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Rumen fermentation affects ruminants productivity and the environmental impact of
ruminant production. The release to the atmosphere of methane produced in the
rumen is a loss of energy and a cause of climate change, and the profile of
volatile fatty acids produced in the rumen affects the post-absorptive metabolism
of the host animal. Rumen fermentation is shaped by intracellular and intercellular
flows of metabolic hydrogen centered on the production, interspecies transfer, and
incorporation of dihydrogen into competing pathways. Factors that affect the growth
of methanogens and the rate of feed fermentation impact dihydrogen concentration in
the rumen, which in turn controls the balance between pathways that produce and
incorporate metabolic hydrogen, determining methane production and the profile of
volatile fatty acids. A basic kinetic model of competition for dihydrogen is presented,
and possibilities for intervention to redirect metabolic hydrogen from methanogenesis
toward alternative useful electron sinks are discussed. The flows of metabolic hydrogen
toward nutritionally beneficial sinks could be enhanced by adding to the rumen
fermentation electron acceptors or direct fed microbials. It is proposed to screen
hydrogenotrophs for dihydrogen thresholds and affinities, as well as identifying and
studying microorganisms that produce and utilize intercellular electron carriers other
than dihydrogen. These approaches can allow identifying potential microbial additives
to compete with methanogens for metabolic hydrogen. The combination of adequate
microbial additives or electron acceptors with inhibitors of methanogenesis can be
effective approaches to decrease methane production and simultaneously redirect
metabolic hydrogen toward end products of fermentation with a nutritional value for
the host animal. The design of strategies to redirect metabolic hydrogen from methane
to other sinks should be based on knowledge of the physicochemical control of
rumen fermentation pathways. The application of new –omics techniques together
with classical biochemistry methods and mechanistic modeling can lead to exciting
developments in the understanding and manipulation of the flows of metabolic hydrogen
in rumen fermentation.
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INTRODUCTION

The complex microbial community that inhabits the rumen
allows ruminants to digest and transform fibrous carbohydrates
unavailable to humans into useful products such as meat, milk,
wool and traction. Critical to the symbiosis between the rumen
microbiota and the host animal is the anaerobic condition of the
rumen, which prevents the complete oxidation of carbohydrates
to carbon dioxide (CO2) and water. Instead, carbohydrates are
incompletely oxidized to volatile fatty acids (VFA) and gases, with
the host animal absorbing and utilizing the VFA as sources and
precursors of energy, fat, glucose, and non-essential amino acids
(Armstrong and Blaxter, 1957).

Rumen fermentation not only provides the ruminant with
VFA. Part of the negative Gibbs energy change (1G) associated
with fermentation is used by rumen microbes to generate ATP
that can be utilized for microbial growth, active transport of
substrates, and motility. Microbial growth produces microbial
protein, which is the principal (Wallace et al., 1997) and
most economical source of amino acids for ruminants. Rumen
microorganisms can also synthesize water-soluble vitamins,
which thus do not need to be included in most ruminants diets
(Weiss, 2017).

A product of rumen fermentation is methane (CH4), which
is a potent greenhouse gas when released to the atmosphere,
and also a loss of energy for ruminants (Eckard et al., 2010;
Martin et al., 2010). Through the formation of CH4 and the
profile of VFA produced, rumen fermentation has important
consequences for animal productivity and the environment.
Understanding how rumen fermentation is controlled can help
designing strategies to manipulate it in desired directions. Central
to rumen metabolism are the dynamics of metabolic hydrogen
([H]) production and utilization. The idea of understanding
rumen energy metabolism as [H] flows through different
biochemical pathways is not new (Czerkawski, 1986; Hegarty
and Gerdes, 1999). The objectives of this paper are to review
and critically examine [H] flows as the unifying principle
to understand rumen fermentation. In particular, this paper
will discuss (i) The control of the VFA profile and CH4
production by dihydrogen (H2), (ii) The principles underlying
the competition for H2, (iii) The potential inhibitory effects
of H2 and other intercellular electron (e−) carriers on the
rates of fermentation and digestion in the rumen, and (iv)
The relationship between the flows of [H] and microbial
growth. All of these aspects have implications to animal
productivity and the environment mediated by ruminal and
post-absorptive metabolism.

BACKGROUND

Definitions
The terms in the following list are in some cases defined bearing
in mind their main significance with regard to rumen energy
metabolism, acknowledging that other aspects might be more
important in other areas of science.

Electron (e−) – a negatively charged sub-atomic particle.

Redox reaction – a chemical reaction involving an exchange
of one or more e− between two chemical compounds, an e−
donor and an e− acceptor.

Reducing potential (Eh) – a measure of the tendency of a
chemical compound or a system to donate e− under certain
defined conditions.

Proton (p+ or H+) – a positively charged sub-atomic particle
released by acids in aqueous solutions.

Metabolic hydrogen ([H]) – the sum of all hydrogen atoms
that can be exchanged between molecules in a living cell or a
microbial ecosystem, or any other defined living system.

Redox cofactors – intracellular molecules that act as
e− acceptors and donors in redox reactions to transfer
e− between metabolic intermediates. Redox cofactors have,
therefore, different oxidation stages, for example: reduced and
oxidized nicotinamide adenine dinucleotide (NADH and NAD+,
respectively), reduced and oxidized ferredoxin (Fdred

2− and
Fdox, respectively), reduced, semi-reduced and oxidized flavin
mononucleotide (FMNH2, FMNH and FMN, respectively),
reduced and oxidized flavin adenine dinucleotide (FADH2 and
FAD, respectively), and reduced and oxidized tocopherols. Some
cofactors accept and donate pairs of e− (e.g., ferredoxin),
others accept and donate pairs of hydrogen atoms (H = 1
e− + 1 H+, e.g., FAD), or one hydrogen atom (e.g., tocopherols).
The NADH/NAD+ pair accepts and donates two e− per H+:
NAD+ + [2H]↔ NADH+H+, with [2H] = 2 H+ + 2 e−.

Fermentation – an incomplete oxidation in which the
ultimate e− acceptors are carbon compounds produced in
the process itself.

Metabolic hydrogen production (or release) – the transfer of
[H] from e− donors that are metabolic intermediates to oxidized
intracellular cofactors.

Metabolic hydrogen incorporation – the transfer of
[H] from reduced intracellular cofactors to e− acceptors
intermediate in metabolism.

Metabolic hydrogen sink (or electron sink) – reduced end
product of fermentation whose pathway of formation involves
reactions that incorporate [H]. Note that some [H] sinks are
not net [H] sinks in the sense that their production involves
greater [H] production than incorporation, e.g., the production
of butyrate from hexoses.

Reducing equivalents pairs ([2H]) – a pair of hydrogen
atoms, or a mole of hydrogen atom pairs, produced or
incorporated in a metabolic reaction or pathway. This concept
is used to quantify [H] transactions as [2H] production and
[2H] incorporation.

Hydrogenases – enzymes that catalyze: (i) The formation
of H2 from e− donated by reduced intracellular cofactors
(H2-evolving hydrogenases), and/or (ii) The reduction of an
intracellular cofactor by H2 (H2-incorporating hydrogenases).

Interspecies hydrogen transfer – process in which H2
produced and released by a microbial cell is incorporated
by another microbial cell. Interspecies H2 transfer decreases
H2 concentration in the proximity of the H2-producing cell,
thermodynamically favoring H2 production.

Intercellular electron carriers – reduced compounds
intermediate of fermentation pathways that incorporate
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[H] in their formation, and are released by some microbial
cells and taken up by others e.g., H2, formate, ethanol,
lactate and succinate.

Substrate level phosphorylation – generation of ATP in
which a phosphate group is donated by a phosphorylated organic
compound to phosphorylate ADP to ATP.

Electron transport-linked phosphorylation (ETLP) –
generation of ATP from ADP and phosphate driven by a
transmembrane electrochemical gradient of H+ or sodium
cations. The electrochemical gradient is created by the extrusion
of H+ or sodium cations of the microbial cell, which is in turn
coupled to an intracellular redox reaction.

Carbohydrate Metabolism and
Production of Volatile Fatty Acids
Living organisms can generate energy for anabolic functions
through thermodynamically favorable flows of [H]. In anaerobic
environments such as the rumen, the main e− acceptors are
carbon compounds generated in the fermentation process itself,
with methanogenesis being the most important [H] disposal
pathway. The main pathways of carbohydrate fermentation in
the rumen have been reviewed and investigated by Russell and
Wallace (1997), Russell (2002), and Hackmann et al. (2017),
and the reader is referred to those scientific papers for detailed
information. The focus in this subsection will be on reactions
central to [H] transfer, and their implications with regard to
the balance of [2H] production and incorporation of each
fermentation pathway.

It is understood that the mixed rumen microbiota metabolizes
over 90% of hexoses (in turn released from the hydrolysis
of complex carbohydrates such as cellulose and starch) to
pyruvate through the glycolytic pathway. Pyruvate (and also
phosphoenolpyruvate in propionate production) is a central
branching point at which the different pathways leading to
the formation of the three main VFA, acetate, propionate and
butyrate, diverge (Russell and Wallace, 1997; Figure 1). Recently,
Hackmann et al. (2017) examined complete genomes of various
rumen bacteria that have been isolated and grown in pure culture,
and found that several bacterial species encoded for incomplete
glycolytic pathways as well as several alternative pathways of
carbohydrate metabolism, such as the Bifidobacterium pathway.

Hemicelluloses are also abundant as plant structural
carbohydrates, and are rich in pentoses such as xylose and
arabinose (Scheller and Ulvskov, 2010). In the rumen, pentoses
are metabolized through the pentose cycle and to a lesser extent
through the transketolase cleavage (Russell and Wallace, 1997).
This results in the production of glyceraldehyde-3-phosphate
and fructose 6-phosphate, which can enter glycolysis, of acetyl-
phosphate, which can be converted to acetate, and of ribose
5-phosphate, which can be used to synthesize nucleotides and
histidine (Voet and Voet, 1995; Figure 1).

Glycolysis involves the oxidation of glyceraldehyde-3-
phosphate to 1,3-biphosphoglycerate coupled to the reduction of
NAD+ to NADH (Voet and Voet, 1995). Metabolic hydrogen is
also produced in the first step of acetate and butyrate production,
the oxidative decarboxylation of pyruvate to acetyl-CoA

(Figure 2). Depending on the hydrogenase catalyzing pyruvate
decarboxylation, [H] can reduce Fdox to Fdred

2, or CO2 to
formate (Russell and Wallace, 1997; Hegarty and Gerdes, 1999;
Russell, 2002). Ferredoxins (see section “Definitions”) are iron
sulfur proteins that act as e− carriers through the reduction of
one iron atom per iron sulfur cluster: 2 Fe2+

+ 2 Fe3+ (oxidized
form)+ e−→ 3 Fe2+

+ Fe3+ (reduced form) (Gottschalk, 1986).
For metabolism of carbohydrates to continue, reduced

cofactors need to be re-oxidized (Wolin et al., 1997).
Hydrogenases transfer e− from reduced cofactors to H+,
forming H2 (Frei, 2013; Figure 2). Dihydrogen does not
accumulate in the rumen, as it is transferred from the rumen
consortium of bacteria, protozoa and fungi to methanogens
(Janssen, 2010). Hydrogenases also catalyze the uptake and
incorporation of H2 by methanogens and other hydrogenotrophs
(Frey, 2002; Søndergaard et al., 2016). Apart from H2, rumen
methanogens and other hydrogenotrophs can also use as [H]
donors other intercellular e− carriers such as formate, methanol,
ethanol and methylamines (Asanuma et al., 1999; St-Pierre et al.,
2015; Patra et al., 2017).

Electrons in reduced cofactors or in H2 or formate can also
be disposed through their incorporation into pathways other
than methanogenesis (Figure 2). In the randomizing pathway
of propionate formation (so called because carbon labeled in
position 2 of pyruvate is randomized to positions 2 and 3
of succinate), [H] donated by H2, formate, NADH or lactate
is incorporated in the reductions of oxaloacetate to malate
and fumarate to succinate (Henderson, 1980; Gottschalk, 1986;
Russell and Wallace, 1997; Asanuma et al., 1999). The reduction
of fumarate to succinate is coupled to ETLP (De Vries et al.,
1973; Gottschalk, 1986; Kröger et al., 2002). Succinate can be
metabolized to propionate by the succinate producer itself or
it can be transferred to succinate utilizers as an intercellular
e− carrier.

Lactate is an intermediate in the non-randomizing pathway
of propionate formation (so called because carbon labeled in
position 2 in pyruvate appears in position 2 in propionate).
Lactate is formed from the reduction of pyruvate with [H]
donated by NADH. Lactate can be intracellularly activated to
lactyl-CoA, which is then dehydrated to acrylyl-CoA. Acrylyl-
CoA is then reduced to propionyl-CoA with reduced flavoprotein
(Gottschalk, 1986) or NADH (Hackmann et al., 2017) as [H]
donor, in a reaction that has not been found to be coupled
with ATP generation through ETLP (Thauer et al., 1977; Seeliger
et al., 2002). Lactate can also be excreted and taken up by other
microbial cells that convert it to acetate, propionate or butyrate
(Chen et al., 2019).

The conversion of two molecules of acetyl-CoA to butyrate
also involves two [H]-incorporating steps, with NADH as
the reductant in the conversion of acetoacetyl-CoA to
β-hydroxybutyryl-CoA and of crotonyl-CoA to butyryl-
CoA. In the reduction of crotonyl-CoA to butyryl-CoA, Fdox
is simultaneously reduced by a second molecule of NADH
to Fdred

2− in a process called electron bifurcation (Buckel
and Thauer, 2013; Figure 3A; see also section “The Role of
Dihydrogen as an Intercellular Electron Carrier”). The oxidation
of Fdred

2− so formed by electron bifurcation can result in H+
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FIGURE 1 | Simplified scheme of carbohydrates fermentation in the rumen.

extrusion and ATP generation by ETLP (Hackmann and Firkins,
2015; Hackmann et al., 2017).

The Role of Dihydrogen as an
Intercellular Electron Carrier
Dihydrogen has a central role in the flows of [H] in the rumen.
Genes encoding hydrogenases are widespread in the genomes
of rumen bacteria and archaea, highlighting that an important
proportion of [H] is transferred and incorporated between cells as
H2 (Greening et al., 2019). This agrees with the historical finding
by Hungate (1967) of H2 being the main [H] donor for CH4
formation in rumen fermentation.

Interspecies H2 transfer thermodynamically favors the re-
oxidation of intracellular cofactors as the H2-consuming
microorganisms help decreasing H2 concentration (Wolin et al.,
1997; Lubner and Peters, 2017). In the presence of methanogens,
or propionate or succinate producers, H2 producers shifted
fermentation away from formate, lactate and ethanol toward
acetate, and cellulose digestion increased. Production of H2 was
stimulated as H2 accumulation was relieved in the presence of
methanogens or other hydrogenotrophs (Chen and Wolin, 1977;
Bauchop and Mountfort, 1981; Marvin-Sikkema et al., 1990;
Wolin et al., 1997).

The participation of ferredoxins is fundamental in H2
formation and incorporation. Ferredoxins have very low standard
reducing potentials comparable to the H2/2H+ couple, which

allows them to donate e− to a hydrogenase to reduce H+ to H2
(Gottschalk, 1986). In microbial cells ferredoxins are typically
more than 90% reduced, which makes them strong e− donors.
Reduction of Fdox is thus thermodynamically very unfavorable,
and it occurs through flavin-based electron bifurcation, with the
donation of e− to Fdox coupled to a stoichiometrical donation
of e− by the same e− donor to a strong e− acceptor. In this
way Fdox can be reduced by NADH (Figure 3A) or by H2 in
bacteria and archaea. In turn, the re-oxidation of Fdred

2− can
be coupled to energy conservation through the generation of a
transmembrane electrochemical gradient. Some of the coupled
reductions that can drive the reduction of Fdox are crotonyl-CoA
to butyryl-CoA with NADH as the e− donor, NAD+ to NADH
with H2 or NADPH as e− donors, NADP+ to NADPH with H2
as e− donor, pyruvate to lactate with NADH as e− donor, and
CO2 to formate with NADPH as e− donor. In methanogens,
the high potential e− acceptor involved in electron bifurcation
in the last step of methanogenesis reaction is the CoM-S-S-CoB
heterodisulfide that is split into HS-CoM and HS-CoB by the
e− donor F420H2 (reduced 8-hydroxy-5-deazaflavin). The reverse
reaction of bifurcation, in which H2 can be produced, is called
confurcation (Figure 3B; Nitschke and Russell, 2012; Buckel and
Thauer, 2013, 2018a,b).

Genes encoding confurcating hydrogenases that oxidize
NADH and Fdred

2− to H2 were the most abundant hydrogenases-
encoding genes from 501 rumen bacteria genomes from
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FIGURE 2 | Main reactions releasing (orange rectangle) and incorporating (green rectangle) metabolic hydrogen ([H]), as connected by intracellular (sky blue
rectangle) and intercellular (salmon rectangle) metabolic hydrogen transactions. The stoichiometry of production and incorporation of reducing equivalents is not
depicted.
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FIGURE 3 | Examples of (A) Electron bifurcation and (B) Electron confurcation
redox reactions. Electron bifurcation in the reduction of Fdox by NADH
coupled to the reduction of crotonyl-CoA to butyryl-CoA catalyzed by Bcd-Etf
was proposed by Hackmann and Firkins (2015) to operate in rumen
butyrivibrios (genera Butyrivibrio and Pseudobutyrivibrio). In the rumen
bacterium R. albus the electron-bifurcating hydrogenase HydABC catalyzes
the formation of dihydrogen (H2) from NADH and reduced ferredoxin (Fdred

2-)
(Zheng et al., 2014; Buckel and Thauer, 2018b).

the Hungate culture collection and others. Furthermore,
confurcating hydrogenases were the most abundant hydrogenase
transcripts in sheep rumens, which shows the importance of this
relatively recently discovered e− transfer mechanism in rumen
fermentation (Greening et al., 2019). The rumen bacterium
Ruminococcus albus, for example, can produce H2 from NADH
in confurcation with the oxidation of Fdred

2− (Zheng et al.,
2014). Greening et al. (2019) found that the expression in
R. albus of an 8-gene cluster encoding for an alcohol and
aldehyde dehydrogenase involved in the production of ethanol, a
ferredoxin H2-evolving hydrogenase, and a sensory hydrogenase,
were sharply decreased in co-culture with the H2-utilizer
Wolinella succinogenes in comparison to the mono-culture. In the
co-culture, NADH was re-oxidized only through confurcation
with Fdred

2−, as NADH was not utilized as reductant for
ethanol production.

Production of Volatile Fatty Acids and
Balances of Reducing Equivalents
The [H]-producing and -incorporating reactions in the different
fermentation pathways result in different stoichiometries of [2H]
production and incorporation per mole of VFA produced, which
can be used to calculate [2H] balances (Marty and Demeyer,
1973). Acetate, and to a lesser extent, butyrate production
from glucose, are associated with the net production of [2H].
On the other hand, propionate production implies a net
incorporation of [2H]. Thus, propionate competes with CH4 as
a [H] sink in rumen fermentation whereas acetate and butyrate
formation release [H] that can be utilized by methanogens
to reduce CO2 to CH4 (Janssen, 2010). The formation of
CH4 in rumen fermentation is thus closely associated to the
profile of VFA formed.

In vitro balances of [2H] production and incorporation show
that CH4 is the main sink of [H] in the rumen fermentation
with functional methanogenesis (Ungerfeld, 2015b). Strictly
speaking, it is unknown if CH4 is the main [H] sink in the
live animal, because there are no in vivo experimental reports

in which the production of both VFA and gases has been
simultaneously measured. However, estimations based on the
Cabezas-Garcia et al. (2017) meta-analysis suggest that CH4
is also almost surely the most important [H] sink in rumen
fermentation in dairy cows on mixed diets (calculation not
shown). Furthermore, the importance of CH4 as [H] sink
agrees with the abundance in the rumen of sheep of archaeal
hydrogenases and reductases (Snelling and Wallace, 2017) and
their transcripts (Greening et al., 2019).

The recent discovery that many rumen bacteria encode an
incomplete glycolytic pathways and alternative pathways of
hexose metabolism (Hackmann et al., 2017) can potentially add
complexity and unknown stoichiometries of [2H] production
and incorporation associated to the production of each VFA.
The formation of glyceraldehyde-3-phosphate in the oxidative
pentose phosphate pathway would greatly augment [2H]
produced in the conversion of glucose to pyruvate from 2 to 14
[2H] mole/mole glucose. Conversely, acetate production through
the Bifidobacterium pathway is not associated to [2H] production
or incorporation, in contrast to 4 × [2H] mole/mole glucose if
produced through glycolysis or the phosphoketolase pathway.
The flows of carbon through different pathways depend on
the genetic makeup of the rumen microbial community (i.e.,
pathways encoded), the abundance of the different microbial
populations encoding each pathway, gene expression in the
different microorganisms, enzyme and substrate kinetics, and
thermodynamic feasibility of reactions.

Other Incorporating Pathways
Incorporating Metabolic Hydrogen
The presence of genes and transcripts of hydrogenases catalyzing
H2 uptake in nitrate and sulfate reduction and reductive
acetogenesis, has been reported in sheep rumens (Greening et al.,
2019). The reduction of nitrate and sulfate thermodynamically
outcompetes methanogenesis (Ungerfeld and Kohn, 2006).
However, the concentration of these e− acceptors in the rumen
usually limits the rate of [H] incorporation in their reduction,
unless they are supplemented to the diet as salts (Van Zijderveld
et al., 2010). Nitrate can also be naturally present at high contents
in grasses, which can lead to toxicity caused by the absorption and
passage to blood of its reduction intermediate nitrite (McKenzie
et al., 2004). Reductive acetogenesis, the reduction of CO2 with
H2 to acetate, seems to be thermodynamically outcompeted by
methanogenesis in the rumen (Kohn and Boston, 2000), although
it is functional or even predominates over methanogenesis in the
gastrointestinal tract of some termites, cockroaches, kangaroos,
pre-ruminant lambs, rodents, pigs, and some humans (Joblin,
1999; Gagen et al., 2012; Klieve et al., 2012). Some reductive
acetogens inhabit the rumen, but as they are not obligate
hydrogenotrophs it is possible that they survive mainly by
metabolizing carbohydrates (Joblin, 1999). That said, a recent
study found that reductive acetogenesis was a minor, but not
insignificant, [H] sink in the rumen (Raju, 2016). The presence
of genes (Denman et al., 2015) and transcripts (Greening et al.,
2019) of hydrogenases involved in reductive acetogenesis has
also been reported.
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Importance of the Rumen Fermentation
Profile
The profile of products formed in rumen fermentation has
implications for animal productivity and the environment.
Despite its importance as the main [H] sink in rumen
fermentation, the release of CH4 to the atmosphere represents
an energy loss ranging between 2 and 12% of ingested gross
energy (Johnson and Johnson, 1995) and was identified early on
in ruminant nutrition research as an energy inefficiency in rumen
fermentation and an opportunity to improve animal productivity
(Czerkawski and Breckenridge, 1975a; Davies et al., 1982). More
recently, increasing concerns about climate change have raised
interest in the abatement of CH4 emissions from ruminants.
Emissions of enteric CH4 are estimated to account for about 6%
of total anthropogenic emissions of greenhouse gases expressed
as CO2-eq i.e., the sum of the emissions of each greenhouse gas
weighted by its global warming potential (Gerber et al., 2013).

The profile of VFA absorbed from the rumen has also
consequences on the host animal’s post-absorptive metabolism
(Ungerfeld, 2013). Inhibiting methanogenesis can shift fermenta-
tion toward propionate production (Janssen, 2010), which is the
main glucose precursor in ruminants (Aschenbach et al., 2010).
Increased propionate production can be important to animals
with high requirements for glucose such as high producing dairy
cows in early lactation. On the other hand, propionate is a satiety
signal in ruminants and can decrease feed intake (Allen et al.,
2009) and milk fat content (Maxin et al., 2011). In turn, an
increased supply of acetate increases milk fat percentage (Sheperd
and Combs, 1998; Maxin et al., 2011; Urrutia et al., 2019).

DISCUSSION

The Control of the Rumen Fermentation
Profile
Diets that are rich in fiber produce a profile of VFA high in
acetate and low in propionate, with a relatively high production
of CH4 per unit of digested organic matter. On the other
hand, concentrates, which are richer in starch, are fermented
to more propionate and less CH4 (Johnson and Johnson, 1995;
Janssen, 2010; Ungerfeld, 2013). The diet effect on the acetate to
propionate ratio cannot be explained simply by different chemical
composition of cellulose and starch, as they are both hydrolyzed
to glucose (Janssen, 2010).

Janssen (2010) proposed a mechanism based on methanogens
growth rate and the resulting H2 concentration, to explain
how concentrates shift rumen fermentation from acetate to
propionate and lower CH4 production. The replacement of
roughages with concentrates induces changes such as increased
rumen outflow rates and lower rumen pH. High rumen outflow
rates impose methanogens that are not washed out of the
rumen faster growth rates. Based on the Monod relationship
of microbial growth, H2 concentration must increase when
methanogens grow faster. In turn, greater H2 concentration
would thermodynamically inhibit H2 production, and by doing
so also inhibit acetate production, which is associated with H2
production. Greater H2 concentration would conversely favor

[H] redirection toward alternative [H] sinks such as propionate.
In agreement, the concentration of dissolved H2 in the rumen has
been reported to associate negatively with acetate and positively
with propionate molar percentages (Wang et al., 2017, 2018),
although an association with propionate molar percentage was
not observed in another study (Wang et al., 2016).

Similarly, methanogens are sensitive to the low rumen pH
induced by feeding concentrates. A decrease in rumen pH is
expected to decrease methanogens maximum growth rates, and,
according to the Monod relationship, H2 concentration would
increase if methanogens growth rate is maintained. An increase
in H2 concentration would again thermodynamically shift
fermentation from acetate to propionate. A similar explanation
was provided for the accumulation of H2 and shift from acetate
to propionate caused by chemical inhibitors of methanogenesis
(Janssen, 2010).

Several experiments with defined cultures comparing the
fermentation profile of pure cultures of H2 producers with
co-cultures of the same organisms growing with methanogens
demonstrate the profound influence of H2 removal by the
methanogen on the fermentation profile of the H2-producing
microorganism (Wolin et al., 1997). These insightful experiments
provide a simple proof of concept for the theory proposed
by Janssen (2010): in the absence of methanogens in the
mono-culture (i.e., an analogous situation to methanogens
completely washed out because a very high rumen outflow
rate, or completely inhibited by low pH or an inhibitor of
methanogenesis), H2 accumulates, inhibiting H2 formation and
decreasing acetate production (i.e., a H2-releasing pathway). This
in turn directs [H] toward reduced intermediates of rumen
fermentation such as formate, ethanol, lactate and/or succinate
(Chung, 1976; Chen and Wolin, 1977; Bauchop and Mountfort,
1981; Marvin-Sikkema et al., 1990; Pavlostathis et al., 1990),
and [H] sinks such as propionate (Chen and Wolin, 1977) or
butyrate (Chung, 1976). When H2 producers were co-cultured
with methanogens they greatly diminished or stopped producing
formate, ethanol, lactate and/or succinate, as well as propionate.
The co-cultures accumulated less H2, and as CH4 formation
removed H2, lower H2 concentration thermodynamically favored
acetate production.

Increasing outflow rates in some continuous culture
experiments (Isaacson et al., 1975; Stanier and Davies, 1981)
agree with the predictions of the Janssen (2010) model. Results
of the experiment by Wenner et al. (2017) do not fully agree,
as, contrary to the model expectations decreasing pH decreased
H2 concentration.

Immediately after feed ingestion, the most readily digestible
feed components are rapidly digested and fermented, and H2
concentration rises (Robinson et al., 1981; Janssen, 2010; Guyader
et al., 2015). After feed ingestion, increases in H2 emissions have
been shown to occur earlier and faster than increases in CH4
(Rooke et al., 2014; Van Lingen et al., 2017; Söllinger et al., 2018),
although this pattern has not occurred in all studies (Hillman
et al., 1985). The peak in H2 emission preceding the evolution of
CH4 production has been modeled by Van Lingen et al. (2019),
and interpreted by Rooke et al. (2014) as the consequence of
rapid fermentation and H2 production exceeding the capacity of
methanogens to utilize all the H2 produced.
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The lag period between the CH4 and H2 peaks observed
in some studies suggests that, when fermentation is rapid,
methanogens growth and/or the expression of genes encoding
for methanogenesis enzymes lags behind rapid H2 evolution.
In that regard, Söllinger et al. (2018) reported that whereas
archaeal 16S rRNA genes abundance peaked at 1 h after feeding,
methanogenesis mRNA abundance did not peak until 3 h
after feeding. The question becomes what impedes or retards
methanogens to respond with more rapid gene expression to
make use of the elevated H2 concentrations occurring after a
meal. It is possible that temporal increases in outflow rates
occurring after feeding episodes (Van Lingen et al., 2019), result
in high H2 concentration by increasing methanogens growth
rate, as proposed by Janssen (2010). However, increasing the
concentration of glucose in a chemostat at a constant pH and
outflow rate still decreased CH4 production per mole of glucose
fermented (Isaacson et al., 1975), which suggests a limitation of
methanogenesis independent of outflow rate or pH to use all
of the H2 made available by the rapid fermentation of glucose
at high concentration (although H2 was not measured in that
experiment). In 48 h batch cultures, there were distinct effects
of pH and substrate composition (hay or cracked corn) on H2,
CH4 and the acetate to propionate ratio (Russell, 1998), which
can also be interpreted as an indication of an effect of the
rate of fermentation per se independent of outflow rates or pH.
It has also been speculated that the evolution of rumen H2-
incorporating hydrogenases in the rumen environment with low
H2 concentration may have resulted in low Km but also low
Vmax for H2 (Ungerfeld, 2015a). This idea, however, does not
agree with the high frequency of genomes of rumen organisms
encoding [FeFe]-hydrogenases, and the high abundance of
transcripts of various types of [FeFe]-hydrogenases in sheep
rumens (Greening et al., 2019), as [FeFe]-hydrogenases have
higher Vmax and Km for H2 uptake than [NiFe] hydrogenases
(Frey, 2002).

Effects of Electron Carriers Other Than
Dihydrogen on the Rumen Fermentation
Profile
Eighteen percent of rumen CH4 was estimated to be produced
from formate as [H] donor (Hungate et al., 1970), and formate
can be the [H] donor in fumarate reduction to succinate
(Asanuma et al., 1999). It is thus possible that, the same as
H2, formate concentration has an influence on CH4 production
and the VFA profile. Other than an accumulation of formate
as a response to methanogenesis inhibitors in some studies
(Ungerfeld et al., 2003; Martinez-Fernandez et al., 2016, 2017),
the effects of variables such as outflow rates, pH, or rate
of fermentation on formate concentration, have not been
investigated to the author’s knowledge. Generating information
about the relationship between those variables and formate
concentration, and how they relate to methanogens growth rate
would be important for evaluating the influence of formate on the
VFA profile, and integrating formate to a model of [H] flows in
rumen fermentation.

Lactate is another intercellular e− carrier which, except for
lactic acidosis, normally does not accumulate in the rumen and

is extensively converted to VFA by various lactate utilizers (Chen
et al., 2019). Small amounts of lactate have been reported to
accumulate as a consequence of inhibiting methanogenesis in
some (Amgarten et al., 1981), but not all (Božic et al., 2009;
Martinez-Fernandez et al., 2016), studies. In general, lactate
accumulation in the rumen is the result of lactate production
rate surpassing lactate utilization as a consequence of rapid
fermentation. A possible enhancement in the role of lactate as
an intermediate of butyrate production in low CH4-producing
sheep (Kamke et al., 2016) deserves further study (see section
“The Competition for Dihydrogen”).

Succinate concentration in the rumen is typically low as it is
rapidly converted to propionate (Blackburn and Hungate, 1963;
Immig, 1996). It thus seems that succinate concentration exerts
little influence on CH4 production and the VFA profile, although
the finding by Kamke et al. (2016) of greater abundance of genes
involved in the conversion of succinate to butyrate in low CH4-
producing sheep prompts for more investigation.

The Competition for Dihydrogen
The principle proposed by Janssen (2010) relating rumen H2
concentration to methanogens growth rates could be in theory
extended to other hydrogenotrophs, provided that their pathway
of H2 incorporation is thermodynamically feasible. The rate of
H2 uptake by a methanogen would follow a Michaelis-Menten
kinetics-wise function:

vmet =
Vmax met [H2]

(Km met + [H2])
(1)

where vmet is the rate of H2 uptake (e.g., mol L−1 min−1), Vmax

met is the maximum rate of H2 uptake with non-limiting H2
concentration, [H2] is the concentration of H2, and Km met is the
apparent affinity for H2 i.e., the concentration of H2 at which the
rate of H2 uptake is half maximal.

If a methanogen was growing in co-culture with another
hydrogenotroph whose rate of H2 uptake was limited by
H2 concentration, and H2 concentration was above the H2
thresholds (Cord-Ruwisch et al., 1988) of both organisms, it can
be deduced (Supplementary Appendix S1) that the proportion
of total H2 uptake incorporated into methanogenesis would be
equal to:

vmet
(vmet + valt)

=
Vmax met (Km alt + [H2])

[Vmax met
(
Km alt + [H2]

)
+ Vmax alt (Km met + [H2])]

(2)

where valt and Vmaxalt are the rate and the maximum rate of
H2 uptake of the alternative hydrogenotroph, respectively, and
Km alt is the affinity for H2 of the alternative hydrogenotroph,
with the rest of the variables defined as in Eq. 1. This equation
does not take into account possible thermodynamic constraints
and differences in the efficiency of microbial growth.

Figure 4 shows a simulation of the proportion of H2
uptake incorporated into methanogenesis as a function of
H2 concentration according to Eq. 2 in co-cultures of mixed
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FIGURE 4 | Simulation of the proportion of dihydrogen taken up by
methanogens in co-culture with various fumarate reducers as a function of
dissolved H2 concentration. The simulation was conducted based on a kinetic
Michaelis-Menten-wise competition for dihydrogen. Apparent Km for H2

uptake were reported by Asanuma et al. (1999). An equal Vmax for dihydrogen
uptake is assumed. The range of dissolved H2 concentration is based on
Table 1. The sky blue area corresponds approximately to baseline dissolved
H2 concentrations (i.e., in between meals). The salmon area corresponds
approximately to H2 concentration peaks occurring closely after feeding. The
purple area corresponds approximately to the range of H2 concentration that
could be observed when methanogenesis is inhibited.

methanogens and various hydrogenotrophs that reduce fumarate
to succinate. The Km values for methanogens and fumarate
reducers used in the simulation were reported by Asanuma
et al. (1999). An equal Vmax was assumed for methanogenesis
and fumarate reduction in this simulation. The range of H2
concentration in Figure 4 is based on dissolved H2 concentration
measured directly in various in vivo studies (Table 1). It can
be seen in Figure 4 that as H2 concentration increases, the
proportion of H2 taken up by methanogens decrease and
approaches 1/2 (Supplementary Appendix S2). It can be shown
that if the Vmax of the alternative hydrogenotroph doubled the
Vmax of the methanogens, the proportion of H2 taken up by
methanogens would trend to 1/3 as H2 concentration increases
(Supplementary Appendix S3).

For n hydrogenotrophs (including m methanogens), the
proportion of total H2 taken up by m methanogens, can be
generalized to:

∑j=m
j=1 vmetj∑i=n

i=1 vi
=

∏i=n
i=1(Kmi+ [H2])

∑j=m
j=1

vmax metj
(Km metj+[H2])∑i=n

i=1 vmaxi (Kmi+ [H2])

(3, Supplementary Appendix S4)

At the low baseline H2 concentration prevailing in the rumen
(Hungate, 1967), a low Km for H2 incorporation is key in
the competition for H2 among thermodynamically feasible H2-
incorporating processes. Methanogens have a lower Km for
H2 than the fumarate reducers depicted in Figure 4, and
consequently they would incorporate most of the H2 at the low
H2 concentrations occurring between episodes of feed ingestion.
Other Km values reported for methanogens are shown in Table 2,
and are similar the Km of methanogens reported by Asanuma
et al. (1999). In agreement with the predictions of Figure 4,
previous co-culture experiments also show that the production
of succinate or propionate by Ruminococcus flavefaciens growing
on cellulose (Latham and Wolin, 1977) or by Selenomonas
ruminantium growing on glucose or lactate (Chen and Wolin,
1977), decreased in the presence of methanogens compared to the
pure cultures, although it continued being thermodynamically
feasible, as it did not stop. In those co-culture experiments, H2
concentration (although it was not reported) was kept low by the
methanogen, likely situating at the low end of the range of H2
concentration in Figure 4.

As H2 concentration increases, as it occurs after feed ingestion,
or when feeding concentrates, or if methanogenesis is inhibited,
the Km starts becoming less important to determine the
partition of H2 incorporated into competing pathways, and a
greater proportion of H2 would be incorporated into fumarate
reduction to succinate (Figure 4). When H2 concentration is
relatively high, a high Vmax for H2 can potentially become very
important to determine the flow of H2 incorporated by a certain
microorganism in a particular pathway. If the Vmax is expressed
as the flow of H2 incorporated per gram of cell DM or cell protein,
rather than the flow of H2 incorporated per volume of culture (or
rumen contents), the flow of H2 into each pathway in the system
will also depend on the cell density of each microbial species.

The incorporation of [H] into pathways alternative to
methanogenesis can be limited by enzyme or substrate kinetics,
or thermodynamics (Ungerfeld, 2015a). The addition of an
e− acceptor that can be metabolized to VFA can help
removing substrate kinetics or thermodynamic constraints. In
general, adding to rumen fermentation carboxylic acids that
are propionate or butyrate precursors as e− acceptors has
had small effects on CH4 production in vitro (Callaway and
Martin, 1996; Carro and Ranilla, 2003; Ungerfeld et al., 2003;
Newbold et al., 2005; Riede et al., 2013) or in vivo (McGinn
et al., 2004; Beauchemin and McGinn, 2006; Kolver and Aspin,
2006; Yang et al., 2012), although larger decreases in CH4
were observed in some experiments (Li et al., 2009; Wood
et al., 2009). A likely interpretation is that much of the added
propionate and butyrate precursor was not metabolized to
the expected final product, and thus little [H] was directed
away from CH4 formation (Carro and Ungerfeld, 2015). When
methanogenesis was simultaneously inhibited with a chemical
compound, increased availability of [H] not incorporated into
CH4 favored the conversion of the added carboxylic acids to
the expected end products. In the presence of inhibitors of
methanogenesis, the addition of propionate precursors malate
(Mohammed et al., 2004) or fumarate (Tatsuoka et al., 2008;
Ebrahimi et al., 2011) increased propionate production in vitro
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TABLE 1 | Dissolved dihydrogen concentration in the rumen.

References Treatment or condition Method of measurement H2 (µM)1

Hungate (1967) Non-inhibited methanogenesis H2 extraction procedure 0.19–30.4

Robinson et al. (1981) Non-inhibited methanogenesis H2 extraction procedure 2–15

Hillman et al. (1985) Non-inhibited methanogenesis Mass spectrometry 0.6–5.8

Smolenski and Robinson (1988) Non-inhibited methanogenesis H2 sensor 0.36–20.1

Guyader et al. (2015) Non-inhibited methanogenesis H2 sensor 3.58

Nitrate 45.3

Linseed 4.03

Nitrate + linseed 21

Wang et al. (2016) Oat grass H2 extraction procedure 6.49

Barley straw 2.34

Wang et al. (2017) Control H2 extraction procedure 1.02

H2 released with Mg 1.99

Wang et al. (2018) Control H2 extraction procedure 2.37

Nitrate 4.79

Ma et al. (2019) Control H2 extraction procedure 1.76

H2 released with Mg 2.68

Melgar et al. (2019) Control Gas-stripping 7.3

Methanogenesis inhibited with 3-nitrooxypropanol 43.6

1Greater ranges in H2 concentration in some studies in which methanogenesis was not inhibited are due to multiple measurements throughout the day in animals fed
once or twice a day, rather than to variation caused by treatments imposed.

and decreased H2 accumulation. In contrast, butyrate precursors
did not decrease H2 accumulation caused by three inhibitors
of methanogenesis in batch cultures (Ungerfeld et al., 2006).
Martinez-Fernandez et al. (2017) successfully used phlorglucinol
as an e− acceptor to decrease the accumulation of H2 and formate
in the rumen of steers whose methanogenesis was inhibited with
chloroform. An increase in acetate concentration observed when
phlorglucinol was supplemented agrees with previous studies
which had shown that phlorglucinol was reduced to acetate
by rumen microorganisms using H2 or formate as e− donors
(Martinez-Fernandez et al., 2017).

Microbial additives can help removing constraints to the
incorporation of [H] into pathways alternative to methanogenesis
whose rate is enzyme-limited. Jeyanathan et al. (2014) reviewed
the use of direct-fed microbials to manipulate rumen biochemical
pathways to decrease CH4 emissions. They proposed two main

TABLE 2 | Apparent Km for dihydrogen of methanogens and fumarate reducers.

References Microorganism Km (µM)

Hungate et al. (1970) Methanogenesis by a mixed
rumen culture

1

Hungate et al. (1970) Methanobrevibacter
ruminantium

1

Pavlostathis et al. (1990) Methanobrevibacter smithii 1

Asanuma et al. (1999) Mixed rumen methanogens 1.6

Asanuma et al. (1999) Fibrobacter succinogenes 6.2

Asanuma et al. (1999) Selenomonas ruminantium 7.5

Asanuma et al. (1999) Selenomonas lactylica 4.7

Asanuma et al. (1999) Veillonella parvula 5.8

Asanuma et al. (1999) Wolinella succinogenes 4.0

avenues to decrease CH4 formation in the rumen through the use
of microbial additives: (i) Microbial additives that incorporate H2
into pathways alternative to methanogenesis, and (ii) Microbial
additives that do not produce H2 in fermentation.

Microbial additives that compete with methanogens for H2
could be dosed into the rumen (Jeyanathan et al., 2014). It may
also be possible to stimulate native rumen non-methanogenic
hydrogenotrophs. Some fumarate reducers (Asanuma et al.,
1999) and reductive acetogens (Chaucheyras et al., 1995; Joblin,
1999) were able to decrease CH4 production when grown in
co-culture with methanogens, but because those experiments
were conducted with elevated headspace H2, an ability of those
organisms to compete for H2 at low concentration cannot
be demonstrated (Figure 4). Methanogens would be expected
to prevail over reductive acetogens in a co-culture at low
H2 concentration due to their lower H2 thresholds (Cord-
Ruwisch et al., 1988). Boccazzi and Patterson (2011) isolated
rumen reductive acetogens with lower H2 thresholds than other
reductive acetogens previously isolated from the rumen and
with similar H2 thresholds to reductive acetogens from other
environments. Yet, they still had higher H2 thresholds compared
to methanogens (Table 3).

Supplementation of rumen batch cultures with succinate and
propionate producers caused mild to moderate decreases in CH4
production (Alazzeh et al., 2012; Mamuad et al., 2014). In another
study, supplementing rumen batch cultures with fumarate-
reducing enterococci caused large decreases in CH4 and increases
in propionate concentration (Kim et al., 2016). A slight decrease
in CH4 production per kilogram of ingested feed occurred when
supplementing Propionibacterium strains to heifers fed a high-
forage (Vyas et al., 2014a), but not a mixed (Vyas et al., 2016),
or a high-concentrate (Vyas et al., 2014b), diet. Rumen succinate
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TABLE 3 | Dihydrogen thresholds of methanogens and reductive acetogens from the rumen and other environments.

Microorganism Environment H2 threshold (ppm) References

Methanogens

Methanospirillum hungatei Sewage sludge 30 Cord-Ruwisch et al. (1988)

Methanobrevibacter smithii Primary sewage digester 100 Cord-Ruwisch et al. (1988)

Methanobrevibacter arboriphilus Digested sewage sludge 90 Cord-Ruwisch et al. (1988)

Methanobacterium formicicum Anaerobic sewage sludge digester 28 Cord-Ruwisch et al. (1988)

Methanococcus vannielii Marine mud 75 Cord-Ruwisch et al. (1988)

Isolate 10-16B Rumen 126 Le Van et al. (1998)

Isolate NI4A Rumen 90 - 92 Boccazzi and Patterson (2011)

Reductive acetogens

Sporomusa termitida Termite hindgut ∼800 Breznak et al. (1988)

Sporomusa termitida Termite hindgut 830 Cord-Ruwisch et al. (1988)

Acetobacterium woodii NZ Va 16 Not provided 520 Cord-Ruwisch et al. (1988)

Acetobacterium carbinolicum Freshwater mud 950 Cord-Ruwisch et al. (1988)

Acetitomaculum ruminis 190A4 Rumen 3830 Le Van et al. (1998)

Two reductive acetogenic isolates Rumen ∼750 Joblin (1999)

Isolate A2 Rumen 1383–2516 Boccazzi and Patterson (2011)

Isolate A4 Rumen 8007 Boccazzi and Patterson (2011)

Isolate A9 Rumen 1619–66157 Boccazzi and Patterson (2011)

Isolate A10 Rumen 208–1284 Boccazzi and Patterson (2011)

Isolate H3HH Rumen 1390 Boccazzi and Patterson (2011)

producers W. succinogenes and Mannheimia succiniciproducens
could be interesting candidates to compete with methanogens
at low H2 concentrations, as they possess [NiFe]-hydrogenases
for H2 uptake (Søndergaard et al., 2016). [NiFe]-hydrogenases
have Km for H2 about two orders of magnitude lower than
[FeFe] hydrogenases (Frey, 2002). However, the apparent Km of
W. succinogenes for H2 was still higher than that of methanogens
(Asanuma et al., 1999; Table 2). M. succiniciproducens has been
genetically engineered to improve its yield of succinate from
glucose (Lee et al., 2006; Choi et al., 2016), which could help
increasing its Vmax for H2 uptake.

Nitrate reduction is thermodynamically more favorable than
methanogenesis but may result in accumulation of the toxic
intermediate nitrite. The addition of nitrite reducers may
help avoiding nitrite toxicity while decreasing CH4 production
(Jeyanathan et al., 2014). Nitrate should replace other sources
of nitrogen on an isonitrogenous basis to avoid increasing
the elimination of nitrogen in urine and the formation
of nitrous oxide in the rumen, which is another potent
greenhouse gas (Petersen et al., 2015). Sulfate reduction can
also thermodynamically outcompete methanogenesis, although
it generates the toxic reduced end product hydrogen sulfide
(Jeyanathan et al., 2014).

Jeyanathan et al. (2014) also proposed that, by avoiding the
formation of H2, the combined use of added lactate producers
and the lactate utilizer Megasphaera elsdenii could channel [H]
into propionate production instead of CH4. In that regard, lactate
producers Sharpea and Kandleria were abundant in the rumens of
one of two low CH4-producing sheep microbiomes (Kittelmann
et al., 2014). Low CH4-producing sheep also had higher rumen
concentration of lactate, and the lactate dehydrogenases that
differed the most between the low- and the high-producing

CH4 sheep associated phylogenetically with S. azabuensis and
K. vitulina (Kamke et al., 2016). Several strains of Sharpea
and Kandleria that produced predominantly lactate and small
amounts of formate, ethanol and acetate, did not change
their fermentation products when growing with a methanogen
(Kumar et al., 2018).

Lactate produced by Sharpea and Kandleria did not
accumulate to high concentrations in the rumen because it
seemed to be metabolized by Megasphaera spp. mostly to
butyrate, and to propionate via the non-randomizing pathway.
The conversion of lactate to butyrate would result in less
H2 production compared to acetate production from glucose
(Kamke et al., 2016). It seems then that a dual mechanism resulted
in lower CH4 production in the low-CH4 producing sheep
(Kittelmann et al., 2014; Kamke et al., 2016): (i) Incorporation
of [H] in the reduction of pyruvate to lactate by Sharpea
and Kandleria instead of H2 release, and (ii) Uptake and
conversion of lactate to butyrate and propionate by Megasphaera.
In this regard, co-culture experiments comparing the kinetics
of uptake of lactate and conversion to acetate, propionate and
butyrate by Megasphaera and other microorganisms would be
of interest. M. elsdenii had a lower affinity for lactate than
for glucose (Russell and Baldwin, 1979), but its rate of lactate
uptake was not affected by glucose (Russell and Baldwin, 1978).
Interestingly, fermentation extracts of the probiotic Aspergillus
oryzae stimulated lactate uptake by M. elsdenii and did not affect
its fermentation profile (Waldrip and Martin, 1993).

This approach toward decreasing CH4 formation could thus
contemplate the addition of a “microbial team” composed
by a lactate producer and a lactate utilizer that metabolizes
lactate to propionate or butyrate. Another interesting microbial
species could be Fibrobacter succinogenes, a fiber degrader which
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does not produce H2 and would thus not contribute [H] to
methanogenesis and instead incorporate [H] into succinate
production (Morgavi et al., 2010). However, the higher Km
for H2 of F. succinogenes compared to methanogens (Asanuma
et al., 1999) would imply a lower uptake of H2 compared to
methanogens at low H2 concentration (Figure 4).

Another strategy would be to inhibit methanogenesis with a
chemical compound and simultaneously dose hydrogenotrophs
that incorporate H2 into a desirable pathway, or pathways. For
example, reductive acetogenesis was enhanced in batch cultures
through simultaneous inhibition of methanogenesis and addition
of reductive acetogens (Nollet et al., 1997; Le Van et al., 1998;
Lopez et al., 1999). The kinetic parameters for H2 and the
H2 threshold of the hydrogenotroph of choice would be very
important. Compared to the typical rumen fermentation with
CH4 as the main [H] sink (Figure 5A), inhibiting methanogenesis
results in an increase in the incorporation of [H] into alternative
sinks, but also in H2 as a [H] sink (Figure 5B). Adding a
hydrogenotroph with a high Vmax for H2 can allow a high
flow of H2 incorporation into a desirable fermentation product.
However, if the Km of the added hydrogenotroph for H2 were
high, H2 would still accumulate, and the magnitude of gaseous
H2 losses could be important. A low Km for H2 would also result
in H2 accumulation if the Vmax for H2 was low and the rate
of fermentation was high, unless the microorganism was dosed
in high numbers. Another possibility would be to combine a
hydrogenotroph with high Km and Vmax for H2 with another
hydrogenotroph with low Km and Vmax. A theoretically ideal

situation in which dissolved H2 concentration and H2 emission
are at the level of the rumen with functional methanogenesis is
depicted in Figure 5C.

A strategy employing chemical inhibitors of methanogenesis
to redirect [H] from CH4 toward nutritionally useful alternative
[H] sinks should evaluate possible direct effects of the chemical
inhibitors on non-methanogenic rumen microorganisms, so
as to avoid affecting processes such as fiber digestion or
propionate production. This aspect cannot be studied in mixed
cultures or in vivo, because in these systems, changes in non-
methanogenic populations can indirectly result from changes
in methanogens and CH4 production. The potential toxicity
of chemical inhibitors of methanogenesis to non-methanogens
should instead be studied in pure cultures. Mevastatin and
lovastatin inhibited the growth of methanogens but not of
major fermentative rumen bacteria, including major fiber
degraders and propionate and butyrate producers (Miller and
Wolin, 2001). Chloroform at 2 mM inhibited the growth of
reductive acetogens and six other rumen bacteria, including fiber
degraders and propionate and butyrate producers (Raju, 2016).
In contrast, none of the non-methanogenic microorganisms
examined were affected by acetylene at 1 mM (aqueous
concentration) or 2-bromoethanesulfonate at 10 mM. The effect
of n-butylisocyanide and 5,5′-dithio-bis-(2-nitrobenzoic acid) on
reductive acetogens was concentration- and species-dependent,
whilst 1,10-phenanthroline inhibited reductive acetogens at all
of the concentrations studied (Raju, 2016). 3-Nitrooxypropanol
at 0.1 mM did not inhibit the growth of 11 functionally

FIGURE 5 | Three hypothetical scenarios of manipulation of metabolic hydrogen ([H]) flows in rumen fermentation: (A) Non-intervened rumen fermentation with
functional methanogenesis. Methane (CH4) is the main sink of metabolic hydrogen; (B) Methanogenesis is inhibited with a chemical additive. Part of metabolic
hydrogen spared from methane formation is redirected toward alternative sinks that are final fermentation products in the rumen with functional methanogenesis.
Redirection of metabolic hydrogen toward alternative sinks is incomplete and the concentration of dissolved dihydrogen increases. The ratio of reduced to oxidized
cofactors increases and fermentation, understood as the flow of carbon and the rate of metabolic hydrogen production, is inhibited; (C) A theoretical successful
situation in which methanogenesis is inhibited with a chemical additive and an added live hydrogenotrophs redirects a greater proportion of metabolic hydrogen
toward alternative sinks potentially beneficial to the host animal. Accumulation of dihydrogen is relieved, cofactors can be re-oxidized as in the rumen with functional
methanogenesis, and fermentation is not inhibited.

Frontiers in Microbiology | www.frontiersin.org 12 April 2020 | Volume 11 | Article 589

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00589 April 9, 2020 Time: 19:40 # 13

Ungerfeld Metabolic Hydrogen and Rumen Fermentation

diverse rumen bacteria or Escherichia coli, whilst much lower
concentrations inhibited rumen and non-rumen methanogens
(Duin et al., 2016).

From an applied point of view, the addition of a
hydrogenotroph to the rumen would ideally target post-
feeding peaks of dissolved H2 with the added microorganism
at its exponential phase of growth. This might be difficult if the
microbial additive was administered with the feed, as the added
microorganism may be at its lag phase of growth at the peak
of feed fermentation and H2 release in the rumen. If adding
hydrogenotrophs at their exponential phase of growth in vitro
was successful at utilizing H2, further developments toward
practical application would need to optimize in vivo the timing,
means of administration, and doses of added hydrogenotrophs.

Recently, Muñoz-Tamayo et al. (2019) conducted a growth
and calorimetry experiment with three rumen methanogens.
They estimated kinetic, thermodynamic, and growth parameters
and predicted that in the long term only one methanogen
would survive in tri-cultures. Similar conclusions were reached
in another recent theoretical analysis (Lynch et al., 2019).
Muñoz-Tamayo et al. (2019) discussed that, as the rumen
harbors a diverse community of methanogens, ecological factors
such as sensitivity to pH, location in association to fluid or
particles, and endosymbiosis with protozoa can contribute to
explain the existence of diversity despite of thermodynamic
and kinetic advantages of some methanogens over others. Some
ecological aspects can cause temporal and spatial variations in H2
concentration (Smolenski and Robinson, 1988; Janssen, 2010),
which can affect the partition of H2 flows among different
hydrogenotrophs. In the conceptual model proposed by Leng
(2014), the organization of particle-colonizing microbiota in
biofilms results in close proximities between cells releasing and
taking up H2, resulting in ample variations in H2 concentration
within the rumen.

Greening et al. (2019) reported no differences in the
expression of the most abundant H2-evolving hydrogenases in
sheep selected by low and high CH4 production. In contrast,
there were differences between low- and high-CH4 producing
sheep in the expression of H2-incorporating hydrogenases.
The expression of methanogens hydrogenases and methyl-CoM
reductase were lower, and the expression of fumarate reductase
and acetyl-CoA synthase (which incorporate H2 into propionate
production and reductive acetogenesis, respectively) were higher,
in the low CH4-producing sheep. This can be interpreted
as those alternative pathways of [H] incorporation decreasing
CH4 formation in low CH4-producing sheep by competing
with [H] with methanogenesis. Alternatively, it can also be
interpreted as those pathways of [H] incorporation alternative
to methanogenesis becoming upregulated in low CH4-producing
animals as a response to less CH4 production, due perhaps to
animal factors such as greater rumen outflow rate or lower rumen
pH (Janssen, 2010).

Söllinger et al. (2018) reported that, among all bacterial
functional genes, the greatest increase in mRNA abundance
occurring 1 h after feeding corresponded to the fumarate
reductase subunit C transcript, denoting a stimulation of
propionate randomizing pathway associated to peaks of H2

emission after feeding. However, despite of the increase in the
abundance of fumarate reductase transcripts, H2 emissions still
increased and propionate concentration did not consistently
increase 1 h after feeding. It is possible that the Km of H2
incorporation into propionate production was relatively high, at
least under the conditions of that experiment, which would agree
with the higher Km for H2 of fumarate reducers compared to
methanogens reported by Asanuma et al. (1999) in pure cultures.

It should be considered that competition for intercellular
e− carriers other than H2 (and lactate) also occurs. For
example, the Km for formate was lower for fumarate reducers
compared to methanogens (Asanuma et al., 1999). In the rumen,
methanol and methylamines resulting from the metabolism
of pectin (Pol and Demeyer, 1988) and betaine and choline
(Neill et al., 1978; Mitchell et al., 1979) can be used by
methylotrophic methanogens as substrates for CH4 production.
Importantly, reductive acetogens have also been reported to
use methanol and methylamines as [H] donors (Ragsdale and
Pierce, 2008; Jeyanathan et al., 2014), including the rumen
acetogen Eubacterium limosum, a methanol-utilizer (Genthner
et al., 1981). It is thought that in the typical rumen fermentation,
methanogens drop H2 pressure below the threshold for reductive
acetogenesis (Ungerfeld and Kohn, 2006). However, it is
important to examine both in defined and in mixed cultures the
competition between methanogens and reductive acetogens for
methanol and methylamines.

Effects of Dihydrogen Accumulation on
the Rates of Fermentation and Digestion
The formation of CH4 in the rumen represents an important
loss of energy for the animal. Theoretically, inhibiting rumen
methanogenesis could divert [H] toward fermentation products
with a nutritional value for the animal, and improve animal
productivity (Czerkawski and Breckenridge, 1975b; Schulman
and Valentino, 1976), although this has not been consistently
realized (Ungerfeld, 2018). Compared to the rumen with
functional methanogenesis (Figure 5A), inhibiting rumen
methanogenesis results in accumulation of H2 in vitro
(Ungerfeld, 2015b) and increased H2 emissions in vivo
(Ungerfeld, 2018), increased ratio of NADH to NAD+ (Hino
and Russell, 1985; Figure 5B), and decreased reducing
potential (Sauer and Teather, 1987). These changes indicate
hindering in e− disposal and it is important to understand
the consequences that this can have on feed fermentation and
digestion. Conceptually, there is little doubt that an imbalance
between the rates of reduction and re-oxidation of cofactors
can halt fermentation (Wolin et al., 1997), because the turnover
rates of cofactors are very high compared to their intracellular
concentrations (de Graef et al., 1999). This principle has been
experimentally verified as an increase in cellulose degradation
when fibrolytic fungi were co-cultured with methanogens or with
S. ruminantium as hydrogenotrophs (Marvin-Sikkema et al.,
1990). The questions are, at which point increases in the ratios
of reduced to oxidized cofactors begin to impair fermentation,
and how these ratios are in turn affected by H2 pressure
(Figure 5B). Whether accumulated H2 can be re-channeled
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into other pathways (Figure 5C) has been discussed in the
preceding section.

High H2 pressure can thermodynamically inhibit NADH
oxidoreductases (Gottschalk, 1986). Van Lingen et al. (2016)
modeled the effect of H2 pressure on the thermodynamic
feasibility of NADH oxidation with and without electron
confurcation with reduced Fdred

2−. With an NAD+ to NADH
ratio of 3, similar to the NAD+ to NADH ratio reported by
Hino and Russell (1985) for their control treatments, and in
the absence of electron confurcation, NADH oxidation was
somewhat under thermodynamic control at H2 partial pressures
of between 2 × 10−4 and 2 × 10−3 bar, depending on the
intracellular pH (Van Lingen et al., 2016). If rumen headspace H2
was to be at equilibrium with dissolved H2, the corresponding
range of dissolved H2 concentrations would be as low as 0.15 to
1.5 µM approximately (calculations not shown), but given the
occurrence of H2 supersaturation (Wang et al., 2016) it would
likely be higher. The same calculation conducted with NADH
oxidation occurring through electron confurcation would yield a
considerable higher range of dissolved H2 concentration between
6 and 100 µM, again assuming equilibrium between gaseous and
aqueous H2. Therefore, with electron confurcation, the range of
dissolved H2 concentration at which NADH oxidation becomes
thermodynamically controlled coincides or is even higher than
previously reported peaks of dissolved H2 concentration after
feed ingestion, or the dissolved H2 concentration reported by
Melgar et al. (2019) for methanogenesis inhibition (Table 1). This
agrees with the findings by Greening et al. (2019) regarding the
importance of confurcating hydrogenases in H2 formation in the
rumen. The thermodynamic feasibility of NADH oxidation also
depends on the intracellular pH (Van Lingen et al., 2016), which
in turn depends on the extracellular pH and the bacterial species
(Russell, 1991).

Inhibiting methanogenesis in vitro results in H2 accumulation
and consistently inhibits hexoses fermentation as estimated
through the stoichiometry of VFA production (Ungerfeld,
2015b). However, the estimation of fermented hexoses from
the stoichiometry of VFA production does not consider carbon
in fermented hexoses utilized in microbial biomass accretion.
In an in vitro study with several inhibitors of methanogenesis,
no consistent effects on true organic matter digestibility were
found, with some decreases but also lack of effects with
other additives (Ungerfeld et al., 2019). Effects of inhibiting
methanogenesis in vivo on digestion and fermentation in the
rumen are complex to assess with most animal measurements, as
apparent digestibility determinations do not consider microbial
biomass and overall tract digestibility could be modified by
post-ruminal compensations (Ungerfeld, 2018), and rumen VFA
concentrations are affected by, apart from VFA production rates,
rates of VFA absorption, passage, incorporation into microbial
biomass, and by changes in rumen volume (Dijkstra et al., 1993;
Kristensen, 2001; Storm et al., 2012; Hall et al., 2015).

It is of course possible that negative effects of inhibiting
methanogenesis on fermentation (Ungerfeld, 2015b) are not
caused by H2 accumulation per se, and instead some of the
chemical inhibitors studied could be toxic to microorganisms
other than methanogens. An experimental approach to study the

effects of H2 accumulation on the rate of fermentation without
the addition of chemical inhibitors of methanogenesis is the
addition of H2 gas to the headspace of rumen incubations.
In general, adding external H2 to rumen cultures has not
consistently resulted in an inhibition of fermentation measured
as total VFA concentration or apparent digestibility (Schulman
and Valentino, 1976; Patra and Yu, 2013; Broudiscou et al.,
2014; Qiao et al., 2015). A factor potentially masking the effects
of H2 gas added to microbial cultures headspace is lack of
equilibrium with dissolved H2 (Wang et al., 2016). In that
regard, two in vivo studies in which dissolved H2 was indirectly
delivered through the reaction of elemental magnesium (Mg)
with water, reported decreases in total VFA concentration as
a result of the augmented dissolved H2 concentration (Wang
et al., 2017; Ma et al., 2019), although the limitations of VFA
concentration as a metric of rumen fermentation pointed out
above are again acknowledged.

Ultimately, if means to efficiently redirect [H] to useful
sinks (Figure 5C) could be designed, the extent to which
the accumulation of H2 can hinder NADH re-oxidation and
fermentation would be unimportant from a practical standpoint,
as H2 would not accumulate when inhibiting methanogenesis
(Figure 5C). A perhaps more realistic scenario intermediate
between Figures 5B,C in which dissolved H2 concentration was
only partially relieved, but the rate of digestion and fermentation
was not affected, can also be conceived.

Pathways of [H] flow alternative to H2 formation can result in
the production of other intercellular e− carriers, such as lactate,
ethanol, and formate, or final fermentation products such as
propionate, all of which also help NADH oxidation (Van Lingen
et al., 2016). Formate, succinate or ethanol have been shown to
accumulate along with H2 when methanogenesis was inhibited
in vitro (Slyter, 1979; Asanuma et al., 1998; Ungerfeld et al., 2003)
and in vivo (Martinez-Fernandez et al., 2016, 2017; Melgar et al.,
2019), so it is important to understand if the accumulation of
those metabolites could potentially inhibit cofactors re-oxidation
and fermentation. The effects of lactate, ethanol, formate and
propionate on fermentation and digestion are best studied in
experiments in which those metabolites are externally added to
rumen fermentation as pure compounds. Immig (1996) found
that adding formate or succinate to rumen batch cultures did not
affect total VFA production. Asanuma et al. (1998) found that
added formate was stoichiometrically recovered as CH4 and total
VFA production was unaffected. Infusion of formic acid into the
rumen of sheep did not affect overall tract apparent digestibility
(Vercoe and Blaxter, 1965). It is possible that as formate has a
high rate of diffusion and is rapidly converted to CH4 (Leng,
2014), its accumulation may not affect cofactors re-oxidation and
fermentation rate.

Lactate is metabolized to VFA in the rumen (Chen et al.,
2019). Even though excess lactate accumulation can inhibit
fermentation, this effect would likely be caused by low pH rather
than by an impairment of [H] transfer and co-factor re-oxidation.
A potential effect of lactate accumulation on fermentation
independent of pH would have to be evaluated through, for
example, a comparison of the addition of sodium lactate against
sodium chloride.
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The effects of adding ethanol to rumen cultures was dose-
depending, and a decrease in cellulose digestibility occurred
with the highest dose (Chalupa et al., 1964), whereas no effects
on total VFA concentration was found in another in vitro
experiment (Pradhan and Hemken, 1970). Emery et al. (1959)
found a tendency to decrease OM and N digestibility when
feeding ethanol to sheep. However, negative effects of high doses
of ethanol on rumen fermentation can be mediated through
direct toxicity related to bacterial membranes leakages caused
by ethanol (Ingram, 1990), rather than through impairing re-
oxidation of cofactors.

As an end product of fermentation, propionate is removed by
absorption, passage and incorporation into microbial biomass.
The removal of propionate would be thought to occur rapidly
enough so as to avoid accumulation causing inhibition of
fermentation. In agreement, in several experiments intrarruminal
infusion of propionate did not affect overall tract digestibility of
various feed fractions (Rook et al., 1963; Sheperd and Combs,
1998; Noziere et al., 2000; Oba and Allen, 2003).

Effects of Metabolic Hydrogen Flows on
Microbial Growth
Flows of [H] in the rumen can affect microbial growth through
at least three mechanisms: (i) Variation in the generation of
ATP; (ii) Provision of precursors for biosynthesis; (iii) Provision
of reducing power. The mechanisms through which this might
occur will be developed in this section.

Hydrolysis of ATP is necessary to drive otherwise
thermodynamically unfeasible anabolic processes, such as protein
synthesis. The rate of ATP generation in fermentation depends
on the rate of fermentation, the fermentation profile, and the ATP
generated in each fermentation pathway. Acetate production
generates ATP through substrate level phosphorylation, the
same as propionate non-randomizing pathway. In propionate
randomizing pathway, butyrate production, and methanogenesis,
ATP is also generated through ETLP (Russell and Wallace, 1997;
Hackmann and Firkins, 2015). Production of less reduced
fermentation products such as lactate and ethanol generates
ATP only in glycolysis and results in less microbial growth per
unit of substrate degraded compared to acetate production and
methanogenesis (Wolin et al., 1997).

One should bear in mind that increasing ATP generation
does not necessarily mean maximizing the “efficiency” of
fermentation. As the proportion of the 1G of a pathway coupled
to ATP generation increases, the net 1G approaches zero, and
the pathway slows down approaching equilibrium. For example,
methanogens possessing cytochromes can generate more ATP
per mole of CH4 produced and have higher growth yields when
growing on elevated H2 concentration compared to methanogens
without cytochromes, but on the other hand they have greater
H2 thresholds. Methylotrophic methanogens of the order
Methanosarcinales have cytochromes and they have evolved to
live in environments with low H2 concentration by acquiring
the capacity of using one carbon compounds as substrates for
methanogenesis (Thauer et al., 2008; Vanwonterghem et al., 2016;
Lynch et al., 2019).

Organic matter catabolized in the rumen is partitioned
into fermentation products i.e., VFA and gases, and microbial
biomass. The proportion of carbon in fermented carbohydrates
diverted toward microbial cell production increases as the
microbial biomass produced per mole of ATP hydrolyzed
(YATP) increases (Leng and Nolan, 1984) and as more moles
of ATP are generated per mole of hexoses fermented. Also,
each fermentation pathway can contribute different intermediate
compounds to microbial anabolism.

Microbial biomass is more reduced than substrate fermented,
and consequently, alterations in the flows of [H] could affect
[H] available for microbial biomass accretion. For example,
inhibiting methanogenesis could result in increased [H] disposal
into microbial biomass formation (Czerkawski, 1986). Anabolic
processes such as amino acids and fatty acids synthesis
demand [H] and may be stimulated as a consequence of the
inhibition of CH4 production (Chalupa, 1977; Ungerfeld, 2015b).
Deamination of reduced amino acids was inhibited by reducing
power in the form of NADH, and conversely, was stimulated
by methylene blue, an oxidizing agent (Hino and Russell,
1985). Later results, however, could not confirm an increase
in the incorporation of [H] into microbial amino acids when
methanogenesis was inhibited in vitro (Ungerfeld et al., 2019).

CONCLUSION AND FUTURE
DIRECTIONS

Early work in the past century established the foundations
to understand fermentation and [H] dynamics in the rumen.
Hungate (1967) demonstrated the central role of H2 in CH4
production. The principles and importance of interspecies H2
transfer was illustrated in several ingenious experiments in
which H2 producers were co-cultured with methanogens (Wolin
et al., 1997). A model to explain how the diet influences
the VFA profile and CH4 formation through changes in
methanogens rate of growth and H2 concentration (Janssen,
2010) has been an important advancement in this area. Electron
confurcation has been incorporated into rumen fermentation
models (Van Lingen et al., 2016, 2019), and recent experimental
work with comparative genomics and metatranscriptomics
revealed the importance of electron bifurcation and confurcation
in H2 dynamics in the rumen. Shifts in fermentation in
defined cultures were studied at the level of gene expression
(Greening et al., 2019).

In comparison, fewer studies (Chen and Wolin, 1977; Latham
and Wolin, 1977) have examined the competition for H2 between
methanogens and other hydrogenotrophs, such as succinate and
propionate producers, at the basal H2 concentrations resulting
from fermentation-evolving H2. A recent experiment studied
the competition for [H] between a methanogen and lactate
producers Sharpea and Kandleria (Kumar et al., 2018). Pure
cultures of rumen hydrogenotrophs, such as those isolated in
the Hungate 1000 Project (Kelly, 2016), could be screened
for kinetic parameters of H2 incorporation and H2 thresholds.
This information could be used to predict the outcome of
the competition for H2 between methanogens and other
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hydrogenotrophs with models similar to the ones generated
by Muñoz-Tamayo et al. (2019) and Lynch et al. (2019)
for competition between methanogens. The ability of non-
methanogenic hydrogenotrophs to compete for H2 could be
evaluated in co-culture with methanogens if they are also
fermentative H2 producers themselves (e.g., R. flavefaciens,
S. ruminantium), or in tri-cultures with methanogens and a H2-
producing organism if they incorporate H2 but do not produce it
(e.g., F. succinogenes, Succinivibrio dextrinosolvens, Succinimonas
amylolytica, reductive acetogens).

Understanding the physicochemical control of rumen
fermentation can help optimizing the design of strategies to direct
[H] from CH4 to other sinks. In this regard, H2 concentration
is highly influential on the thermodynamics and kinetics of
fermentation pathways (Janssen, 2010). Research is needed on
dissolved H2 concentration (Table 1) and H2 gradients under
different conditions, especially when methanogenesis is inhibited.
Dissolved H2 concentration has been generally estimated by
measuring the concentration of H2 gas in the gas phase and
assuming equilibrium with dissolved H2 in the fluid (Kohn and
Boston, 2000; Ungerfeld and Kohn, 2006; Janssen, 2010), but H2
has been shown to be supersaturated in the rumen (Wang et al.,
2016). It would be important to incorporate H2 supersaturation
factors in future models of rumen fermentation, but more results
with different diets, time after feeding, and other factors such as
methanogenesis inhibition, are needed so that H2 supersaturation
is not modeled as a constant.

The application of genomics and transcriptomics has
advanced our understanding of the relationships between
the abundance and expression of genes encoding for
hydrogenases and rumen [H] flows (Greening et al., 2019). The
combination of –omics techniques with classical biochemistry
and microbiology methods may make possible the isolation and
kinetic characterization of H2-incorporating hydrogenases. The

application of proteomics to understand methanogenesis and
flows of [H] through changes in hydrogenases and other enzymes
involved in [H] transactions is also of much interest (Snelling and
Wallace, 2017). Recently, metabolomics has been applied toward
the understanding of differences between dairy cows with high
and low feed utilization efficiency associated to high and low
CH4 production (Shabat et al., 2016) and toward understanding
the responses to methanogenesis inhibitors (Martinez-
Fernandez et al., 2018). Finally, experimental advances must
be interpreted in the light of basic physicochemical knowledge
of thermodynamics and kinetics to develop mathematical and
conceptual mechanistic models (Janssen, 2010; Van Lingen et al.,
2016) for designing new strategies of manipulation of [H] flows
in the rumen and predicting their outcomes.
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