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Mutual population-shift driven 
antibody-peptide binding 
elucidated by molecular dynamics 
simulations
Gert-Jan Bekker1*, ikuo fukuda2, Junichi Higo2 & narutoshi Kamiya2*

Antibody based bio-molecular drugs are an exciting, new avenue of drug development as an alternative 
to the more traditional small chemical compounds. However, the binding mechanism and the effect 
on the conformational ensembles of a therapeutic antibody to its peptide or protein antigen have not 
yet been well studied. We have utilized dynamic docking and path sampling simulations based on all-
atom molecular dynamics to study the binding mechanism between the antibody solanezumab and 
the peptide amyloid-β (Aβ). our docking simulations reproduced the experimental structure and gave 
us representative binding pathways, from which we accurately estimated the binding free energy. not 
only do our results show why solanezumab has an explicit preference to bind to the monomeric form of 
Aβ, but that upon binding, both molecules are stabilized towards a specific conformation, suggesting 
that their complex formation follows a novel, mutual population-shift model, where upon binding, both 
molecules impact the dynamics of their reciprocal one.

With pathogen targeting antibodies being one of the key treatments in immunotherapy1,2, molecular recognition 
of an antibody to its antigen proteins or peptides has attracted great attention3. Understanding the recognition 
mechanism provides crucial information for rational design of an antibody4, which could potentially be attained 
by studying the native binding configuration at atomistic resolution. Although X-ray crystallography is a pow-
erful tool, the binding mechanism cannot be elucidated, as it is not possible to investigate the binding process 
via intermediary structures. In contrast, while molecular dynamics (MD) simulations offer the possibility to 
investigate the binding mechanism by studying the entire conformational space, they cannot reach the timescales 
that biologically interesting phenomena occur at. Enhanced MD simulation techniques such as multicanonical 
MD (McMD)5–14 accelerate the dynamics while having the innate ability to re-obtain the canonical ensemble at 
a given temperature. This enables us to study phenomena such as the binding between molecules at atomistic 
resolution, not offered by either experimental methods or conventional MD simulations. Recently, docking using 
advanced MD, such as McMD, Replica Exchange MD15, Filling Potential16, Metadynamics17, Accelerated MD18 
and even Markov State Modelling of MD simulations19, has attracted much attention in the field of protein-drug 
interaction, where such methods have been coined dynamic docking20.

Currently, three basic models exist for the molecular recognition by antibodies; lock-and-key, conforma-
tional selection and induced fit21–26. In the lock-and-key model, no conformational change of the antibody is 
required for the antigen to bind. On the other hand, for the conformational selection model, also known as the 
population-shift model, the two molecules only bind when the antibody is in a bound-like conformation before 
attempting to bind, leading to a population-shift. Finally, in the induced fit model, binding is attempted while the 
antibody is in a non-native state, and during the binding process they slowly adapt to each other to eventually 
reach the native bound state. While antibodies complexed with small compounds as their antigen have been 
relatively well studied21–23,25,26, studies between antibodies and peptides or proteins24 are still rare. Therefore, 
only the antibody structure is considered when assigning a recognition mechanism. Here we strive to apply our 
established methods13,14 to the still greater challenging biological system of antibody-peptide binding, in order to 
investigate their binding mechanism.
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Anti-Alzheimer’s disease drugs have been a raging topic for the past couple of years with several promising 
antibody drugs developed3,27. Recently however, several of these antibody drugs against Amyloid-β (Aβ) that were 
in clinical trials have been pulled, citing causes such as low efficacy in vivo28. It’s clear that our basic understanding 
of the root cause of Alzheimer’s disease isn’t sufficient, and some groups have even moved their focus away from 
an Aβ-oriented approach29. On the other hand, because our understanding of how antibodies interact with highly 
flexible molecules such as peptides is also lacking, it prevents us from designing more effective antibodies. Given 
the high, pM-order affinity of the antibody solanezumab to specifically the monomeric form of the Aβ peptide30, 
it would serve as an interesting use-case to investigate their binding mechanism. To this end, we have applied 
dynamic docking simulations between solanezumab and its Aβ epitope, followed by path sampling simulations 
to sample the interactions in greater detail to estimate and explain their affinity.

Results
Dynamic docking of the Aβ peptide to the antibody. Dynamic docking starting from the unbound 
state with the peptide’s center of mass (COM) restrained to stay within a cylinder defined by the axis λ (Fig. 1A) 
was performed, with the simulation details described in the Methods section and supplementary Section S1. The 
initial structure for the docking simulations is shown in Fig. 1A, which was obtained after approximately 6.3 ns of 
high temperature MD. After 32 subsequent iterative pre-runs of McMD simulations, we had estimated the density 
of states, lasting for 17.6 μs (24 × 732.4 ns) in total. During the final production run that lasted for another 24 μs 
(24 × 1 μs), configurations including bound, unbound and intermediary states were sampled. The flat potential 
energy distribution from the production run is shown in Fig. S1, which covers a wide temperature region includ-
ing 300 K, 500 K and 700 K. Fig. 1B shows the free energy landscape (FEL) at room temperature between the Aβ 
peptide and the antibody along the first and second principal components (PC1 and PC2, respectively). The dis-
tribution of the reweighted canonical ensemble at room temperature is narrow in comparison to the wide confor-
mational space of the multicanonical ensemble (Fig. S2). The experimental structure (the white cross in Fig. 1B) 
is located inside the largest basin, near its global minimum. Combined, these results suggest that our McMD 
simulations sampled a wide conformational space, including the native state. To analyze the structural ensemble 
at 300 K, representative structures were obtained, whose locations on the FEL are shown in Fig. 1C as red dots, 
with the most stable structure, r1, located near the experimental one. Table 1 lists characteristics regarding each 
picked representative configuration rk as well as the experimental structure, including the root-mean-square 
deviation (RMSD) and the R(native)-value (see supplementary Section S2 for a detailed description), with the 
corresponding structures shown in Fig. S3. Compared to the experimental structure, r1 forms a similar complex 
structure in terms of atomistic contacts, with an R(native)-value of 0.924, while the peptide has an RMSD of 
1.83 Å, indicating that our simulations have successfully reproduced the experimental structure. The configura-
tions of r1, …, r6 are located within the large basin of the landscape (Fig. 1C) and are structurally very similar in 
terms of the position of the N-terminal region of the Aβ peptide (panels 1–6 in Fig. S3). Here, the Aβs’ central 
Phe19-Phe20 residues are buried inside the antibody, as observed in the experimental structure, while only Phe19 
is buried in r7 and r8 (panels 7 and 8 in Fig. S3). The structures of r9 and r10 (panels 9 and 10 in Fig. S3), which are 
located at the smaller basins of the landscape, differ from those of r1, …, r8, as the peptide binds in an opposite 
orientation with respect to the first group.

In order to further investigate the stability of the predicted structures rk, we performed 100 ns canonical MD 
simulations at 300 K and 400 K without restraints. To quantify the stability, we measured the change in contacts 
between the peptide and the antibody along the trajectories by calculating the R-value14,31, as shown in Fig. S4. 
These R-values represent the change in intermolecular contacts with respect to each initial structure rk, where 
stable binding configurations are expected to maintain their contacts. The trajectories at 300 K show that all struc-
tures appear to be stable, with their R-value dropping minimally (see Table S3), illustrating that even non-native 
structures appear stable at room temperature for simulation lengths accessible by conventional MD simulations. 
Since the configurations r1, …, r8 are structurally very similar in terms of the N-terminal region of the Aβ peptide, 
it is to be expected that they would behave similarly. Furthermore, the large contact surface between the two mol-
ecules enables many contacts to be formed, preventing the molecules from unbinding during our relatively short 
canonical simulations at room temperature. From these trajectories, representative structures qk were obtained 
by taking the nearest-to-average structure over the final 40 ns, with the resulting structures qk shown in Fig. S5, 
comparing them to their initial structures rk. In particular, the structures q1, …, q6, which are located in the 
large basin, are very similar to their initial structures. At 400 K however, most binding configurations destabilize, 
while r1 and r2 remain stable even at 400 K, where r2 is surprisingly stable (R(2) in Fig. S4). This is because the 
C-terminal side is facing inwards into solanezumab, forming stable contacts (panel 2 in Fig. S3), instead of out-
wards towards the bulk like r1 and the experimental structure (panel 1 in Fig. S3). However, considering the full, 
42-residue sequence of Aβ, the structure r2 is unrealistic, as it doesn’t allow for enough space for the C-terminal 
region to connect to the remainder of the peptide. Besides r2, the configurations r3, r4, r9 and potentially r10 where 
this effect is only partially observed, also have an internally facing C-terminal region. Furthermore, r10 and poten-
tially r7 and r8 where the effect is only partially observed, have an internally facing N-terminal region. Since the 
inward facing termini would not exist in case of the full-length sequence of Aβ, they could effectively be ignored. 
Considering the structural incompatibilities of many configurations, as well as their otherwise high structural 
similarity to r1, our predicted binding configuration from our dynamic docking, r1, can be considered to be the 
most stable structure.

path sampling of the Aβ peptide to the antibody. Using our previously established method14, which 
is summarized in supplementary Section S3, we estimated representative binding/unbinding pathways from the 
dynamic docking ensemble starting from the equilibrated structure in the bound state, and then executed path 
sampling simulations followed by Weighted Histogram Analysis Method (WHAM)32 to calculate the binding 
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affinity. This two-staged approach enables us to perform efficient global docking using McMD and then study the 
binding pathway in-depth using path sampling simulations by focusing on the local interactions and dynam-
ics13,14. The picked structures that represent the binding pathway were chosen in such a way that the contact 
matrix of the interface only slowly changes along λ′ where possible, in order to maximize the structural overlap 
between windows. For Aβ, this resulted in the N-terminal facing towards the antibody for every picked structure 
as shown in Fig. S6. We executed a total of 19.2 μs (2 pathways × 16 windows × 3 structures × 200 ns) of Umbrella 
Sampling (US) simulations at 300 K without position restraints starting from the by the dynamic docking 

Figure 1. Dynamic docking by McMD. (A) The initial starting configuration, which was generated by a high 
temperature MD simulation with restraints, where the COM of the fragment peptide of Aβ (Lys16-Ser26) was 
restrained to stay inside the black cylinder (see Methods) and the antibody’s red colored heavy atoms were 
weakly position restrained. The cylinder ranges from 2.5 Å to 30 Å, where the experimental structure has a λ 
value of 6.64, indicated by the black dot on the axis of λ. The sequence numbering of the CDR loops and Aβ are 
listed in Table S1. The image was drawn using Molmil46–48. (B) FEL of the ensemble at 300 K projected onto PC1 
and PC2, where the white cross marks the experimental structure. See supplementary Section S2 for additional 
details. (C) FEL in greyscale with the locations of the structures rk indicated in red.
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identified representative structures for each pathway derived from q1 and q2 to sample the interactions between 
Aβ and the antibody, which is described in greater detail in Section S4. We then calculated the binding affinity and 
the error in our calculation using WHAM for both binding configurations. Tables S5 and S6 list the free energy 
values using different ranges of the trajectories for q1 and q2, respectively. For all subsequent analyses, we used the 
final 100 ns of the production run, where the error ε is the lowest for both q1 and q2, after allowing some time for 
equilibration. The potential of mean force (PMF) of q1 corresponding to this range is shown in Fig. 2A. Taking the 
average value over the final 2.5 Å along λ′ (λ value relative to q1), we obtain binding affinities of ΔG = −19.92 kcal/
mol (±0.03) and ΔG = −19.44 kcal/mol (±0.03) for q1 and q2, respectively. The sampled volume 

λ ζ∑ Δ Δ Δβ λ ζ−e vsite
G v( , , )  part of Eq. S2 was evaluated to approximately 0.735 Å3 and 0.009 Å3 for q1 and q2, 

respectively. This results in a standard binding free energy, ∆Gb
0, of −15.31 kcal/mol and −12.22 kcal/mol for q1 

and q2, respectively, showing that q2 is a weaker binding configuration than q1. Here, q1 (our docking prediction) 
has reproduced the experimental value of ΔGexp = −16.61 kcal/mol30.

Figure 2B shows the root-mean-square fluctuation (RMSF) at different regions along λ′ for both the anti-
body and the Aβ peptide obtained from the path sampling simulations. The complementarity-determining region 
(CDR) loops of the antibody that form the Aβ binding pocket show to be especially λ′-dependent. Both molecules 
are very stable in the bound state, where the antibody becomes less stable as the peptide unbinds. Aβ is only stable 
in the bound state, while in the intermediary and unbound states it fluctuates greatly. Interestingly, the antibody 
in the intermediary state (λ′ = 10 Å) shows the highest fluctuation, higher than in both the bound (λ′ = 0 Å) and 
unbound (λ′ = 20 Å) states. Seemingly, the disordered nature of the peptide inflicts increased dynamics upon 
the antibody, as furthermore illustrated in Fig. 2C. In particular, CDR-L1 (red loop in Fig. 2C) shows increased 
dynamics, with some structures having Aβ bound near CDR-L1, some structures bound at an intermediary dis-
tance (between VH and CDR-L1) and some bound more distantly (near VH). The various potential binding con-
figurations of Aβ in this intermediary state greatly influences the antibody, which appears to be destabilized by 
it. However, these binding configurations are locally stabilized by various interactions forming between Aβ and 
solanezumab (Movie S1). Thus, due to a large number of weakly stabilizing structural features, a high fluctuation 
of both Aβ and solanezumab is observed.

To analyze the structures sampled along the binding/unbinding pathway, we constructed a trajectory of repre-
sentative structures (from the final 100 ns) along λ′ of each bin Δλ from the US simulations. Movie S1 shows how 
the peptide could potentially bind to (or unbind from) the antibody, where the movie starts from the unbound 
state, i.e. from a large λ′. In the unbound state (until about λ′ = 18 Å), the Aβ peptide has no contacts with solan-
ezumab. As the peptide approaches the antibody, its contact area with the antibody slowly increases. It starts to 
form various different non-specific binding configurations that are stabilized within shallow local minima via 

struc. id Cluster free energy PC1 PC2 PC3 PCA free energy RASA R(native)-value RMSD λ

r1 0.00 −1.40 0.25 0.25 0.04 0.38 0.924 1.83 6.75

r2 0.36 −0.53 2.14 2.14 0.33 0.40 0.828 6.25 5.45

r3 0.90 0.56 −0.34 −0.34 1.07 0.50 0.504 6.50 7.88

r4 1.14 −2.27 0.16 0.16 0.90 0.37 0.587 6.37 5.98

r5 1.41 −2.02 −2.08 −2.08 1.54 0.44 0.925 3.36 6.81

r6 1.83 −0.65 −2.77 −2.77 4.42 0.49 0.428 5.87 8.75

r7 2.19 1.01 −0.99 −0.99 2.63 0.47 0.252 9.91 8.01

r8 2.21 3.44 0.81 0.81 3.29 0.38 0.250 10.78 6.66

r9 2.55 5.98 0.06 0.06 12.34 0.50 0.065 11.77 8.52

r10 3.13 6.83 −1.13 −1.13 7.06 0.40 0.131 10.70 7.48

q1 — −1.19 0.18 0.06 0.06 0.42 0.961 3.50 6.96

q2 — −0.58 2.72 −1.91 0.75 0.36 0.837 6.08 5.34

q3 — −0.62 −0.26 0.87 0.51 0.48 0.528 6.37 7.71

q4 — −2.78 0.49 −0.94 1.57 0.38 0.590 6.36 5.60

q5 — −2.31 −0.88 4.58 1.55 0.39 0.943 3.67 6.85

q6 — −1.19 0.42 −0.61 0.05 0.48 0.464 5.91 7.59

q7 — 1.73 1.04 −4.29 3.69 0.44 0.251 10.11 7.02

q8 — 1.77 1.44 −2.12 3.39 0.40 0.221 10.48 6.94

q9 — 8.13 0.91 2.82 5.15 0.52 0.046 12.08 9.11

q10 — 6.45 −1.91 8.10 7.71 0.46 0.133 10.71 8.22

exp. — −2.07 0.09 0.61 0.62 0.36 1.000 0.00 6.64

Table 1. Characteristics of binding configurations. For each representative structure rk (from McMD) and each 
equilibrated structure qk (from refinement MD at 300 K), various characteristics are shown. The relative free 
energy value in kcal/mol of the corresponding cluster k is shown for the structures rk. For the structures rk and 
qk, the first three principal components (PC1–3), the free energy in kcal/mol of the point (PC1, PC2) on the 
FEL in Fig. 1B, the relative accessible surface area (RASA) of Aβ in percentage, the R(native)-value and RMSD 
in Å with respect to the experimental structure and the λ values are listed. The structures rk are ordered by the 
relative free energy values of their corresponding cluster.
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primarily salt bridges. After the peptide has gotten closer to the CDR loops, some more stable, non-native inter-
actions are starting to be formed. Between λ′ = 9.6 and 8.4 Å, the hydrophobic core of the peptide (Leu17-Ala21) 
faces inwards towards the binding pocket, interacting with CDR-H1 and CDR-L1, as can also be observed in the 
PMF as a meta-stable region (Fig. 2A). At λ′ = 7.6 Å, the C-terminal side of the peptide interacts with CDR-H1 
where it stays until about λ′ = 6.9 Å, when the C-terminal side moves deeper into the binding site nearby CDR-L3 
and CDR-H3. At λ′ = 6.3 Å, a configurational change is observed, as the N-terminal side is now facing towards 
CDR-L2, with the hydrophobic Val18 and Phe19 facing towards the binding pocket, which is the first step in 
forming the natively bound contacts. Next, between λ′ = 5.0 and 4.4 Å, Glu22 and Asp23 form fleeting salt bridges 
to Lys16 and ArgH31 (in CDR-H1), while the C-terminal side is still failing about randomly as it points towards 
the bulk. At λ′ = 4.2 Å, the salt bridge between Lys16 and AspH100 (in CDR-H3) is formed, anchoring the pep-
tide, to pull it in further. Simultaneously, Phe19 changes its rotamer and enters deep into the pocket, locking it 
into its place. At λ′ = 3.6 Å, Phe20 also enters deep into the pocket, but it still moves around considerably, with it 
leaving between λ‘ = 1.8 to 1.5 Å, before it stabilizes and locks into place. As the peptide approaches λ′ = 0 Å, the 
C-terminal region folds into an α-turn similar to the experimental structure, with the sidechains making various 
contacts to the antibody. As the peptide is pulled in further into the pocket, deeper than the native state, CDR-L1 
somewhat closes up behind it, partially encapsulating the peptide inside the pocket. Here, the C-terminal region 
faces towards CDR-H2, with the mid-region and C-terminal end of Aβ not significantly different compared to 

Figure 2. Path sampling by umbrella sampling simulations. (A) PMF obtained after applying WHAM, giving a 
binding affinity of ΔG = −19.92 kcal/mol (±0.03). Here, λ′ relates to λ as follows; λ′ = λ − 6.96 Å, where 6.96 Å 
corresponds to the λ value of the structure q1. (B) RMSF plots of the antibody’s VL and VH (see Methods), and 
Aβ. Shown are the graphs for the ensembles at λ′ = 0, 5, 10 and 20 Å in black, red, green and blue, respectively. 
The CDR loops (see Table S1) are indicated and highlighted in grey. (C) Random structures picked from the 
ensemble at λ′ = 0 and 10 Å on the left and right, respectively. The CDR loops L1, L2, L3, H1, H2 and H3 are 
colored in red, green, blue, magenta, yellow and cyan, respectively and the Aβ peptide is colored in black, with 
its side-chain of the C-terminal Ser26 shown as a stick model.
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the native state at λ′ = 0 Å. The binding of Aβ also has a considerable impact on the structural ensemble of solan-
ezumab, as can be seen in Fig. 2B, where the RMSF of solanezumab is plotted for different regions along λ′ of the 
US trajectory. As Aβ binds, solanezumab becomes more stable, as in particular the CDR regions have become 
more stable in the bound state. This can also be observed in the movie, as the antibody remains unstable until 
the peptide has sufficiently entered the pocket around λ′ = 4 Å, where it starts to form native contacts with the 
antibody, stabilizing both molecules.

To investigate the conformational ensemble of the Aβ peptide in isolation, we executed additional McMD 
simulations of Aβ in solvent, without the antibody. Fig. S7A shows a very wide and shallow landscape without any 
deep minima, where the reweighted canonical ensemble at room temperature mainly consists of random confor-
mations, which was previously also shown by Baumketner et al.33. The canonical ensemble at room temperature 
of Aβ in the presence of solanezumab (i.e. our docking ensemble) projected onto the same two principal compo-
nents shows a funneled landscape with two major minima (Fig. S7B), where these minima correspond to r1 and 
r2. Thus, in isolation, the peptide monomer forms disordered structures, while upon binding, Aβ is stabilized by 
forming a hydrophobic core with its central Phe19-Phe20 residues, which is a common structural feature between 
r1 and r2 (panels 1 and 2 in Fig. S3, respectively).

With the lower affinity of the peptide q2 with respect to q1 even with its increased stability, it would be inter-
esting to see the stability of the full-length sequence. For that purpose, we constructed two full-length models 
of both r1 and r2. The R-values from the canonical simulations are shown in Figs. S8–S11, with the averages and 
standard deviations over the final 40 ns of each trajectory shown in Table S7. The data shows that the models 
derived from r1 (Figs. S8–S9) have a higher stability than those derived from r2, (Figs. S10–S11) suggesting once 
more that r1 is indeed the most stable one, while r2 is simply an artifact caused due to the usage of the epitope 
instead of the full-length sequence.

Discussion
The conformational differences between solanezumab in the bound and unbound states observed during our 
path sampling simulations (Fig. 2C), suggest that Aβ binding to solanezumab is governed by a conformational 
selection model. Ma et al. showed that through analysis of registered protein structures in the PDB that antibodies 
primarily use the conformational selection model to recognize Aβ antigens34. However, due to the flexible nature 
of the Aβ-peptide, the effects of binding on the peptide itself must also be considered. Aβ, which favors random 
configurations in solution as shown in Fig. S7A and shown by Baumketner et al.33, clearly prefers a specific con-
formation upon binding (Fig. S7B), which would suggests that the opposite, i.e. solanezumab binding to Aβ, 
is also governed by a conformational selection model. Due to the conformational selection of both molecules, 
each undergoes a major population-shift from a relatively random conformational ensemble to a single, stable 
conformation. With these population-shifts occurring roughly simultaneously, an effect that we dub the mutual 
population-shift is observed, where both molecules impact the dynamics of their reciprocal one (Fig. 3). This 
mutual population-shift also explains their affinity. The two molecules only have few explicit interactions in the 
native bound state (i.e., the strong AspH100-Lys16 salt bridge and the relatively weak pi-interactions of Phe19 
and Phe20 with the antibody, panel 1 in Fig. S3), but they fit together perfectly, with many minor compounding 
enthalpic contributions. In addition, the complex formation shields the residues on the interface, reducing the 
entropic effects of the bulk on both the antibody and the peptide. Combined, they result in both higher stability 
and affinity as both molecules are stabilized towards a single conformation. Finally, their structure and binding 
mechanism also explains the specificity of solanezumab for monomeric Aβ. Only Aβ in its monomeric form can 
sufficiently stabilize solanezumab, as an oligomeric Aβ would not be able to bind sufficiently deep within the 
binding pocket to induce a conformational shift. Furthermore, the fibril structure of Aβ35 forms a β-sheet between 
the chains and would thus prevent both core Phe-residues of the epitope from binding inside their respective deep 
pockets, as they face different directions in that form36.

To date, the molecular recognition between receptor proteins and their ligand has been widely investigated, 
and the binding mechanisms can generally be split into the lock-and-key, induced-fit, and conformational shift 
models as shown in the Introduction section. The recognition becomes more complicated when the size of the 
protein and/or ligand become(s) larger. For example, a blend of conformational selection with the induced-fit 
model explains the binding of ubiquitin37, which has also been found applicable to the interaction between c-Src 
kinase and the small chemical drug Imatinib38. Another example is the mutually induced conformational change 
in both calmodulin and its target proteins, which is required to achieve both high affinity and high specificity39. 
On the other hand, in intrinsically-disordered proteins (IDPs), which bind structured partner molecules, the 
induced-folding, or folding-upon-binding, mechanism is dominant40,41, but combined conformational selection 
with folding-upon-binding was found to direct the redox switch CP1242. In IDPs that do not form ordered com-
plex structures, a fuzzy-complex-formation mechanism is also observed, e.g. between Prothymosin α and its 
partner protein43. Our mutual population-shift model can be added to this list of complex models, where two 
population shift mechanisms are observed as both molecules affect the conformational ensemble of their recip-
rocal one. Thus, our model complements the known binding mechanisms between large molecules and shows a 
novel binding mechanism between antibody and antigen.

In conclusion, our multicanonical docking simulations were able to accurately sample the conformational 
space of solanezumab and Aβ, leading to the natively bound configuration (RMSD = 1.83 Å, R-native = 0.924 
with respect to the experimental structure, Table 1), representative binding pathways and, by virtue of additional 
path sampling simulations, to an accurate estimate of the binding free energy (∆Gb

0 = −15.31 kcal/mol, 
ΔGexp = −16.61 kcal/mol30). The structural analysis on the solanezumab and Aβ conformations sampled during 
the path sampling simulations showed increased dynamics in the unbound and intermediary binding states 
(λ′ = 20 Å and λ′ = 10 Å, respectively, in Fig. 2B), where a variety of partly bound configurations were sampled at 
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relatively low stability and affinity (Fig. 2). Furthermore, our simulations of Aβ in isolation showed that it behaves 
like a disordered peptide (Fig. S7A), as shown by its shallow landscape. Taken together, Aβ-solanezumab binding 
is driven by our novel mutual population-shift model, stabilizing both molecules, which plays a crucial role in 
their specificity as well as their affinity.

Due to the vast conformational space of the binding pathway, such simulations cannot be performed using 
conventional MD simulations and require an enhanced sampling method such as McMD. As we have shown the 
efficacy of our dynamic docking method using increasingly flexible systems starting from small compounds8,13, 
medium-sized compounds14 and now peptide-ligands, our future goals will focus on sampling even larger, more 
complex systems. Similarly, as we focused here on solanezumab, it might also be interesting to investigate whether 
the mutual population-shift model applies to other therapeutic antibody-antigen targets.

Methods
computational system for the dynamic docking. The computational system for the dynamic docking 
was built in a similar way as our previous work13,14. The Aβ peptide complexed with the antibody was taken from 
PDB ID 4xxd36, whose auth_asym_ids (the chain ID in the PDBx/mmCIF notation)44 A, B and C corresponding 
to the VL (light chain), VH (heavy chain) and Aβ were used. The asymmetric unit consists of two biological units, 
where the Aβ molecule in the second unit (consisting of the chain IDs D, E and F) is missing the C-terminal Gly25 
and Ser26 residues. As such, the first biological unit was used. The antibody’s non-Fv (with the Fv being the varia-
ble domain) part of the Fab (antigen binding region), i.e. the C-terminal part of both the VH and VL, was removed 
and replaced with NME-caps. Next, the system was rotated based on its principal axes of inertia, so that the 
Aβ-binding pocket of the antibody became aligned with the yz-plane. Similar to our previous work13,14, we 
applied cylindrical restraints, and since the antibody was pre-aligned with the yz-plane, the cylinder axis λ  was 
set to coincide with the x-axis, as shown in Fig. 1A. The center of the pocket was determined by calculating the 
COM of the antibody residues nearby (within 10 Å) the Aβ peptide, giving a point deep inside the antibody, 
which corresponds to λ = 0 Å. Using this pocket center, a cylinder ranging from λ = 2.5 Å (closer to the surface of 
the pocket) to λ = 30.0 Å (in the bulk region), in combination with a cylinder radius of 4 Å was used during the 
dynamic docking. Here, the position of Aβ in the experimental structure corresponds to λ = 6.6 Å. Harmonic 
restraints on the COM of the Aβ peptide perpendicular (beyond the cutoff radius) and parallel (beyond the cutoff 
range) to the axis λ were set to 1.0 kcal/mol Å−2 and 20.0 kcal/mol Å−2, respectively. To prevent unfolding at high 
temperatures during the McMD based dynamic docking, we employed position restraints similar to our previous 
work13, where we applied restraints on the heavy atoms of the residues located beyond the reach of Aβ restrained 
in the cylinder. Here we have restrained only those residues whose sidechain is completely outside the cutoff 
range, which was defined as 4 Å (cylinder radius) + 9 Å (radius of gyration of Aβ) + 2 Å (buffer region) from the 
axis λ . These non-pocket heavy atoms were then position restrained to their initial structure with a force con-
stant of 1.0 kcal/mol Å−2, and are shown as red in Fig. 1A, while the remaining atoms, particularly the CDR loops, 
remained flexible.

McMD simulations of Aβ in isolation. To study the effect of Aβ in isolation and compare the effect of 
binding to the conformational ensemble, we executed additional McMD simulations of Aβ without solanezumab. 
The Aβ peptide was placed in a dodecahedron box with a diameter of 60 Å, filled with TIP3P waters and 0.1 M 

Figure 3. Schematic representation of the existing population-shift and induced-fit models (top panel) 
and our model, mutual population-shift (bottom panel). For the bottom panel, in the unbound state (left side), 
populations of various conformations of both the protein (R and R‘) and the ligand (L1, L2 and L3) exist. Both 
the protein and the ligand require a specific conformation to bind, which upon attaining those, leads to binding 
(right side) and a population shift of both molecules to R and L2, respectively. The arrows indicate the direction 
of the conformational/configurational change, where the length of the arrow indicates the relative weight.
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of Na and Cl ions and was prepared and executed in a similar manner as the complex system (producing a 
total production run of 2.4 µs). Finally, PCA was performed using the distance matrix of the Aβ Cα atoms and 
Lys16-Nζ, Leu17-Cγ, Phe19-Cζ, Phe20-Cζ, Glu22-Cδ, Asp23-Cγ, Ser26-Oγ, excluding the pairs of ± 3 neigh-
boring residues.

Generating full-length models of Aβ from r1 and r2. To assess the stability of r1 and r2 consider-
ing the full-length sequence, we first generated two full-length initial models of Aβ for both r1 and r2 using 
Modeller45, followed by MD simulations to further refine them. We placed the initial models in a dodecahedron 
box with a diameter of 80 Å with TIP3P waters and 0.1 of Na and Cl ions and performed energy minimization 
and 100 ps of NVT- and NPT-MD simulations. We then performed a 10 ns NVT MD simulation at 400 K, fol-
lowed by 1 ns of annealing to 300 K and finally 89 ns at 300 K to relax each model, where a representative structure 
(nearest-to-average structure over the final 40 ns of the trajectory) was taken for each model. This provided us 
with four final models; two from r1 and two from r2. Then, for each model we performed ten times 100 ns NVT 
MD simulations at both 300 K and 400 K to estimate the stability similar to our previous work31, from which we 
calculated the R-values (with respect to the representative structure of the corresponding model).

Data availability
The representative structures and interactive versions of Figs. 1A, 2C, S3,S5,S6 and Movie S1 have been submitted 
to the Biological Structure Model Archive under BSM-ID BSM00008 (https://bsma.pdbj.org/entry/8).
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