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Abstract

The existence of dynamic cellular phenotypes in changing environmental conditions is of

major interest for cell biologists who aim to understand the mechanism and sequence of

regulation of gene expression. In the context of therapeutic protein production by Chinese

Hamster Ovary (CHO) cells, a detailed temporal understanding of cell‐line behavior and

control is necessary to achieve a more predictable and reliable process performance. Of

particular interest are data on dynamic, temporally resolved transcriptional regulation of

genes in response to altered substrate availability and culture conditions. In this study, the

gene transcription dynamics throughout a 9‐day batch culture of CHO cells was examined

by analyzing histone modifications and gene expression profiles in regular 12‐ and 24‐hr
intervals, respectively. Three levels of regulation were observed: (a) the presence or

absence of DNA methylation in the promoter region provides an ON/OFF switch; (b) a

temporally resolved correlation is observed between the presence of active transcription‐
and promoter‐specific histone marks and the expression level of the respective genes; and

(c) a major mechanism of gene regulation is identified by interaction of coding genes with

long non‐coding RNA (lncRNA), as observed in the regulation of the expression level of

both neighboring coding/lnc gene pairs and of gene pairs where the lncRNA is able to

form RNA–DNA–DNA triplexes. Such triplex‐forming regions were predominantly found

in the promoter or enhancer region of the targeted coding gene. Significantly, the coding

genes with the highest degree of variation in expression during the batch culture are

characterized by a larger number of possible triplex‐forming interactions with

differentially expressed lncRNAs. This indicates a specific role of lncRNA‐triplexes in

enabling rapid and large changes in transcription. A more comprehensive understanding of

these regulatory mechanisms will provide an opportunity for new tools to control cellular

behavior and to engineer enhanced phenotypes.
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1 | INTRODUCTION

Epigenetic modifications and regulations have attracted significant

interest as researchers aim to identify the mechanisms that control

gene expression. So far, most studies have focused on understanding

ON/OFF mechanisms such as the complete silencing of one

X‐chromosome (Brockdorff, 2011), the turning of developmental

switches in embryogenesis (Shi & Wu, 2009), or cell differentiation

along specific tissue lineages (Du et al., 2015). Less attention has

been given to short‐term regulation of gene expression in response

to environmental conditions where the majority of genes are not

turned on or off, but regulated differentially to altered expression

levels that enable cells to handle new conditions (Kuang et al., 2014;

López‐Maury, Marguerat, & Bähler, 2008). Such mechanisms are

likely to be different from ON/OFF mechanisms, but still interesting,

specifically in the context of biopharmaceutical production processes

where the physiological state of cells and their precise gene

expression pattern have implications on bioprocess performance

and product quality of biopharmaceutical proteins (Hsu et al., 2017;

Stolfa et al., 2017; Yusufi et al., 2017).

To align gene expression with developmental or physiological needs,

epigenetic regulators play a central role through short‐term (histone

modifications) or long‐term (DNA methylation) modifications that bring

about conformational changes in chromatin, thus activating or repres-

sing transcription (G. Li & Reinberg, 2011; Saksouk, Simboeck, &

Déjardin, 2015). DNA methylation, based on the conversion of cytosine

to 5‐methylcytosine, tends to inhibit the binding of transcription factors

or recruit repressor proteins at the methylated promoter region

(Moore, Le, & Fan, 2013). Similarly, histone modifications, including

acetylation, methylation, phosphorylation, citrullination, ubiquitination,

SUMOylation, and ADP ribosylation of the histone tails at specific sites,

contol gene transcription by modifying chromatin accessibility. For

example, acetylation neutralizes the positive charge of lysine, thereby

weakening DNA‐histone interactions and increasing DNA accessibility.

Different forms of histone methylations, on the other hand, function

based on the recognition of the position of methylated sites by effector

molecules to activate or repress transcription (Bannister & Kouzarides,

2011). Both, thus, cooperate as regulators of gene transcription by

controlling the interplay of transcription factors and chromatin

modifiers on promoters and enhancers, resulting in changes in

chromatin state. In addition, there has been a rapid increase in studies

that describe transcriptional and posttranscriptional gene regulation by

noncoding RNAs that function either independently or by interacting

with other regulators (Dykes & Emanueli, 2017; Peschansky &

Wahlestedt, 2014; Xu et al., 2017), and act as signals, decoys, guides,

and scaffolds for chromatin modifiers (Marchese & Huarte, 2014; Wang

& Chang, 2011). Together, these complex transcriptional dynamics

result in defined patterns of gene expression and proteomic and

metabolite profiles that determine the phenotype and cell survival. For

instance, Kuang et al. (2014) highlight the precise temporal control of

ribosome biogenesis ensuring the best utility of resources for an

energetically demanding process by just‐in‐time supply within different

phases of the yeast metabolic cycle.

Chinese Hamster Ovary (CHO) cells have been known as

workhorses for the industrial production of recombinant therapeutic

proteins since 1987 (Dorner, Bole, & Kaufman, 1987). Variations in

cellular environment and phenotypes can bring about significant

changes in cell behavior and productivity of producer cell lines

(Pilbrough, Munro, & Gray, 2009). However, very little is known

about the control mechanisms that enable rapid changes in response

to environmental conditions and most transcriptome studies so far

have been comparative, looking at the difference between two states

or defined cell samples, such as high versus low producing cell lines.

In our previous report on genomic and epigenetic variation in CHO

cells (Feichtinger et al., 2016), the overall DNA methylation pattern

of CHO cells was shown to change upon adaptation to different

culture conditions, whereas it remained remarkably constant over

months when the cells were maintained in the same medium. Short‐
term changes in DNA methylation, as observed between exponential

and stationary phase in CHO, were primarily found in regulatory

regions such as enhancers. In addition, the first report of chromatin

states, as defined by combinations of histone marks, was presented

including a temporal pattern and its changes during a batch culture,

however, without association to gene expression patterns. However,

to achieve exquisite control over gene expression in bioprocessing,

an in‐depth understanding of the mechanisms that regulate gene

expression over time is indispensable. Therefore, we here follow up

the previous report with the missing data on the transcriptome and

its changes during the batch culture, with a particular focus on the

correlation between gene expression and regulatory mechanisms.

The resulting resource opens up possibilities both for enhanced

control of cellular phenotypes during bioprocessing as well as the

development of new engineering tools to manipulate cell behavior.

2 | MATERIALS AND METHODS

2.1 | Sample preparation and sequencing

CHO‐K1 cells were thawed Feichtinger et al., 2016) and, after 2 weeks of

recovery, seeded into eight parallel shaker flasks at 2 ×105 cells/ml, in

working volumes of 250ml. The total and viable cell count was analyzed

twice daily with a ViCell (Beckmann Coulter). Samples for ChIP‐seq were

taken every 12hr (1 × 107 viable cells for cell fixation and cell lysis;

1 × 106 cells for magnetic immunoprecipitation), for RNA‐seq every 24hr

(1 × 106 cells into 1ml Trizol), and for whole‐genome bisulfite analysis at

mid‐exponential and mid‐stationary phase (5 × 106 cells for DNA
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isolation; Supporting Information Figure 1). For RNA extraction, the cells

were centrifuged and lysed using TRI reagent (T9424–200 ml; Sigma‐
Aldrich) following the manufacturer's instructions: phase separation was

done by addition of chloroform and the aqueous phase collected. After

precipitation with 2‐propanol and washing with 70% Ethanol, pellets

were air‐dried and resuspended in nuclease‐free water. Libraries for

RNA‐seq were prepared using NEBNext Ultra Directional RNA library

prep Kits (E7420L), starting from total RNA according to the instructions

and analyzed by Illumina HiSeq 2000 PE100 (pair‐end; 100bp read

length). Libraries for ChIP‐seq and bisulfite sequencing were prepared as

described (Feichtinger et al., 2016).

2.2 | RNA‐seq mapping and normalization

RNA‐seq reads were aligned with the GEMTools RNA‐seq pipeline v1.7

(Marco‐Sola, Sammeth, Guigó, & Ribeca, 2012) in three phases: mapping

against the Chinese hamster genome published by Brinkrolf et al.

(2013), against a reference transcriptome and a de novo transcriptome,

generated from the input data to detect new junction sites. After

mapping, all alignments were filtered for a minimum intron length of

20 bp, a maximum exon overlap of 5 bp, and a check against a reference

annotation for consistent pairs and junctions, where both sites align to

the same annotated gene. Mapping statistics and expression quantifica-

tion were calculated by GEMTools “gtfcount,” and expressed genes

were identified based on fragments/counts per million mapped

fragments (FPM/CPM), filtering for rowSums >1 using the DESeq.2 R

package bioconductor‐3.4.1 (Love, Huber, & Anders, 2014). Differential

expression was analyzed by normalizing the raw read count of all time

points (TP) with the library size.

2.3 | New reference gene model built for coding
and noncoding transcribed regions

In view of the draft state of the Chinese Hamster reference genome

and the incomplete annotation of noncoding RNAs, an extended

reference gene model was built (Supporting Information File),

resulting in 25,541 genes with functional annotation (Supporting

Information Tables 1 and 2) and 78,873 noncoding transcribed

regions encoding for 80,973 transcripts, including 51,193 long

noncoding RNAs (lncRNAs) or processed transcripts. Based on the

presence of active chromatin marks and length distribution, 1,528

noncoding genes and 947 protein‐coding genes were annotated with

an unknown function (Supporting Information Table 3).

2.4 | Differential gene expression

The design formula for the samples was created based on the PC

analysis that separated samples from different TP corresponding to

the gene expression values (Supporting Information Figure 2)

considering TP1, TP3, TP5, and TP7 (17–90 hr) as the exponential

phase; TP9 and TP11 (114–138 hr) as the stationary phase; and

TP13, TP15, and TP17 (162–210 hr) as the decline phase. Phase‐wise

comparison was done between exponential and stationary (ES) and

exponential and decline (ED) phases. Differentially expressed genes

were extracted based on DESeq.2 normalized read counts by the

Benjamini–Hochberg method to adjust p values with a threshold of

0.01 and an absolute value of log2 fold change >1.

Gene set enrichment analysis (GSEA) allows computation of

statistical significance of predefined gene sets that share common

biological function, based on a ranked list of differentially expressed

genes observed while comparing two distinct states or phenotypes.

This was performed with the GSEA software (v2.2.4) (Subramanian

et al., 2005) based on DESeq.2 stat (Wald statistic) prerank gene‐list
(Mootha et al., 2003) for phase‐wise comparison analysis. Negative

phenotype corresponds to exponential phase, positive phenotype to

the stationary phase in the ES comparison and the decline phase in the

ED comparison. The differential expression (DE) analysis was done

separately for coding and noncoding transcribed regions. All coding

genes reported as DE from both phase‐wise comparisons were

selected for Fuzzy clustering and Gene Ontology (GO) enrichment

analysis. Gene expression matrix was normalized with the variance

stabilizing transformation (VST) followed by standardization by a gene

with z‐score normalization (x−mean/standard deviation) using the R

clusterSim package v0.45–2 (M. E. Futschik & Kumar, 2017; Lemay

et al., 2013). Clustering was performed with the Mfuzz Bioconductor

package v2.36.0 (Matthias Futschik, 2017) to report four clusters

(Supporting Information Figure 3). GO enrichment analysis was done

with topGO R package v2.24.0 (Adrian Alexa, 2017) for genes with

membership higher than 0.5 in any of the clusters.

2.5 | DNA methylation around transcription
start site

The whole genome bisulfite analysis data published in our previous

report were utilized for this analysis (Feichtinger et al., 2016). The

mean of methylation percentage per CpG was plotted against its

distance from the transcription start site (TSS), filtering CpGs with less

than 10 reads. DNA methylation upstream and downstream of TSS

were assessed for expressed and non‐expressed genes, and for

expressed genes containing active promoter states (states 9 and 10).

For coding genes, 3 kb upstream and downstream of TSS was analyzed.

For noncoding RNAs, considering their shorter length, this was

reduced to 1.5 kb to avoid noise (Supporting Information Figure 4).

The average CpG methylation per position was calculated and fitted

by LOESS smoothing using the default span value of 0.75 with the

stats package from R(v3.3.1).

2.6 | Chromatin state enrichment

As published in Feichtinger et al. (2016), the presence and combination

of 6 histone modification marks (H3K4me1, H3K4me3, H3K9me3,

H3K27me3, H3K36me3, and H3K27ac) can be used to define a

chromatin state model (Ernst & Kellis, 2012) that identifies genomic

regions with deduced promoter, enhancer, repressor, heterochromatin,

and actively transcribed region functionality. Using the overlap

enrichment function of ChromHMMv1.12 (Ernst & Kellis, 2012) based
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on segmentation with the published 11 states model, the enrichment of

each state was computed for a set of external coordinates: differentially

methylated 1 Kb regions between exponential and stationary phase

within batch culture, the genomic region between TSS and transcription

end site (TES) for expressed, and non‐expressed coding genes as well as

non‐coding RNAs.

2.7 | Temporal association of gene expression with
chromatin marks

Genes with active transcription mark (State 4) within their gene body

were identified, and the corresponding coordinates were intersected

for the presence of H3K36me3 peak coordinates as identified from

the MACS2 peak caller (Zhang et al., 2008). Genes containing State 4

and an H3K36me3 peak within the gene body are annotated as

H3K36me‐E4. Similarly, the combination of H3K4me3 peaks with

states 9 or 10 (H3K4me3‐E9,10) and H3K27ac peaks (H3K27c‐
E9,10) was identified around the TSS+/− 500 bp. Considering many

genes of small length, a 500 bp flanking region was used to ensure

capturing a pattern without interference from the neighboring genes.

Changes in expression levels (z‐score of VST normalized values) with

all active transcription marks (z‐score of CPM values) calculated with

the DiffBind R package (Stark & Brown, 2017) were plotted in a

heatmap using ggplot2 (Wickham, 2009). The Pearson correlation

was calculated with the Hmisc R package version 4.0.3 and plotted

with corrplot R package version 0.77 (Wei & Simko, 2017).

2.8 | Interaction analysis for expressed lncRNA
and coding genes

Sequences for all expressed lncRNA and DNA sequences of all coding

genes plus 1.5 kb upstream and downstream of the gene body were

extracted from the genome using samtools version‐1.3.1 (H. Li et al.,

2009). Triplex‐forming oligos in lncRNA transcripts and the corre-

sponding triplex target sites (TTSs) within and around coding genes

were identified using triplexator 1.3.2 (Buske, Bauer, Mattick, &

Bailey, 2012). Interactions were filtered for the presence of purine

motifs with a minimum triplex length of 20 and minimum G

proportion of 50%. An error rate of up to 20% and only two

consecutive errors without low complexity filtering were allowed

(Buske et al., 2012). The output was parsed to extract TTSs

coordinates and unique pairs of interacting lncRNA and coding genes.

2.8.1 | Temporal association of expression levels

Changes in the expression levels of the coding genes in the

neighborhood of DE lncRNAs and triplex‐forming lncRNAs were studied

throughout the batch by identifying all expressed lncRNAs and their

TTSs located within 1.5 kb upstream or downstream of coding genes

and analyzing the probable regulation. Unique interacting lncRNA‐
coding gene pairs were identified and FPM values for lncRNA and

coding genes at all TPs normalized for z‐score within each gene pair.

Trends in the changing expression of each gene are plotted in pair‐wise

heatmaps with the normalized values using the ggplot2 R package

(Wickham, 2009, p. 2), for both neighboring and triplex‐forming gene

pairs individually, separated according to cluster classification of

lncRNAs.

To demonstrate the involvement of lncRNAs in the regulation of the

coding gene expression, the level of triplex‐mediated lncRNA interac-

tions with DE coding genes was compared with that of nondifferentially

expressed (NDE) coding genes. The coordinates of TTSs were extracted

and overlapping coordinates merged to avoid redundancy. The

percentage length covered by TTSs within and around 500 DE coding

genes with maximum fold change and NDE genes with minimum fold

change was plotted in Violin plots showing the distribution of the

percentage with the probability density of data. The correlation

coefficient for changing expression levels across all TPs was calculated

for the interacting gene pairs based on the z‐score normalized FPM

values and filtered for interactions with only DE lncRNAs.

2.8.2 | Localization of interactions

The enrichment of TTSs was analyzed within the published chromatin

states (Feichtinger et al., 2016). The 11 states were merged to

repressed states (states 1 and 3), enhancer states (5, 6, 7, and 8),

promoter states (9, 10, and 11), quiescent (2), and active transcrip-

tion state (4). The lengths of all TTSs (from the nonredundant merged

coordinates) in each state were summed and normalized by the total

length of state within the gene regions under consideration (1.5 kb

upstream and downstream of gene body). The normalized frequen-

cies, ratios of the total count within a chromatin state, and total

length occupied by this state were plotted for all 18 TPs.

2.9 | Quantitative polymerase chain reaction
validation of DE

Isolated RNA (800 ng) was reverse‐transcribed with the High‐Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific) including an

RNase inhibitor. For each sample, a reverse transcription (RT) control

was included, which was treated equally, but without the addition of

reverse transcriptase. The generated complementary DNA samples and

RT controls were 1:4 diluted with nuclease‐free water and analyzed in

quadruplet reverse transcription polymerase chain reaction (RT‐PCR)
reactions of 10 µl with SensiFASTTM SYBR® Hi‐ROX Kit (Meridian

Bioscience). qPCR was performed on a Rotor‐Gene Q (Qiagen, the

Netherlands) and transcript levels determined by the −Δ2 Ct method

against housekeeping genes PLEKHA5 (cgriseus1B003354) and CUL7

(cgriseus1B027447; Livak & Schmittgen, 2001).

3 | RESULTS

3.1 | Transcriptome response of CHO cells during
batch culture

Batch culture is a perfect example for changing conditions, with

significant environmental variation and altered media composition
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during different growth phases (Young, 2013). To address the

phenotype‐relevant changes in gene expression, a high‐resolution
temporal profile of global gene transcription for CHO‐K1 cells was

analyzed by RNA‐seq every 24 hr over 9 days (Supporting Information

Figure 1) and related to previously published changes in the chromatin

state and the global DNA methylation pattern (Feichtinger et al., 2016).

3.1.1 | DE during growth phases

To explore the similarity of the transcriptomes analyzed at different

time‐points, a principal component (PC) analysis was performed over

the expression levels of all expressed coding and noncoding

transcribed regions (Supporting Information Figure 2, Supporting

Information Table 4). A cumulative percentage variance of 94.2% was

accounted for by PC1. No separation across PC1 shows the overall

similarity across all samples. This is not surprising, as 96% of all

expressed genes are constantly expressed. However, PC2, account-

ing for 1.9% of the variability, separates samples into three different

growth phases: exponential, stationary, and decline. We found

14,547 protein‐coding genes to be expressed (rowSums >1), of

which 188 genes were DE (false discovery rate [FDR] < 0.01)

between exponential and stationary phase (ES) and 1,381 between

exponential and decline (ED) phase (Supporting Information Table 5).

In total, 1,397 unique coding genes show DE between growth phases,

comparable with a previous study (Bort et al., 2012). Gene expression

during exponential growth remains surprisingly stable, despite the

already changing environment. During transition into stationary and

decline phase, however, the pattern begins to change.

Using GSEA with default parameters (FDR< 0.25) (GSEA/MSigDB

Team, 2018), 224 gene sets were identified to be enriched in

exponential phase relative to stationary phase (ES; Supporting

Information Table 6a), including growth enhancing pathways such as

glucose transport, cancer‐related, and cell proliferation pathways, such

as TNFR2 and Myc pathways (Martinato, Cesaroni, Amati, & Guccione,

2008; Slavov, Budnik, Schwab, Airoldi, & van Oudenaarden, 2014;

Young, 2013). The Myc pathway constitutes a clear example of growth

regulation and differentiation through chromatin state modification. It

binds to target promoters, modifying chromatin states through the

promotion of hyperacetylation in multiple lysines and contributing to

the regulation of transcription (Martinato et al., 2008). In contrast, 44

gene sets were identified to be enriched in stationary phase relative to

exponential phase, including pathways related to protein degradation

and nitrogen metabolism, lysosome, cell binding, cell signaling, and

remodeling of extracellular matrix. At this stage, cellular homeostasis

and housekeeping processes appear to be enriched, to ensure

prolonged viability in response to altered media composition and lack

of nutrients. Finally, comparing exponential to decline phase (ED), 235

gene sets showed enrichment in exponential phase and 95 gene sets in

the decline phase (Supporting Information Table 6b). Several gene sets

enriched in exponential phase are related to DNA damage and

genomic instability, which are known to be highly prevalent in rapidly

growing cells, such as CHO. The results suggest that diverse

mechanisms for DNA repair and stress response decrease in the

decline phase, possibly leading to a higher rate of genome damage

(Bort et al., 2012). For instance, pathways related to cell cycle

checkpoints appear in the top 20 significant pathways enriched in ED.

Interestingly, lipid metabolism is a major response factor during the

decline phase, indicating the cells' need to activate energy resources.

Table 1 shows a subset of pathways enriched in the different growth

phases (details in SuppTable 6).

3.1.2 | Gene expression clusters

A soft clustering algorithm from the mfuzz R package revealed four

different gene expression profiles for 1,397 DE protein‐coding genes.

PC analysis separated expression profiles during batch culture into

two main groups ‐ Cluster 1 and Cluster 2, 3, and 4 (Figure 1;

Supporting Information Figure 3, Supporting Information Table 7).

The biological role of each cluster of genes was determined by GO

enrichment (Supporting Information Table 8). Cluster 1 is gradually

decreasing in expression from exponential to decline phase, with 706

coding genes. As expected, the majority of these are related to

mitotic cell cycle, chromatin organization, DNA damage/repair, and

RNA biogenesis, all major prerequisites for growth and proliferation.

Clusters 2 (188 genes), 3 (242 genes), and 4 (261 genes) increase in

expression levels from exponential to decline phase, in different

patterns. GO annotation confirms the result from GSEA as the

majority of these upregulated pathways were related to lipid

metabolism, cell homeostasis, cell motility, and extracellular matrix

organization (Supporting Information Table 9). Each cluster was

validated for their temporal expression profile by qRT‐PCR of a

selected number of genes (Supporting Information Figure 5,

Supporting Information Table 10).

3.2 | Mechanism of regulation of coding genes in
response to culture conditions

To understand the mechanism underlying this response in the gene

expression pattern, changes in the major epigenetic regulators

including DNA methylation and histone modification (Kundaje

et al., 2015) were interrogated.

3.2.1 | DNA methylation

Various genome‐wide studies have established the role of DNA

methylation in control of gene expression, according to the location

within the transcriptional unit. Demethylated promoters and methy-

lated gene body have been reported to promote active transcription

(Huang et al., 2015; Jones, 2012), although after nucleosome assembly,

transcription cannot be initiated for genes with methylated CpGs

around the TSS (Hashimshony, Zhang, Keshet, Bustin, & Cedar, 2003;

Jones, 2012; Kass, Landsberger, &Wolffe, 1997). For our data, the DNA

methylation pattern was found to be clearly distinct around TSS for

expressed and nonexpressed genes. As expected (Huang et al., 2015),

we observed extremely low methylation levels for expressed and

complete methylation for nonexpressed genes (Supporting Information
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Figure 6). Consistent with previous reports (Kundaje et al., 2015; Sharp

et al., 2011), the methylation level is noticeably lower around TSS for

genes also bearing active promoter marks for both coding and

noncoding transcribed regions (Supporting Information Figure 6b).

Importantly, modifications of the global DNA methylation pattern

between exponential and stationary phase were observed mostly in

genomic regions with regulatory chromatin states, rather than promoter

marks (Feichtinger et al., 2016), indicating that while DNA methylation

in promoters marks gene expression as “ON” or “OFF,” it is not the rapid

response mechanism for fine‐tuned control of expression level such as is

required for short‐term response during a batch culture.

3.2.2 | Chromatin modifications

Many studies confirm that alterations in histone modifications lead to

changes in chromatin conformation that control gene expression as

and when required (Kuang et al., 2014; López‐Maury et al., 2008).

The PC analysis of histone modifications revealed their continuous

adaptation (Feichtinger et al., 2016), even during exponential phase

where gene expression patterns are very uniform (Figure 1). The 11

chromatin states computed from 6 histone marks (Feichtinger et al.,

2016) allow us to identify the function of genomic regions of concern.

Various categories of genomic regions with different features were

checked for enrichment in these chromatin states. Coordinates for

coding genes were extracted from 2 kb upstream of the TSS to TES

and from only the gene body for noncoding RNAs. For nonexpressed

coding genes, Figure 2a shows high enrichment of repressive and

quiescent chromatin states (H3K9me3 State 1, H3K27me3 State 3,

and quiescent State 2). In contrast, these marks are absent for

expressed genes which are instead enriched for active transcription

and genic enhancer states (states 4 and 5). In addition, enrichment of

chromatin states within differentially methylated regions could help

in understanding the underlying regulatory mechanisms that enable

cells to respond rapidly to environmental conditions. Interestingly, in

the exponential phase, hypermethylated regions are enriched within

genic enhancers, indicating high activity in expression (actively

transcribed regions need to be fully methylated, unlike promoters

that need to be demethylated to be active). In stationary phase, on

the other hand, they are enriched within Polycomb repressed

regions. Also, the differentially methylated regions (either hypo-

methylated or hypermethylated) were found to be enriched within

regulatory elements (chromatin states 5–8) during exponential

phase, which moved to quiescent and repressed regions (chromatin

states 1–3) during stationary phase (Schröder et al., 2017).

3.2.3 | Temporal changes of histone modifications

All DE coding genes were checked for the presence of H3K36me3‐E4
within the gene body and for H3K4me3‐E9,10 and H3K27ac ‐E9,10
peaks around the TSS. Supporting Information Figure 7a shows

significant (p < 0.01) positive correlation between changes in expres-

sion levels and histone modifications for the three active histone

marks, especially in early exponential and decline phases. Figure 2b,c

show continuous adaptation of chromatin modifications with

differential gene expression in the coding gene clusters. The highest

significant (p < 0.01) correlation is observed for H3K36me3‐E4 marks

(Supporting Information Figure 7a). Read distribution for hyperace-

tylation of different phase‐wise comparisons (ES, ED, and SD) shows

F IGURE 1 Expression patterns of differentially expressed protein‐coding gene clusters during batch culture of CHO cells. The y‐axis
represents the z‐score (number of SDEV from the mean). Line colors indicate membership values of each gene ranging from blue (for low
membership <0.5) to red (for high membership >0.5). The top gene ontology terms enriched are tabulated under each cluster with classic Fisher
values. CHO: Chinese Hamster Ovary [Color figure can be viewed at wileyonlinelibrary.com]
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that the genome has more hyperacetylated sites in exponential phase

(Supporting Information Figure 8), which agrees well with the higher

transcriptional changes in this phase (Schröder et al., 2017; Sharp

et al., 2011). Moreover, out of 1,397 DE coding genes, 986 genes had

H3K36me3‐E4 within their gene body, but only 731 had H3K4me3‐
E9,10 and 721 had H3K27ac‐E9,10 around the TSS, and only 647

genes were found to have all three active chromatin marks. Genes

that fall into these groups (all histone marks present, only two, only

F IGURE 2 Regulation of gene expression and histone modifications. (a) Distinct enrichment of chromatin states within expressed and
nonexpressed transcribed regions and differentially methylated regions (DMRs; chromatin states as determined in (Feichtinger et al., 2016)):

between exponential and stationary growth, well‐defined shifts in enrichment of active (states 4 and 5) and repressive (states 1, 2, and 3)
chromatin states within expressed and nonexpressed genes, respectively. Interestingly, enrichment of DMRs shifts from the genic enhancers in the
exponential phase to the repressive states in stationary phase. (b) Changing enrichment of chromatin states with gene expression throughout the
batch culture on the example of one gene (TSS–TES) from each cluster of the DE coding genes. Changes in the levels of enrichment of chromatin

states (particularly active transcription state: yellow) follow the same trend as the expression in the cluster to which the gene belongs. (c) Temporal
association of gene expression with individual chromatin marks— H3K36me3, H3K4me3, and H3K27ac for DE coding genes. Levels of individual
active chromatin marks (green, violet, and blue) also show the same trend as transcript expression levels (red). (d) Distribution of fold changes of

DE genes that bear individual active chromatin marks—H3K36me3, H3K4me3, and H3K27ac or combinations thereof (Unfilled black dot marks–
distribution mean; filled red dot marks–distribution median). Fold change distribution for genes carrying all three active histone marks is towards
negative, depicting higher expression in the exponential stage, while for genes carrying combinations of two marks, the distribution median is

towards positive, indicating upregulation in late culture stages. However, the genes carrying none of these histone marks, at any time point
throughout the batch, seem to have the highest fold change distribution, with a tendency towards upregulation in late culture phases. DE:
differential expression; TES: transcription end site; TSS: transcription start site [Color figure can be viewed at wileyonlinelibrary.com]
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one, and none) have distinctly different patterns of regulation over

the culture (Figure 2d): those genes that bear all three histone marks

mostly decrease expression level towards the end of the batch, those

that bear only one or two respective marks are modestly upregulated

and, most interestingly, those that bear no histone marks have the

highest fold changes.

3.3 | Long noncoding transcripts and their potential
function in rapid response

As per the deduced annotation from the transcript assembly using the

RNA‐Seq data, 74% of the annotated Chinese Hamster genes encode

for noncoding RNAs, 62% of these are lncRNAs or processed

transcripts. Around three times more noncoding transcribed genes

(42,177) in comparison to protein‐coding ones were found to be

expressed (rowSums >1). Such a high number suggests an important

role in regulation. However, overall expression levels of noncoding

RNAs were found to be much lower than that of protein‐coding genes

(Supporting Information Figure 9). All expressed lncRNA genes were

checked for homology against the 279 lncRNAs reported with known

function in lncRNAdb, using default parameters from BLAST. We

found 2,565 lncRNAs to have homology with only 56 lncRNAs in

lncRNAdb, with alignment length ranging from 28 to 4,049 nucleotides

and a minimum percentage identity of 71.35%. Such an overall low

count of lncRNAs with known function shows the necessity of a better

understanding of the functional relevance of these abundant

regulators. Gene expression profiling and in situ hybridization provide

various evidence that lncRNA expression is differentially regulated

spatially, temporally or in response to stimuli (Derrien et al., 2012). DE

analysis over the three growth phases (FDR < 0.01) reported 456

noncoding RNAs DE between exponential vs stationary phase and

2,863 DE between exponential vs decline phase (Supporting Informa-

tion Table 11). In total, 2,899 unique noncoding RNAs show DE, 94%

of which are lncRNAs. Clustering of DE noncoding RNAs reported four

trends (Figure 3a; Supporting Information Table 12). As with the

coding genes, the genomic region around TSS was found to be

demethylated for expressed and methylated for silenced genes

(Supporting Information Figure 6). Correlations of changes in lncRNA

expression and histone modifications across the batch are presented

in Figure 3b. While 583 lncRNAs had H3K36me3‐E4 within the gene

body, 791 had H3K27ac‐E9,10 and 829 H3K4me3‐E9,10 around the

TSS. All three active transcription marks were found only on 108

differentially expressed lncRNAs and plotted with expression levels

for each cluster (Figure 3b). Although the trend of active transcription

mark (H3K36me3) shows a highly significant (p < 0.01) correlation

(Supporting Information Figure 7b) with expression levels, the trends

for promoter marks (H3K4me3 and H3K27ac) behave noisy (Figure

3b; Supporting Information Figure 7b).

3.3.1 | DE lncRNAs and their impact on neighboring
coding genes

To investigate the association of expression levels between pairs of

lncRNAs and neighboring coding genes, expression levels were plotted

F IGURE 3 Expression patterns of differentially expressed noncoding RNA clusters during batch culture of CHO cells. (a) Clusters of
differentially expressed noncoding RNAs during batch culture of CHO cells. (b) Temporal association of expression levels with chromatin
marks—H3K36me3, H3K4me3, and H3K27ac for DE lncRNAs. Similar to Figure 2c for coding genes, the levels of active histone marks follow

the same trend as expression levels of noncoding RNAs. CHO: Chinese Hamster Ovary; DE: differential expression; lncRNAs: long noncoding
RNAs [Color figure can be viewed at wileyonlinelibrary.com]
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for those lncRNA‐coding gene pairs where a DE lncRNA was found

within 1.5 kb distance upstream or downstream of the coding gene

body (Supporting Information Table 13). To analyze the trend, this list

of 387 DE lncRNAs was separated according to the lncRNA clusters.

As expected, Figure 4 shows that gene expressions are both positively

as well as negatively correlated. The positive correlation could be due

to sharing the same transcriptional machinery in neighboring

chromatin domains or to a potential role of cis‐regulation of lncRNAs

to the neighboring coding genes. Negative correlation, as proven in a

number of studies, points towards transcriptional repression of coding

genes by the expressed lncRNAs in cis. Moreover, it is interesting to

note that despite selecting all 14,157 expressed coding genes, the

transcriptional pattern of coding genes for each gene pair with a DE

lncRNA is never stable. Instead, the expression levels for coding genes

mostly changes at the same TP when lncRNA expression begins to

change. Such a pattern hints towards lncRNAs being strongly involved

in regulating their neighboring genes. Corresponding patterns for

these pairs filtered for significantly DE coding genes are shown in

Supporting Information Figure 10a.

3.3.2 | Interacting pairs of DE lncRNA and distant
coding genes

While many studies report co‐expression and localization in

promoter regions as the mechanism for cis‐acting lncRNAs, a trans‐
mode of action has long been known, but its mechanism is not yet

F IGURE 4 Temporal association of expression levels within neighboring lncRNA‐coding gene pairs (DE lncRNA, all coding genes).

Heatmap displays trends of lncRNA expression within 1.5 kb distance upstream or downstream of a coding gene to observe the plausible role
of lncRNA in regulating expression of the neighboring coding gene. Interestingly, the expression levels of coding genes (right panels)
neighboring a DE lncRNA (left panels), shifts from high to low or vice‐versa around the same time as the expression of the lncRNA in either

positive (plausibly enhancing transcription) or negative (plausibly repressing transcription) correlation. DE: differential expression;
lncRNAs: long noncoding RNAs [Color figure can be viewed at wileyonlinelibrary.com]
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well established. The homologous base pairing has been suggested as

the general mechanism for posttranscriptional regulation by trans‐
acting lncRNAs to gain locus specificity. Recent studies also report

the presence of RNA–DNA triplex formation in the regulatory

regions, and propose it as a plausible mechanism for the interaction

of lncRNAs with coding genes (Jalali, Singh, Maiti, & Scaria, 2017;

Mondal et al., 2015, p. 3). To investigate this, plausible triplex forming

interaction sites between lncRNA transcript sequences and DNA

sequences of coding genes (1.5 kb upstream and downstream TSS)

were estimated using triplexator. Of 41,171 lncRNAs or processed

transcripts, 24,171 were found to interact with 14,460 coding genes

through 33,154,067 unique interactions in total. Frequency distribu-

tion of unique interacting targets for each such noncoding RNA

showed that most noncoding RNAs have few target coding genes

and few lncRNAs have many target coding genes (Supporting

Information Figure 11). This information can be used to estimate

essentiality of lncRNAs for cell viability based on the number of

interactions (Peláez & Carthew, 2012; Reinhart et al., 2000). To

verify the temporal association of expression levels between

interacting gene pairs, the changes in expression values for a subset

of such lncRNA‐coding gene pairs (where interacting genes are

annotated on the same scaffold) were plotted side‐by‐side (Figure 5a;

Supporting Information Figure 10b, Supporting Information Table

14). Most pairs were found to be either positively or negatively

correlated with the trend of coding gene expression changing exactly

around the time‐point for change in expression of lncRNA, as

observed in the case of neighboring genes irrespective of predicted

interaction (Figure 4). Interestingly, there is a bias of lncRNA

interactions within the 500 genes having maximum and minimum

fold change during the batch culture based on percentage length of

F IGURE 5 Regulation of coding gene expression by lncRNAs. (a) Correlation of expression levels within a subset of interacting
lncRNA‐coding gene pairs on the same scaffolds (DE lncRNA, all coding genes). Expression levels of coding genes in triplex forming

lncRNA‐coding gene pairs are never stable when the interacting lncRNA is DE. (b) Frequency distribution of percentage length covered by TTSs
within 1.5 kb upstream TSS and 1.5 kb downstream TES for the 500 genes with the highest and the lowest fold change during the culture,
respectively. Genes with higher log2 fold change have a higher number of triplex interactions than those with low log2 fold change.

(c) Comparison of density distribution for correlation coefficient of complete interactome with all lncRNAs (red) and only DE lncRNAs (blue).
The distribution peak of “All lncRNAs” (red) (i.e. DE+non‐DE) at correlation = 0.0 shows a normal distribution, whereas the expression of the
majority of DE lncRNAs (at 1.0) correlates to the expression of the targeted coding genes, either positively or negatively. This observation hints
towards the importance of lncRNA expression in regulating coding gene expression. DE: differential expression; lncRNA: long noncoding RNA;

TES: transcription end site; TSS: transcription start site; TTSs: triplex target sites [Color figure can be viewed at wileyonlinelibrary.com]
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gene covered by estimated interaction sites (Figure 5b): although

there is considerable overlap, the mean of the distribution with

maximum fold change was found to be significantly greater than the

mean for distribution with minimum fold change. This would imply

that DE coding genes with the highest rate of change in expression

level over the batch culture have more triplex‐target sites around

them, indicating the possible causality of high DE by triplex‐forming

lncRNAs. Moreover, while the density distribution peak for the

correlation coefficient of interacting lncRNA‐coding gene pairs is

near 0 when all lncRNAs are taken into account, the distribution

shifts to bimodal (dropping at 0) with peaks in extremes, when the list

is filtered for DE lncRNAs (Figure 6c). This indicates that the

probability of expecting an influence on expression levels of coding

genes is higher with DE interacting lncRNAs than with NDE

interacting lncRNAs. Taken together, DE of lncRNAs can be clearly

associated with the temporal regulation of coding gene expression.

3.3.3 | Localization of interactions

The interplay of lncRNA with transcription factors and chromatin

modifiers in and around the coding genes has been widely

reported. Chromatin‐enriched RNAs specifically bound to regions

marked with active chromatin marks (H3K4me1, H3K4me3, and

H3K27ac) and RNAPII were observed by the GRID‐Seq method (X.

Li et al., 2017). A genome‐wide RNA‐chromatin interactome by

GRID‐Seq also reported enrichment of RNA‐interactions on active

promoters and enhancers. Mondal et al. (2015) showed that MEG3

lncRNA regulates the TGF‐β pathway by RNA–DNA–DNA triplex

formations. Recently Jalali et al. (2017) also reported genome‐
wide enrichment of RNA–DNA–DNA TTSs in promoter regions of

the human genome. To further investigate such interaction

localizations in our data, enrichment of triplex‐target sites was

analyzed within the previously published chromatin states (Sup-

porting Information Table 15). As expected, it was observed that

interaction sites were mostly localized within regulatory regions,

especially promoter regions, rather than the highly prevalent

quiescent regions or actively transcribed regions marking the gene

body (Figure 6). The wide range shown by enrichment within

repressor marks at different TP could be due to the fact that

genome‐wide localization of these states was found in very short

spans of just 200 nucleotides in most cases, which may have led to

noisy results. On the other hand, the detection of triplex‐target
sites within such short spans is indicative for the bias of

enrichment within regulatory regions and confirms the report

from Mondal et al. (2015) that describes the targeting mechanism

of repressive chromatin associated lncRNAs.

3.3.4 | Evaluation of lncRNA gene targets

The well‐characterized lncRNAs‐MALAT1 (metastasis‐associated
lung adenocarcinoma transcript 1) and NEAT1 (nuclear enriched

abundant transcript 1) were selected to evaluate the gene targets

reported in our interaction list reporting triplex forming lncRNA‐
coding gene pairs. MALAT1 has been reported to regulate gene sets

associated with cellular proliferation, localization, apoptosis, and

metabolic processes and thereby plays an important role in

F IGURE 6 Localization of triplex interaction sites in different chromatin states. (a) Line plot reporting localization of triplex‐forming interaction sites
throughout the batch culture, color‐coded for different chromatin states. (b) Boxplot showing frequency range of interaction sites within different

chromatin states across all time points. The figure clearly shows enrichment of interaction sites within regulatory regions of coding genes, particularly the
promoter and enhancer regions, hinting towards a regulatory function of lncRNAs in these gene pairs and their involvement in controlling the expression
of the corresponding coding genes. lncRNAs: long noncoding RNAs; TP: time point [Color figure can be viewed at wileyonlinelibrary.com]
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tumorigenesis (Liu et al., 2017). It is localized to serine and arginine‐
rich splicing factors (nuclear speckles). NEAT1 forms paraspeckles

with its loci adjacent to MALAT1. Similar to MALAT1, NEAT1 is also

reported to be a transcriptional regulator of various genes involved

in cancer progression.

Homologues of MALAT1 (cgriseus1ncB038456) and NEAT1

(cgriseus1ncB038466) were highly upregulated in the later culture

phases as compared with the early exponential phase. The coding

gene pairs were extracted for these lncRNAs from our interaction

list, and KEGG pathway enrichment was performed individually for

coding genes corresponding to MALAT1 and NEAT1 homologues

(Supporting Information Table 16). As shown in Supporting Informa-

tion Figure 12, all the pathways enriched in our gene lists seem to be

highly representative of the functional roles associated with MALAT1

and NEAT1. In addition, a recently developed technology—Capture

Hybridization Analysis of RNA Targets (CHART)—was utilized by

West J. A. et al to identify the genomic binding sites for NEAT1 and

MALAT1 lncRNAs in human cell lines. Performing proteomic analysis

over CHART‐enriched material (CHART‐MS), the authors reported

proteins associated with NEAT1 and MALAT1 in vivo. Of the 885

genes reported by CHART‐MS, 727 genes were found to be

expressed in our cell lines, and 65% of those were also identified in

our triplex forming gene pairs corresponding to MALAT1 and NEAT1.

In addition, a comprehensive review published recently describes

MALAT1 as highly associated with human cancers and presents a list

of 28 genes that regulate the expression of MALAT1 during

transcriptional and posttranscriptional processing (Zhao et al.,

2018). Amongst the listed genes, one was not found annotated for

Chinese Hamster and one not expressed in our cell lines, however, 18

coding genes of the remaining were identified to have lncRNA TTSs

within or around their gene body. Hence, the here reported triplex

mediated interaction list could be highly useful in regulating certain

pathways or gene sets of interest by controlling the expression of the

associated lncRNAs.

4 | DISCUSSION

A plethora of studies have reported dynamic changes in chromatin

conformation to be associated with transcription factor binding and

subsequent RNA expression (Koike et al., 2012; Kuang et al., 2014).

However, there has been a dearth of high‐resolution temporal

analysis correlating gene expression in response to environmental

rather than developmental signals to all the major pillars of

epigenetic regulation (Bar‐Joseph, Gitter, & Simon, 2012; Kundaje

et al., 2015). This report presents a comprehensive high‐resolution
view of transcription profile in different phases of a CHO cell batch

culture along with the on‐going cross‐talk with DNA methylation,

histone modifications and noncoding RNA interaction.

The dynamic response of cells to a changing environment and

the continuous adaptation of their gene expression pattern are

reflected in the gene expression clusters analyzed and the

corresponding pathways that change as cells respond. The

metabolic shift between culture phases demonstrates the dynamic

response of cells and the continuous adaptation of the gene

expression pattern to the changing environmental conditions

(depletion of substrates and accumulation of waste metabolites).

Due to the high resolution of closely spaced analysis TPs, transient

changes in expression and regulatory interactions could be

captured. We could show a clear association of the major

epigenetic marks with the expression levels of both protein‐
coding and noncoding genes. While the enrichment or depletion of

DNA methylation around the TSS determines whether a gene is

actively transcribed or not, functioning as an ON/OFF switch, the

effect is more pronounced in the presence of active promoter

states (Supporting Information Figure 6). The second major

determinant for the level of gene expression was the presence of

an active transcription state mark on gene bodies decorated by

H3K36me3, where a strong correlation between the trend in

levels of active histone marks and expression levels across

different TPs of the batch culture was observed (Figure 2).

Notably, for the genes with the highest fold change, the presence

of activating histone marks is less pronounced but is compensated

for by a higher frequency of triplex‐forming target sites of DE

noncoding RNAs. These appear to enable a more rapid and more

pronounced regulation of gene expression that is possibly also

more short‐lived. The global RNA‐chromatin interactome revealed

by the GRID‐Seq technology (X. Li et al., 2017) and potential RNA–

DNA–DNA triplex mediated lncRNA interactions predicted in the

human genome (Jalali et al., 2017) confirm these findings, as also

evaluated in detail on the example of the well studied lncRNAs‐
MALAT1 and NEAT1. The fact that these interactions are

predominantly observed in promoter regions strongly supports

their regulatory role.

The deduced cross‐talk between the key epigenetic regulators

with direct impact on the expression of protein‐coding genes

provides a wealth of information on the cellular demands for

sustenance under changing conditions. This study reveals different

mechanisms of response and dynamics that provide cells with the

tools to handle and adapt to both short‐term and long‐term changes

by different, but interacting mechanisms. These mechanisms include:

(a) ON/OFF mechanisms such as CpG island methylation in promoter

regions, (b) the staged presence of activating and repressing histone

marks that enable either stable expression or moderate upregulation

or downregulation, and (c) the overlay of noncoding RNA regulation,

that enables rapid and possibly transient DE to higher degrees.

Further studies to obtain a more detailed understanding of how

these regulatory mechanisms determine process behavior of cells

and their ability to adapt to a variety of culture conditions will also

increase our ability to control and manipulate gene expression

towards more reliable process performance and outcome.

As an example, the pathway analysis over time of genes that are

DE during stationary and decline phase indicates the struggle of cells

to maintain homeostasis. These results might be used to understand

the changes in product quality or productivity during late production

process stages and indicate alleviatory feeding strategies, to ensure

HERNANDEZ ET AL. | 689



proper processing of the product. For instance, in the context of the

cells, it makes sense to mobilize lipids under nutrient limitation and

to initiate degradation of dispensable cellular components (as

observed in the upregulation of lysosome and lipid metabolism),

however, for protein production, lipids are essential as they are

required for the generation of organelles, such as the endoplasmic

reticulum and the Golgi, which are known to be bottlenecks of

secretion. Likewise, the fact that “galactose metabolism” pops up as

DE in the decline phase is critical as galactose is an important sugar

required for proper glycoprocessing and thus the quality of the

product.

For cell engineering approaches, the observed rapid response

mechanism and control over gene expression levels exerted by lncRNAs

also opens up the opportunity for completely new, so far unused tools

for manipulating gene expression. Similar to microRNA (miRNA)

engineering approaches, where the aim was to target the translation

of multiple genes without burdening the overall protein production

capacity of a cell, lncRNAs are no burden on the translational machinery

and could be used to control gene transcription of target genes rather

than their translation, thus intervening at an even earlier stage. While

miRNAs can reduce translation of their target, engineering by lncRNAs

could also be used to enhance transcription of individual genes, such as

the product gene, an approach that has already been shown to work at

the level of mRNA translation using lncRNAs (Takahashi et al., 2018).

Speculatively, and excitingly, one could reach a level of understanding

that allows control of entire phenotypes—which are determined by

transcriptome patterns—by targeting multiple genes in a pathway

without interfering with their genomic sequence or context by

introducing lncRNAs designed to manipulate their expression patterns.

This would be of interest particularly for controlling the precise

expression level of a gene rather than turning it off or overexpressing it

to a high level.

In conclusion, our report presents plausible mechanisms of

regulation of gene expression in cells, from an ON/OFF switch, to

mechanisms controlling constitutive gene expression, to such that

determine changes in the level of gene expression in response to

altered nutrient supply and waste accumulation as observed during a

batch culture. A more detailed understanding of these mechanisms

and cellular response to culture conditions will enable enhanced

process control for bioproduction and innovative approaches for cell

engineering and optimization.
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