with >= 3 proteins in the HR+/TN 
expression-weighted BioGRID network

Additional File 23: File S8. Ontologizer results on clusters identified by MCL with >= 3 proteins in the HER2+/HR+ 
expression-weighted BioGRID network

Additional File 24: Figure S6. Biological processes identified by the MCL-Ontologizer approach and uniquely 
detected by PIGNON in the expression-weighted BioGRID networks for all comparisons of breast cancer subtypes

Additional File 25: Figure S7. Cellular components identified by the MCL-Ontologizer approach and uniquely 
detected by PIGNON in the expression-weighted BioGRID networks for all comparisons of breast cancer subtypes

Additional File 26: Figure S8. Cellular components identified by PIGNON in breast cancer subtype comparisons 
that were unique to the expression-weighted BioGRID networks

Additional File 27: Figure S9. Molecular functions identified by PIGNON in breast cancer subtype comparisons that 
were unique to the expression-weighted BioGRID networks

Additional File 28: File S9. Protein clusters identified by Markov Clustering Algorithm with >=3 proteins in breast 
cancer subtype expression-weighted BioGRID networks

Acknowledgements
Not applicable.

Authors’ contributions
RN and MLA designed the algorithm. RN and AB implemented the software package. RN, AB and MLA contributed to 
writing the manuscript. All authors read and approved the final manuscript.

Funding
The authors acknowledge funding from the following sources: Natural Sciences and Engineering. Research Council 
(NSERC) of Canada Discovery grants to M.L.A. R.N. held a NSERC Canada Graduate Scholarship and an Ontario Graduate 
Scholarship. A.B. held a Mitacs Globalink Research Award. This research was enabled by support provided by Compute 
Ontario (https://​compu​teont​ario.​ca/) and Compute Canada (www.​compu​tecan​ada.​ca) with Resource Allocation to 
M.L.A. The funding bodies did not play any roles in the design of the study and collection, analysis, and interpretation of 
data and in writing the manuscript.

Availability of data and materials
All data generated during this study are included in this published article and its supplementary information files. The 
datasets analysed during the current study are available in the BioGRID PPI repository, https://​downl​oads.​thebi​ogrid.​
org/​BioGR​ID/​Relea​se-​Archi​ve/​BIOGR​ID-3.​4.​161/ and the STRING PPI repository, https://​string-​db.​org/​cgi/​downl​oad?​sessi​
onId=%​24inp​ut-%​3E%​7Bses​sionId%​7D&​speci​es_​text=​Homo+​sapie​ns. The quantitative proteomics data (Tyanova et al. 
[35]) that support the findings of this study are available from Nature Communications, https://​www.​nature.​com/​artic​
les/​ncomm​s10259.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Received: 26 October 2020   Accepted: 22 February 2021

https://computeontario.ca/
http://www.computecanada.ca
https://downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.4.161/
https://downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.4.161/
https://string-db.org/cgi/download?sessionId=%24input-%3E%7BsessionId%7D&species_text=Homo+sapiens
https://string-db.org/cgi/download?sessionId=%24input-%3E%7BsessionId%7D&species_text=Homo+sapiens
https://www.nature.com/articles/ncomms10259
https://www.nature.com/articles/ncomms10259


Page 21 of 22Nadeau et al. BMC Bioinformatics          (2021) 22:302 	

References
	1.	 Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG, et al. Sensitive quantitative proteomics 

of human hematopoietic stem and progenitor cells by data-independent acquisition mass spectrometry. Mol Cell 
Proteomics. 2019;18:1454–67.

	2.	 Linscheid N, Logantha SJRJ, Poulsen PC, Zhang S, Schrölkamp M, Egerod KL, et al. Quantitative proteomics and 
single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 
2019;10:2889.

	3.	 McClatchy DB, Martínez-Bartolomé S, Gao Y, Lavallée-Adam M, Yates JR. Quantitative analysis of global protein 
stability rates in tissues. Sci Rep. 2020;10:15983.

	4.	 Rauniyar N, Subramanian K, Lavallée-Adam M, Martínez-Bartolomé S, Balch WE, Yates JR. Quantitative proteomics 
of human fibroblasts with i1061t mutation in Niemann-pick C1 (NPC1) protein provides insights into the disease 
pathogenesis. Mol Cell Proteomics. 2015;14:1734–49. https://​doi.​org/​10.​1074/​mcp.​M114.​045609.

	5.	 Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR. Analysis of quantitative proteomic data generated via multi‑
dimensional protein identification technology. Anal Chem. 2002;74:1650–7.

	6.	 Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino 
acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 
2002;1:376–86.

	7.	 Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccha-
romyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154–69. https://​doi.​
org/​10.​1074/​mcp.​M4001​29-​MCP200.

	8.	 Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification 
strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75:1895–904.

	9.	 Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human cen‑
trosome by protein correlation profiling. Nature. 2003;426:570–4. https://​doi.​org/​10.​1038/​natur​e02166.

	10.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biol‑
ogy. Nat Genet. 2000;25:25–9.

	11.	 Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 1999;27:29–34.

	12.	 Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-
performance in-memory approach. BMC Bioinform. 2017;18:142.

	13.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analy‑
sis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 
2005;102:15545–50. https://​doi.​org/​10.​1073/​pnas.​05065​80102.

	14.	 Bauer S, Grossmann S, Vingron M, Robinson PN. Ontologizer 2.0—a multifunctional tool for GO term enrichment 
analysis and data exploration. Bioinformatics. 2008;24:1650–1.

	15.	 Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. GoMiner: a resource for biological interpretation 
of genomic and proteomic data. Genome Biol. 2003;4:R28.

	16.	 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinfor‑
matics resources. Nat Protoc. 2009;4:44–57.

	17.	 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: A tool for discovery and visualization of enriched GO terms 
in ranked gene lists. BMC Bioinform. 2009;10:48.

	18.	 Lavallée-Adam M, Yates JR. Using PSEA-quant for protein set enrichment analysis of quantitative mass spectrome‑
try-based proteomics. Curr Protoc Bioinform. 2016;53:13.28.1-16.

	19.	 Lavallée-Adam M, Rauniyar N, McClatchy DB, Yates JR. PSEA-quant: A protein set enrichment analysis on label-free 
and label-based protein quantification data. J Proteome Res. 2014;13:5496–509.

	20.	 Fields S, Song O. A novel genetic system to detect protein–protein interactions. Nature. 1989;340:245–6.
	21.	 Verhagen A. Using FLAG epitope-tagged proteins for coimmunoprecipitation of interacting proteins. Cold Spring 

Harb Protoc. 2006;2006:pdb.prot4557-pdb.prot4557.
	22.	 Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, et al. The tandem affinity purification (TAP) 

method: a general procedure of protein complex purification. Methods. 2001;24:218–29.
	23.	 Roux KJ, Kim DI, Burke B, May DG. BioID: a screen for protein-protein interactions. Curr Protoc protein Sci. 

2018;91:19.23.1-19.23.15.
	24.	 Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the 

yeast Saccharomyces cerevisiae. Nature. 2006;440:637–43. https://​doi.​org/​10.​1038/​natur​e04670.
	25.	 Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, et al. A global protein kinase and phosphatase 

interaction network in yeast. Science. 2010;328:1043–6. https://​doi.​org/​10.​1126/​scien​ce.​11764​95.
	26.	 Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, et al. A proximity biotinylation map of a human 

cell. bioRxiv. 2019;2019:796391.
	27.	 Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, et al. Systematic analysis of the protein interaction net‑

work for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007;27:262–
74. https://​doi.​org/​10.​1016/j.​molcel.​2007.​06.​027.

	28.	 Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human 
protein-protein interaction network. Nature. 2005;437:1173–8.

	29.	 Lavallée-Adam M, Coulombe B, Blanchette M. Detection of locally over-represented GO terms in protein-protein 
interaction networks. J Comput Biol. 2010;17:443–57. https://​doi.​org/​10.​1089/​cmb.​2009.​0165.

	30.	 Jeggari A, Alexeyenko A. NEArender: an R package for functional interpretation of “omics” data via network enrich‑
ment analysis. BMC Bioinform. 2017;18(Suppl 5):118. https://​doi.​org/​10.​1186/​s12859-​017-​1534-y.

	31.	 Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, et al. Network enrichment analysis: exten‑
sion of gene-set enrichment analysis to gene networks. BMC Bioinform. 2012;13:226. https://​doi.​org/​10.​1186/​
1471-​2105-​13-​226.

https://doi.org/10.1074/mcp.M114.045609
https://doi.org/10.1074/mcp.M400129-MCP200
https://doi.org/10.1074/mcp.M400129-MCP200
https://doi.org/10.1038/nature02166
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/nature04670
https://doi.org/10.1126/science.1176495
https://doi.org/10.1016/j.molcel.2007.06.027
https://doi.org/10.1089/cmb.2009.0165
https://doi.org/10.1186/s12859-017-1534-y
https://doi.org/10.1186/1471-2105-13-226
https://doi.org/10.1186/1471-2105-13-226


Page 22 of 22Nadeau et al. BMC Bioinformatics          (2021) 22:302 

	32.	 Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. EnrichNet: network-based gene set enrichment analysis. 
Bioinformatics. 2012;28:i451–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts389.

	33.	 Signorelli M, Vinciotti V, Wit EC. NEAT: an efficient network enrichment analysis test. BMC Bioinform. 2016;17:352. 
https://​doi.​org/​10.​1186/​s12859-​016-​1203-6.

	34.	 Han H, Lee S, Lee I. NGSEA: network-based gene set enrichment analysis for interpreting gene expression pheno‑
types with functional gene sets. Mol Cells. 2019;42:579–88. https://​doi.​org/​10.​14348/​molce​lls.​2019.​0065.

	35.	 Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T. Proteomic maps of breast cancer subtypes. Nat Com‑
mun. 2016;7:10259. https://​doi.​org/​10.​1038/​ncomm​s10259.

	36.	 Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic 
Acids Res. 2002;30:1575–84.

	37.	 Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction 
datasets. Nucleic Acids Res. 2006;34 Database issue:D535–9. https://​doi.​org/​10.​1093/​nar/​gkj109.

	38.	 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association 
networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic 
Acids Res. 2019;47:D607–13. https://​doi.​org/​10.​1093/​nar/​gky11​31.

	39.	 Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis 
Rev. 2016;35:575–88.

	40.	 Yu Y, Elble R. Homeostatic signaling by cell-cell junctions and its dysregulation during cancer progression. J Clin 
Med. 2016;5:26.

	41.	 Avagliano A, Ruocco MR, Aliotta F, Belviso I, Accurso A, Masone S, et al. Mitochondrial flexibility of breast cancers: a 
growth advantage and a therapeutic opportunity. Cells. 2019;8:401.

	42.	 Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. Vascular endothelial growth factor receptor-2 in breast 
cancer. Biochim Biophys Acta Rev Cancer. 2010;1806:108–21.

	43.	 Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, et al. Stress granule-associated protein G3BP2 regulates 
breast tumor initiation. Proc Natl Acad Sci USA. 2017;114:1033–8.

	44.	 Hsu KS, Kao HY. Alpha-actinin 4 and tumorigenesis of breast cancer. In: Vitamins and hormones. Academic Press Inc.; 
2013. p. 323–51.

	45.	 Woodward TL, Lu H, Haslam SZ. Laminin inhibits estrogen action in human breast cancer cells. Endocrinology. 
2000;141:2814–21.

	46.	 Kirouac DC, Du J, Lahdenranta J, Onsum MD, Nielsen UB, Schoeberl B, et al. HER2+ cancer cell dependence 
on PI3K vs MAPK signaling axes is determined by expression of EGFR, ERBB3 and CDKN1B. PLoS Comput Biol. 
2016;12:1004827.

	47.	 Mughees M, Chugh H, Wajid S. Vesicular trafficking–related proteins as the potential therapeutic target for breast 
cancer. Protoplasma. 2020;257:345–52.

	48.	 Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential mechanisms connecting purine metabolism and cancer therapy. 
Front Immunol. 2018;9:1697.

	49.	 Fagan-Solis KD, Schneider SS, Pentecost BT, Bentley BA, Otis CN, Gierthy JF, et al. The RhoA pathway mediates 
MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. J Cell Biochem. 
2013;114:1385–94.

	50.	 Wang D, Naydenov NG, Dozmorov MG, Koblinski JE, Ivanov AI. Anillin regulates breast cancer cell migration, growth, 
and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer 
Res. 2020;22:3.

	51.	 Corso G, Veronesi P, Sacchini V, Galimberti V. Prognosis and outcome in CDH1-mutant lobular breast cancer. Eur J 
Cancer Prev. 2018;27:237–8.

	52.	 Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of 
resistance to trastuzumab emtansine (T-DM1). Mol Cancer Ther. 2018;17:243–53.

	53.	 Lavallée-Adam M, Cloutier P, Coulombe B, Blanchette M. Functional 5’ UTR motif discovery with LESMoN: local 
enrichment of sequence motifs in biological networks. Nucleic Acids Res. 2017;45:10415–27. https://​doi.​org/​10.​
1093/​nar/​gkx751.

	54.	 Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor 
tissue. Nat Methods. 2010;7:383–5. https://​doi.​org/​10.​1038/​nmeth.​1446.

	55.	 Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. 
Nucleic Acids Res. 2019;47:D529–41.

	56.	 Himmelstein D, Greene C, Malladi V, Bastian F, Baranzini S. gene-ontology: initial zenodo release. 2015.
	57.	 Floyd RW. W. R. Algorithm 97: shortest path. Commun ACM. 1962;5:345.
	58.	 Warshall S. A theorem on Boolean matrices. J ACM. 1962;9:11–2.
	59.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. 

J R Stat Soc Ser B. 1995;57:289–300. https://​doi.​org/​10.​1111/j.​2517-​6161.​1995.​tb020​31.x.
	60.	 Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS 

ONE. 2011;6:e21800. https://​doi.​org/​10.​1371/​journ​al.​pone.​00218​00.
	61.	 Kuznetsova I, Lugmayr A, Siira SJ, Rackham O, Filipovska A. CirGO: an alternative circular way of visualising gene 

ontology terms. BMC Bioinform. 2019;20:84. https://​doi.​org/​10.​1186/​s12859-​019-​2671-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/bts389
https://doi.org/10.1186/s12859-016-1203-6
https://doi.org/10.14348/molcells.2019.0065
https://doi.org/10.1038/ncomms10259
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkx751
https://doi.org/10.1093/nar/gkx751
https://doi.org/10.1038/nmeth.1446
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1371/journal.pone.0021800
https://doi.org/10.1186/s12859-019-2671-2

	PIGNON: a protein–protein interaction-guided functional enrichment analysis for quantitative proteomics
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	PIGNON’s normal approximation provides accurate clustering p values
	PIGNON can accurately estimate the statistical significance of clusterings
	PIGNON detects functional annotations for which the associated proteins are clustered and dysregulated in the PPI network
	PIGNON identifies functional annotations using the STRING PPI network.
	PIGNON detects functional annotations that are not highlighted by standard approaches.
	PIGNON identifies GO terms that are known to be affected in different breast cancer subtypes

	Discussion
	Alternative PPI weighting strategies
	Alternative clustering measures
	Running time considerations and possible improvements.
	PIGNON can be applied on any quantitative datasets

	Conclusions
	Methods
	Method overview
	Quantitative proteomics dataset
	Protein–protein interaction network and expression weighted interactions.
	Measuring the clustering of protein annotations in a weighted PPI network
	Assessing the clustering significance of annotations in an expression-weighted PPI network
	Estimating a false discovery rate for a given level of statistical significance
	Benchmarking approaches
	Unweighted network
	Standard functional enrichment analysis
	Gene set enrichment analysis
	Network enrichment analysis
	Markov clustering algorithm coupled to ontologizer

	Visualization of significant GO term enrichments
	Software availability

	Acknowledgements
	References


