Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,7-Bis(1-benzothiophen-2-yl)-2,3dihydrothieno[3,4-b][1,4]dioxine

P. Sugumar,^a S. Ranjith,^a J. Arul Clement,^b A. K. Mohanakrishnan^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 1 April 2008; accepted 28 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.045; wR factor = 0.143; data-to-parameter ratio = 28.1.

In the title compound, $C_{22}H_{14}O_2S_3$, the dioxane ring is disordered over two sites [site occupancies = 0.623(3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothiophene ring systems are asymmetrically twisted away from the attached thiophene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or $\pi - \pi$ interactions are observed in the crystal structure.

Related literature

For related literature, see: Cohen et al. (1977); Csaszar & Morvay (1983); Dzhurayev et al. (1992); EI-Maghraby et al. (1984); Gewald et al. (1996); Lakshmi et al. (1985); Pellis & West (1968). For the synthesis, see: Amaladass et al. (2007).

Experimental

Crystal data

a	TT 100 (10) 3
$C_{22}H_{14}O_2S_3$	$V = 1826.28 (10) \text{ A}^3$
$M_r = 406.51$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.1602 (5) Å	$\mu = 0.42 \text{ mm}^{-1}$
b = 8.3524 (3) Å	T = 293 (2) K
c = 14.1814 (4) Å	$0.15 \times 0.13 \times 0.10$ r
$\beta = 107.428 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: none 26571 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.142$ S = 0.997059 reflections 251 parameters

 mm^{-1} 2) K $13 \times 0.10 \text{ mm}$

7059 independent reflections 4551 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

3 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

PS and SR thank Mr P. Charles for his help in solving the structure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2577).

References

- Amaladass, P., Clement, J. A. & Mohanakrishnan, A. K. (2007). Tetrahedron, **63**, 10363-1067.
- Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322-1334.
- Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.
- Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73-75.
- EI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327–336.
- Gewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber. 99, 99-100.
- Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202-204
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320-324. London: Butterworth & Co. Ltd.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o1049 [doi:10.1107/S1600536808012324]

5,7-Bis(1-benzothiophen-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxine

P. Sugumar, S. Ranjith, J. A. Clement, A. K. Mohanakrishnan and M. N. Ponnuswamy

Comment

Sulfur containing Schiff bases (Pellis & West, 1968; Cohen *et al.*, 1977; Csaszar & Morvay,1983; Lakshmi *et al.*, 1985) and their thiophen derivatives (EI-Maghraby *et al.*, 1984; Dzhurayev *et al.*, 1992) possess pharmacological activities such as anti-bacterial, anti-cancer, anti-inflammatory and anti-toxic properties (Gewald *et al.*, 1996). Benzo[*b*]thiophene analogs have been shown to possess interesting estrogenic and antiestrogenic effects. We report here the crystal structure of the title compound.

The C1—C8/S3 and C15—C22/S2 benzothiophene ring systems are essentially planar and are oriented at angles of $20.57 (3)^{\circ}$ and $6.70 (3)^{\circ}$, respectively, with respect to the thiophene ring. The dihedral angle between the two benzothiophene ring systems is $26.83 (3)^{\circ}$. Both the major and minor conformers of the disordered dioxane ring adopt half-chair conformations. The crystal packing is stabilized by van der Waals forces.

Experimental

The title compound was prepared according to the procedure reported by Amaladass *et al.* (2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation method.

Refinement

The methylene C atoms of the dioxane ring are disordered over two positions (C11A/C11B and C12A/C12B) with refined occupancies of 0.623 (3) and 0.377 (3). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same U^{ij} parameters were used for atoms C11A and C11B, and C12A and C12B. H atoms were positioned geometrically (C—H = 0.93 Å or 0.97 Å) and were treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

5,7-Bis(1-benzothiophen-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxine

Crystal data C₂₂H₁₄O₂S₃

 $F_{000} = 840$

$M_r = 406.51$	$D_{\rm x} = 1.478 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4583 reflections
a = 16.1602 (5) Å	$\theta = 2.8 - 33.8^{\circ}$
b = 8.3524 (3) Å	$\mu = 0.42 \text{ mm}^{-1}$
c = 14.1814 (4) Å	T = 293 (2) K
$\beta = 107.428 \ (2)^{\circ}$	Block, light green
$V = 1826.28 (10) \text{ Å}^3$	$0.15\times0.13\times0.10\ mm$
Z = 4	

Data collection

Bruker Kappa APEXII area-detector diffractometer	4551 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
Monochromator: graphite	$\theta_{\text{max}} = 33.4^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.8^{\circ}$
ω and ϕ scans	$h = -24 \rightarrow 24$
Absorption correction: none	$k = -12 \rightarrow 10$
26571 measured reflections	$l = -21 \rightarrow 19$
7059 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_0^2) + (0.0749P)^2 + 0.444P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
7059 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
251 parameters	$\Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site logation: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	-0.28863 (11)	0.4031 (2)	-0.01894 (14)	0.0499 (4)	
H1	-0.2949	0.3569	-0.0804	0.060*	
C2	-0.35994 (12)	0.4572 (3)	0.00498 (16)	0.0578 (5)	
H2	-0.4145	0.4490	-0.0412	0.069*	
C3	-0.35223 (12)	0.5241 (2)	0.09694 (18)	0.0597 (5)	
H3	-0.4017	0.5590	0.1115	0.072*	
C4	-0.27258 (12)	0.5395 (2)	0.16681 (16)	0.0533 (4)	
H4	-0.2674	0.5837	0.2285	0.064*	
C5	-0.19971 (10)	0.48665 (19)	0.14227 (13)	0.0419 (3)	
C6	-0.20599 (10)	0.41809 (19)	0.05007 (12)	0.0400 (3)	
C7	-0.12301 (10)	0.3765 (2)	0.03966 (13)	0.0430 (3)	
H7	-0.1153	0.3287	-0.0164	0.052*	
C8	-0.05619 (10)	0.41564 (19)	0.12239 (11)	0.0374 (3)	
C9	0.03586 (9)	0.39615 (18)	0.13747 (11)	0.0364 (3)	
C10	0.07580 (9)	0.29651 (18)	0.08760 (11)	0.0357 (3)	
C11A	0.08383 (17)	0.1322 (5)	-0.0432 (2)	0.0502 (8)	0.623 (3)
H11A	0.0937	0.2125	-0.0881	0.060*	0.623 (3)
H11B	0.0543	0.0420	-0.0820	0.060*	0.623 (3)
C12A	0.16828 (17)	0.0790 (3)	0.0260 (2)	0.0485 (6)	0.623 (3)
H12A	0.1574	-0.0005	0.0707	0.058*	0.623 (3)
H12B	0.2022	0.0283	-0.0117	0.058*	0.623 (3)
C11B	0.0915 (3)	0.0850 (5)	-0.0061 (4)	0.0502 (8)	0.377 (3)
H11C	0.0623	0.0295	-0.0670	0.060*	0.377 (3)
H11D	0.1046	0.0059	0.0464	0.060*	0.377 (3)
C12B	0.1754 (3)	0.1472 (7)	-0.0147 (2)	0.0485 (6)	0.377 (3)
H12C	0.2092	0.0622	-0.0318	0.058*	0.377 (3)
H12D	0.1658	0.2309	-0.0643	0.058*	0.377 (3)
C13	0.16712 (9)	0.30254 (18)	0.12251 (11)	0.0365 (3)	
C14	0.19858 (9)	0.40987 (19)	0.19816 (11)	0.0362 (3)	
C15	0.28812 (9)	0.44752 (19)	0.24924 (11)	0.0352 (3)	
C16	0.36041 (10)	0.3755 (2)	0.23942 (12)	0.0416 (3)	
H16	0.3587	0.2893	0.1973	0.050*	
C17	0.43920 (10)	0.44442 (19)	0.29966 (11)	0.0380 (3)	
C18	0.52506 (11)	0.4008 (2)	0.30912 (15)	0.0512 (4)	
H18	0.5366	0.3159	0.2725	0.061*	
C19	0.59199 (11)	0.4840 (2)	0.37253 (15)	0.0521 (4)	
H19	0.6489	0.4558	0.3781	0.062*	
C20	0.57576 (11)	0.6105 (2)	0.42876 (14)	0.0483 (4)	
H20	0.6220	0.6645	0.4722	0.058*	
C21	0.49236 (11)	0.6563 (2)	0.42076 (13)	0.0469 (4)	
H21	0.4816	0.7414	0.4578	0.056*	
C22	0.42398 (9)	0.57260 (19)	0.35592 (11)	0.0374 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

01	0.03162 (7)	0.19777 ((15) 0.013	04 (9) 0.	0476 (3)	
02	0.21883 (7)	0.21067 ((15) 0.084	07 (9) 0.	0467 (3)	
S1	0.11311 (2)	0.50367 ((5) 0.225	88 (3) 0.	04068 (11)	
S2	0.31369 (3)	0.60648 ((5) 0.333	05 (3) 0.	04677 (12)	
S3	-0.09260 (3)	0.49989 ((6) 0.215	76 (3) 0.	04834 (13)	
Atomic displ	lacement parameter:	$s(A^2)$				
1	1. 1.11	U ²²	L/ ³³	U^{12}	U^{13}	U^{23}
C1	0 0415 (8)	0.0560(10)	0 0467 (9)	-0.0071(7)	0.0047(7)	0 0089 (8)
C2	0.0338 (8)	0.0654 (12)	0.0667 (12)	-0.0030(8)	0.0037(8)	0.0162(10)
C3	0.0355 (8)	0.0585(11)	0.0856(15)	0.0057 (8)	0.0037(0)	0.0102(10) 0.0054(10)
C4	0.0333(0)	0.0505(11) 0.0515(10)	0.0684(12)	0.0037(0)	0.0192 (8)	-0.0063(9)
C5	0.0336(7)	0.0393 (8)	0.0529 (9)	-0.0002(6)	0.0131 (6)	0.0001 (7)
C6	0.0355(7)	0.0390 (8)	0.0445(8)	-0.0019(6)	0.0103 (6)	0.0061 (6)
C7	0.0352 (7)	0.0473 (9)	0.0470 (8)	0.0003 (6)	0.0132 (6)	0.0079 (7)
C8	0.0331 (7)	0.0393 (8)	0.0401 (7)	0.0004 (5)	0.0114 (5)	0.0008 (6)
C9	0.0316 (6)	0.0395 (8)	0.0378 (7)	-0.0003(5)	0.0098 (5)	0.0003 (6)
C10	0.0332 (6)	0.0376 (7)	0.0353 (7)	-0.0025 (5)	0.0086 (5)	-0.0015 (6)
C11A	0.0450 (11)	0.070 (2)	0.0369 (17)	-0.0104 (12)	0.0148 (13)	-0.0198 (14)
C12A	0.0432 (11)	0.0540 (18)	0.0478 (15)	0.0009 (11)	0.0128 (11)	-0.0150 (11)
C11B	0.0450 (11)	0.070 (2)	0.0369 (17)	-0.0104 (12)	0.0148 (13)	-0.0198 (14)
C12B	0.0432 (11)	0.0540 (18)	0.0478 (15)	0.0009 (11)	0.0128 (11)	-0.0150 (11)
C13	0.0340 (7)	0.0378 (8)	0.0383 (7)	0.0019 (5)	0.0116 (5)	-0.0024 (6)
C14	0.0317 (6)	0.0395 (8)	0.0368 (7)	-0.0001 (5)	0.0095 (5)	-0.0018 (6)
C15	0.0338 (7)	0.0372 (7)	0.0349 (7)	-0.0016 (5)	0.0106 (5)	-0.0026 (6)
C16	0.0363 (7)	0.0423 (8)	0.0461 (8)	-0.0022 (6)	0.0122 (6)	-0.0089(7)
C17	0.0338 (7)	0.0402 (8)	0.0411 (7)	-0.0023 (6)	0.0130 (6)	-0.0008 (6)
C18	0.0364 (8)	0.0547 (10)	0.0645 (11)	0.0013 (7)	0.0181 (7)	-0.0109 (8)
C19	0.0328 (8)	0.0577 (11)	0.0659 (11)	-0.0027 (7)	0.0153 (7)	-0.0001 (9)
C20	0.0360 (8)	0.0509 (10)	0.0535 (9)	-0.0103 (7)	0.0066 (7)	0.0011 (8)
C21	0.0402 (8)	0.0486 (9)	0.0495 (9)	-0.0081 (7)	0.0096 (7)	-0.0090 (7)
C22	0.0324 (7)	0.0401 (8)	0.0394 (7)	-0.0029 (6)	0.0103 (5)	-0.0005 (6)
01	0.0379 (6)	0.0534 (7)	0.0495 (6)	-0.0055 (5)	0.0100 (5)	-0.0169 (5)
O2	0.0355 (5)	0.0520 (7)	0.0520 (6)	0.0028 (5)	0.0121 (5)	-0.0160 (5)
S1	0.03413 (18)	0.0475 (2)	0.0409 (2)	-0.00031 (15)	0.01199 (14)	-0.00916 (16)
S2	0.03469 (19)	0.0501 (2)	0.0539 (2)	-0.00041 (16)	0.01081 (16)	-0.01687 (18)
S3	0.0361 (2)	0.0621 (3)	0.0464 (2)	0.00043 (17)	0.01175 (16)	-0.01084 (19)
Geometric p	oarameters (Å, °)					

C1—C2	1.372 (3)	C11B—O1	1.434 (2)
C1—C6	1.405 (2)	C11B—C12B	1.490 (3)
C1—H1	0.93	C11B—H11C	0.97
C2—C3	1.390 (3)	C11B—H11D	0.97
С2—Н2	0.93	C12B—O2	1.465 (3)
C3—C4	1.375 (3)	C12B—H12C	0.97
С3—Н3	0.93	C12B—H12D	0.97
C4—C5	1.396 (2)	C13—O2	1.3627 (18)

C4—H4	0.93	C13—C14	1.373 (2)
C5—C6	1.403 (2)	C14—C15	1.445 (2)
C5—S3	1.7361 (17)	C14—S1	1.7325 (15)
C6—C7	1.435 (2)	C15—C16	1.358 (2)
С7—С8	1.375 (2)	C15—S2	1.7470 (15)
С7—Н7	0.93	C16—C17	1.425 (2)
C8—C9	1.447 (2)	C16—H16	0.93
C8—S3	1.7496 (16)	C17—C22	1.400 (2)
C9—C10	1.372 (2)	C17—C18	1.401 (2)
C9—S1	1.7318 (15)	C18—C19	1.371 (3)
C10—O1	1.3622 (18)	C18—H18	0.93
C10—C13	1.410 (2)	C19—C20	1.395 (3)
C11A—O1	1.433 (2)	С19—Н19	0.93
C11A—C12A	1.490 (3)	C20—C21	1.373 (2)
C11A—H11A	0.97	C20—H20	0.93
C11A—H11B	0.97	C21—C22	1.395 (2)
C12A—O2	1.467 (2)	C21—H21	0.93
C12A—H12A	0.97	C22—S2	1.7365 (15)
C12A—H12B	0.97		
C2—C1—C6	119.47 (18)	C12B—C11B—H11D	107.8
C2—C1—H1	120.3	H11C-C11B-H11D	107.2
С6—С1—Н1	120.3	O2—C12B—C11B	103.6 (3)
C1—C2—C3	121.26 (17)	O2—C12B—H12C	111.0
C1—C2—H2	119.4	C11B—C12B—H12C	111.0
С3—С2—Н2	119.4	O2—C12B—H12D	111.0
C4—C3—C2	121.00 (18)	C11B—C12B—H12D	111.0
С4—С3—Н3	119.5	H12C—C12B—H12D	109.0
С2—С3—Н3	119.5	O2—C13—C14	123.51 (13)
C3—C4—C5	117.93 (19)	O2-C13-C10	122.83 (13)
C3—C4—H4	121.0	C14—C13—C10	113.66 (13)
С5—С4—Н4	121.0	C13—C14—C15	127.90 (14)
C4—C5—C6	122.04 (16)	C13—C14—S1	109.79 (11)
C4—C5—S3	126.46 (15)	C15-C14-S1	122.30 (12)
C6—C5—S3	111.48 (12)	C16—C15—C14	127.96 (14)
C5—C6—C1	118.29 (16)	C16—C15—S2	111.78 (11)
C5—C6—C7	112.69 (14)	C14—C15—S2	120.24 (11)
C1—C6—C7	129.00 (17)	C15—C16—C17	113.66 (14)
C8—C7—C6	111.96 (15)	С15—С16—Н16	123.2
С8—С7—Н7	124.0	С17—С16—Н16	123.2
С6—С7—Н7	124.0	C22—C17—C18	118.81 (15)
С7—С8—С9	127.53 (14)	C22-C17-C16	111.87 (13)
C7—C8—S3	112.65 (12)	C18—C17—C16	129.32 (16)
C9—C8—S3	119.82 (11)	C19—C18—C17	119.69 (17)
С10—С9—С8	127.84 (14)	C19—C18—H18	120.2
C10—C9—S1	109.84 (11)	C17—C18—H18	120.2
C8—C9—S1	122.33 (12)	C18—C19—C20	120.82 (16)
O1—C10—C9	123.31 (13)	С18—С19—Н19	119.6
O1—C10—C13	122.97 (13)	С20—С19—Н19	119.6
C9—C10—C13	113.69 (13)	C21—C20—C19	120.79 (16)

supplementary materials

O1—C11A—C12A	108.9 (2)	С21—С20—Н20	119.6
O1—C11A—H11A	109.9	С19—С20—Н20	119.6
C12A—C11A—H11A	109.9	C20—C21—C22	118.62 (17)
O1—C11A—H11B	109.9	C20—C21—H21	120.7
C12A—C11A—H11B	109.9	C22—C21—H21	120.7
H11A—C11A—H11B	108.3	C21—C22—C17	121.27 (15)
O2—C12A—C11A	113.1 (2)	C21—C22—S2	127.40 (13)
O2—C12A—H12A	109.0	C17—C22—S2	111.34 (11)
C11A—C12A—H12A	109.0	C10-01-C11A	113.88 (16)
O2—C12A—H12B	109.0	C10-01-C11B	108.6 (3)
C11A—C12A—H12B	109.0	C13—O2—C12B	114.2 (2)
H12A—C12A—H12B	107.8	C13—O2—C12A	109.99 (15)
O1—C11B—C12B	117.9 (4)	C9—S1—C14	92.98 (7)
O1—C11B—H11C	107.8	C22—S2—C15	91.35 (7)
C12B—C11B—H11C	107.8	C5—S3—C8	91.20 (8)
O1—C11B—H11D	107.8		
$C_{6}-C_{1}-C_{2}-C_{3}$	-12(3)	C15-C16-C17-C18	179 46 (17)
C1 - C2 - C3 - C4	0.6(3)	C_{22} C_{17} C_{18} C_{19}	-0.2(3)
$C_2 = C_3 = C_4 = C_5$	0.0(3)	$C_{16} - C_{17} - C_{18} - C_{19}$	-179.69(18)
C_{3} C_{4} C_{5} C_{6}	-0.7(3)	C_{17} C_{18} C_{19} C_{20}	0.8 (3)
C_{3} C_{4} C_{5} S_{3}	17748(15)	C_{18} C_{19} C_{20} C_{21}	-10(3)
C4 - C5 - C6 - C1	01(2)	C19 - C20 - C21 - C22	0.7(3)
83-C5-C6-C1	-17833(13)	$C_{20} = C_{21} = C_{22} = C_{17}$	-0.1(3)
C4-C5-C6-C7	178 37 (16)	$C_{20} = C_{21} = C_{22} = C_{11}$	179 76 (14)
83 <u>-</u> C5 <u>-</u> C6 <u>-</u> C7	-0.02(18)	$C_{18} = C_{17} = C_{22} = C_{21}$	-0.2(2)
C_{2} C_{1} C_{6} C_{5}	0.8(2)	C16-C17-C22-C21	17943(15)
$C_2 = C_1 = C_6 = C_7$	-177.15(17)	C18 - C17 - C22 - S2	179.96 (13)
$C_{5} - C_{6} - C_{7} - C_{8}$	-0.8(2)	C16 - C17 - C22 - S2	-0.43(18)
C1 - C6 - C7 - C8	177 27 (16)	C9-C10-O1-C11A	166 6 (2)
C_{6} C_{7} C_{8} C_{9}	-177.96(15)	C_{13} C_{10} C_{10} C_{11} C_{11}	-152(3)
C6-C7-C8-S3	1 29 (18)	C9-C10-O1-C11B	-1663(3)
C7 - C8 - C9 - C10	-204(3)	C_{13} $-C_{10}$ $-O_{1}$ $-C_{11B}$	11 9 (3)
S3-C8-C9-C10	16045(14)	C12A - C11A - O1 - C10	43 7 (3)
C7 - C8 - C9 - S1	159 31 (14)	C12A— $C11A$ — $O1$ — $C11B$	-396(5)
S3-C8-C9-S1	-19.89(18)	C12B— $C11B$ — $O1$ — $C10$	-467(5)
C8 - C9 - C10 - O1	0.2.(3)	C12B $C11B$ $O1$ $C11A$	60.0(5)
\$1-C9-C10-O1	-17948(12)	C14-C13-O2-C12B	-1602(3)
C8-C9-C10-C13	-178.15(15)	C10-C13-O2-C12B	194(3)
S1-C9-C10-C13	2 15 (17)	C14-C13-O2-C12A	163 91 (19)
01 - C11A - C12A - 02	-62.3(4)	C10-C13-O2-C12A	-164(2)
01-C11B-C12B-O2	64.4 (6)	$C_{11B} - C_{12B} - O_{2} - C_{13}$	-46.1 (4)
01	0.4 (2)	C11B-C12B-O2-C12A	43.8 (2)
C9—C10—C13—O2	178.81 (14)	C11A—C12A—O2—C13	47.1 (3)
01-C10-C13-C14	-179.88(14)	C11A—C12A—O2—C12B	-56.9 (4)
C9-C10-C13-C14	-1.5 (2)	C10-C9-S1-C14	-1.77(12)
O2-C13-C14-C15	0.8 (3)	C8—C9—S1—C14	178.51 (13)
C10-C13-C14-C15	-178.84 (15)	C13—C14—S1—C9	0.95 (13)
O2-C13-C14-S1	179.79 (12)	C15—C14—S1—C9	179.96 (13)
C10-C13-C14-S1	0.11 (17)	C21—C22—S2—C15	-179.22 (16)
-			

C13-C14-C15-C16	-6.2 (3)	C17—C22—S2—C15	0.63 (13)
S1-C14-C15-C16	174.99 (14)	C16—C15—S2—C22	-0.69 (13)
C13-C14-C15-S2	171.90 (13)	C14—C15—S2—C22	-179.06 (13)
S1-C14-C15-S2	-6.92 (19)	C4—C5—S3—C8	-177.68 (17)
C14—C15—C16—C17	178.79 (15)	C6—C5—S3—C8	0.63 (13)
S2-C15-C16-C17	0.57 (19)	C7—C8—S3—C5	-1.11 (13)
C15-C16-C17-C22	-0.1 (2)	C9—C8—S3—C5	178.20 (13)

Fig. 1

