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Abstract: In this paper, the thermal conductivity behavior of synthetic and natural esters reinforced
with 2D nanostructures—single hexagonal boron nitride (h-BN), single molybdenum disulfide (MoS2),
and hybrid h-BN/MOS2—were studied and compared to each other. As a basis for the synthesis of
nanofluids, three biodegradable insulating lubricants were used: FR3TM and VG-100 were used as
natural esters and MIDEL 7131 as a synthetic ester. Two-dimensional nanosheets of h-BN, MoS2,

and their hybrid nanofillers (50/50 ratio percent) were incorporated into matrix lubricants without
surfactants or additives. Nanofluids were prepared at 0.01, 0.05, 0.10, 0.15, and 0.25 weight percent of
filler fraction. The experimental results revealed improvements in thermal conductivity in the range
of 20–32% at 323 K with the addition of 2D nanostructures, and a synergistic behavior was observed
for the hybrid h-BN/MoS2 nanostructures.

Keywords: thermal conductivity; 2D structures; boron nitride; molybdenum disulfide; hybrid;
nanolubricants; esters

1. Introduction

For over a century, fossil fuels have been the major contributor to the energy sector. Challenges to
mitigate pollution, global warming, and more will be critical. This, together with the imminent scarcity
of oil reserves, increases in oil prices, rises in lubricant disposal costs, as examples, will promote the
development of alternative sources of energy as well as novel technologies to attend the current and
future world energy needs with sustainability and efficiency [1–3].

Petroleum-based fluids and lubricants are applied as lubricants and dielectric and coolant material
in electrical or electronic devices such as power systems (transformers), machinery, and the automotive
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and biomedical industries, among others [4–7]. Paraffinic and naphthenic oils are examples of mediums
used for these applications [8]. Nevertheless, these materials exacerbate environmental issues due to
their eco-toxicity, incomplete biodegradability, and highly probable carcinogenic characteristics [9,10].
Some of the main limitations to be solved regarding these applied fluids are how to dispose of them
and prevent products to have a significant negative impact on health and environmental-related
consequences, i.e., skin and respiratory diseases or in case of a spillage [11–14].

More often, biodegradable synthetic products are used in environmentally-sensitive areas such
as electric, electronic, automotive, agricultural, and biomedical industries [4–7,15–17]. The increased
environmental awareness is a primary driving force for the novel technological developments in these
fields [11,18,19]. Synthetic and natural esters are an alternate to petroleum-based oils because they
have non-toxic attributes and are renewable and environmentally-friendly. Moreover, synthetic esters
are highly resistant to oxidation [20,21] and have high fire points. It has been proven that these fluids
reduce hydrocarbon and carbon monoxide emission levels, which is the reason why their use has been
increased recently in the industry. Furthermore, they possess great characteristics such as excellent
lubricity, high thermal conductivity, high flash and fire points, and biodegradability, as compared to
petroleum-based fluids. Nevertheless, despite specific environmental benefits of natural or vegetable
fluids, their characteristics do not always accomplish the required properties [22].

Due to their inherent risks, such as fire and pollution (caused by leakage and spills), natural
alternatives derived from triglycerides in vegetable oils and animal fat are being sought [23–26].
Although a great sustainable feedstock for novel materials, these are susceptible to variations in their
compositions due to different processing, crop conditions, and climate and environment, among
others [27]. In general, the natural esters are presented as fatty acids, containing the ester function and
a long aliphatic chain that dictate some chemical and mechanical properties of the oils [28]. The oils
based on saturated fatty acids are more chemically stable and very viscous. Unsaturated (mono, di, tri)
can be much less viscous but are prone to oxidation [28], which leads to an increase in viscosity and
consequently affect thermal, tribological, and other properties of the oil [29].

In industrial and thermal systems, heat dissipation is a paramount phenomenon. Devices,
machines, and equipment miniaturization design require better performance (thermal dissipation
efficiency) of fluids and lubricants due to environmental challenges and global market competition [22,30].
Several heat transfer fluids have been under research with the aid of nanoreinforcements to improve
their performance [4,5,31–34]. In recent years, environmental awareness has gained increased attention
and is a driving force towards the novel technology and innovation developments in diverse fields.
Biodegradability has become a key design factor and request for products. In this sense, a good
candidate to replace petroleum-based oils are synthetic or natural esters based on vegetable oils
such as sunflower, coconut, corn, soybean, rapeseed, olive, palm oil, and others [18,19,30,35,36].
These materials are an alternative to mineral oils because they have non-toxic properties and are
renewable and environmentally-friendly.

Two-dimensional nanomaterials appear as an attractive alternative due to the high surface area
they possess for heat transfer. Among these 2D nanomaterials are hexagonal boron nitride (h-BN) and
molybdenum disulfide (MoS2), which are suitable for development of high-performance composites
applied in several industrial and technological sectors due to their exceptional electrical, thermal,
and mechanical properties [37–39]. In this sense, hexagonal boron nitride (h-BN) is investigated
in this study, since it is applied to several substrates to reduce viscosity and increase thermal
conductivity [7,24,37–41]. The capability of h-BN to improve the thermal conductivity of solid
nanocomposites based on epoxy and polyurethane was previously reported by Ribeiro et al. [37–39].
Nonetheless, the application of h-BN to mineral oils, natural esters, and other fluids, is being
studied [5,7,26,42]. Taha-Tijerina et al. [7] showed that h-BN was able to improve the thermal
conductivity of a mineral oil, and—differently to graphene—functioned as an electric insulator rather
than a conductor. Such phenomena is due to the ability of some nanoparticles, such as F3O4 [25],
h-BN [25], Al2O3 [43], SPION [44], CuO [43], and BaTiO3 [45] to trap moving electrons. Du et al. [42]
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applied boron nitride (BN) to a vegetable oil and found that the thermal conductivity was increased
in comparison with the pure oil. The use of BN allowed the lubricant to be less viscous at higher
temperatures which further enhanced the temperature dissipation. Salehirad and Nikje [5] reported
similar results applying h-BN to a mineral oil: increased thermal conductivity, lower viscosity, and
better insulation capability when compared to the pure mineral oil. Li et al. [46] developed ethylene
glycol/boron nitride nanofluids, varying the size of the nanoparticles. It was demonstrated that
nanofluids containing larger nanoparticles have higher improvements in thermal conductivity than
smaller nanoparticles. Ilhan et al. [47] reported an enhancement of thermal conductivity for h-BN
nanofluids of up to 26%, 22% and 16% at 3 vol.% for water, water/ethylene glycol mixture, and
ethylene-glycol-based nanofluids, respectively.

Molybdenum disulfide (MoS2) involves very optimal thermal and chemical stabilities. It demonstrates
applications as a catalyst and lubricant due to its unique properties like anisotropy, photocorrosion
resistance and chemical inertness [48,49]. MoS2 nanostructures have good thermo-physical features
and great anti-friction properties, making it another promising material as reinforcement for the cooling
purposes of nanofluids. Diverse factors such as the composition and loading of nanoparticles,
suspension stability, base fluid composition, nanofluids preparation method, surface modifier,
and surfactant application may influence the thermo-physical properties of nanofluids, including
viscosity and thermal transport [50–55]. Su et al. [52] investigated stability and thermal transport
behavior of MoS2, water-based, and oil-based nanofluids at various concentrations (0.01 wt.% to
0.5 wt.%). It was observed that by increasing the filler fraction, the thermal conductivity increased.
Furthermore, the thermal conductivity improvement in MoS2 and water-based nanofluids was higher
than for oil-based nanofluids, which according to Su et al. was due to a better dispersion and
suspension stability achieved on water-based fluid. Zeng et al. found that thermal conductivity of
dibenzyl-toluene-based MoS2 nanofluids increased from 17.5 to 37.5% as the temperature increased
from 40 to 180 ◦C [53].

In this work, the effect of incorporation and homogeneous dispersion of single h-BN, MoS2,
and hybrid h-BN/MoS2 mixture at various concentrations (by weight) within synthetic and natural esters,
aims to improve their thermal conductivity performance, which is determined at various evaluating
temperatures (up to 323 K). The contributions of this work rely on the aspect of biodegradable materials
suitable for industrial applications, such as energy and metal-mechanic field. The nanofluids with only
h-BN or MoS2 nanofiller components were compared with their hybrid h-BN/MoS2 combination.

2. Materials and Methods

In our study, synthetic esters Midel 7131 (M&I Materials-Manchester, UK) and natural esters—
Envirotemp® FR3™ (Cargill Industrial Specialties–Minneapolis, MN, USA) and VG-100 (Prolec GE
International, Apodaca, México) [56] (Table 1)—were used as base materials to develop different
nanofluids with h-BN, MoS2, and h-BN/MoS2 nanostructures (Table 2) at various concentrations of
0.01, 0.05, 0.10, 0.15, and 0.25 wt.%. The nanofluids with the hybrid composition h-BN/MoS2 were
used at a mass ratio of 1:1 between h-BN and MoS2. Nanofillers were obtained by wet exfoliation
in tetrahydrofuran (THF), using probe ultrasound for 5 h at an amplitude of 35%. The exfoliated
material was filtered and dried in a vacuum oven for 24 h at 80 ◦C. To prepare the nanofluids,
a two-step method to homogeneously disperse the 2D nanostructures within the esters was used.
Glass containers were prepared with each set of fluids at different filler fractions: 0.01, 0.05, 0.10, 0.15,
and 0.25 wt.% of the nanostructures for each set of fluid. Extended water bath sonication (~4–5 h)
was used (Branson ultrasonic homogenizer model 5510-Danbury, CT, USA, 40 kHz). To avoid the
nanostructures’ agglomeration and quick sedimentation, the temperature of the water bath was
maintained constant at room temperature (24 ◦C). Samples were maintained on a drawer for at least
2 weeks without significant sedimentation. Experimental evaluations were performed after 3 days of
sample preparation. This process assists in obtaining the stable homogeneous nanofluids, which are
further evaluated.
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Table 1. Material properties [56–59].

General Properties Materials

Units Standard Envirotemp® FR3 TM Midel 7131 VG-100

Density @ 25 ◦C g/cm3 ASTM D924 0.92 0.95 0.92
Kinematic viscosity @ 25 ◦C mm2/s ASTM D445 - 53 -
Kinematic viscosity @ 40 ◦C mm2/s ASTM D445 33 29.5 31

Kinematic Viscosity @ 100 ◦C mm2/s ASTM D445 8 5.3 6
Thermal conductivity @ 25 ◦C (W m−1 K−1) ASTM D7896 0.167 0.147 -
Thermal conductivity @ 50 ◦C (W m−1 K−1) ASTM D7896 - 0.145 -

Pour point (◦C) ASTM D97 −18 to −23 −56 −12 to −15

Table 2. Nanostructures characteristics at 298 K.

General Properties h-BN MoS2 Units

Purity 98 99.98 %
Density 2.29 5.06 gr/cm3

Particle size 5.0–10.0 µm
Thermal conductivity 300–500 [60] 38–131 [61,62] W/m K

Nanomaterials’ morphology and thickness were analyzed by atomic force microscopy (AFM)
using an Asylum Research MFP-3D-AS (Belo Horizonte, MG, Brazil), operated in contact mode.
An Olympus AC240TS probe (Belo Horizonte, MG, Brazil) and a 70 kHz resonant frequency were used.
Specimens were prepared by ultrasonically dispersing the 2D nanostructures in isopropanol (IPA) and
water mixture. This was followed by the deposition of dispersion drops on mica, which was then dried.
A Quanta™ 200 FEG-FEI microscope (Belo Horizonte, MG, Brazil), operated under a vacuum with a
30.0 kV accelerating voltage, was used to obtain SEM images. The 2D nanostructures were prepared
by dispersing the material in IPA/water mixture using an ultrasonic water bath (2 h); subsequently,
the sample was cast onto a silicon substrate and evaporated in air at room temperature. The chemical
composition of the 2D nanostructures was investigated (EDS) using a FEI QUANTA™ 200 microscope
(Belo Horizonte, MG, Brazil). To evaluate the homogeneity of the mixture between them, EDS mapping
was performed.

SEM was also performed to characterize the microstructure of the h-BN/MoS2 mixture. Figure 1a–d
shows SEM images of h-BN, MoS2, and h-BN/MoS2 nanosheets with different morphologies and
sizes. Figure 1a shows a typical SEM image of a large-size h-BN sample, which consists of thin and
crumpled sheets with a lateral dimension of about ~5–20 µm. Figure 1b shows the morphology of
MoS2. Figure 1c,d shows a typical SEM image of the h-BN/MoS2 mixture, which keeps its features
between its single components. Finally, Figure 1e–f presents the AFM image of h-BN/MoS2 and its
corresponding height profile (thickness approximately 2.3 nm).

The h-BN/MoS2 mixture can be also confirmed by EDS maps obtained from the SEM image
(Figure 2a), which displays the homogeneity of the mixture of h-BN and MoS2. Elements B, N, Mo,
and S are uniformly distributed in the whole area according to Figure 2b–e.

Raman spectra of the h-BN nanostructures were obtained by a Raman Confocal Spectrometer WITec,
model Alpha 300R (Sao Paulo, SP, Brazil), using a laser (532 nm) as the excitation source. The MoS2

nanosheets on the Raman spectrum showed the main characteristic bands of this nanostructure
(Figure 3a). The first one, in 382 cm−1, is attributed to E2g vibrational mode, and the second
(in 410 cm−1) is related to A1g mode. On the other hand, these modes correspond to the in-plane
vibrations of sulfur atoms in one direction and molybdenum atoms in another one, and to out-of-plane
vibrations (A1g) of sulfur atoms. For the sample containing h-BN, a spectrum with only one intense
band in 1372 cm−1, in relation to the E2g vibrational mode, was observed. In relation to the mixture
of these nanofillers, the same three bands from MoS2 and h-BN nanosheets were presented, without
another additional band or significative shifting from original positions related from the original
nanomaterials. [37,63].
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X-ray diffraction (XRD) evaluation was performed using a Shimadzu XRD-7000 system (Sao Paulo,
SP, Brazil) employing Cu Kα radiation (λ = 1.5418 Å). The XRD patterns were obtained in the 2θ range



Nanomaterials 2020, 10, 1160 6 of 13

between 4◦ and 80◦ at a scanning rate of 4◦ min−1. These results were found to be fully matched
with a JCPDS 37–1492 card. The XRD spectrum of MoS2 presented diffraction peaks in 2θ equal to
14.4◦, 32.8◦, 39.6◦, 49.8◦, and 60.3◦ related to (002), (100), (103), (105), and (110) planes, respectively.
The diffractogram of h-BN depicted peaks in 2θ equal to 26.7◦ and 41.7◦ from the (002) and (100) planes
(Figure 3b) [38]. The mixture presented the same peaks related to both nanofillers, without additional
peaks or significative shifting from the original MoS2 or h-BN diffraction spectra.

Thermal conductivity measurements were carried out on nanofluids at various nanostructure
concentrations according to the transient hot-wire (THW) technique, with a KD2 Pro device.
A temperature-dependence scan was also performed, maintaining a thermal equilibrium for at
least 10 min before each set of evaluations. A minimum of 7 measurements were taken for each set of
experiments to report average values with standard deviation as error bars.

3. Results

Improvements in thermal conductivity in synthetic and natural ester systems have been obtained
for different types of nanofillers. Figure 4 depicts the temperature-dependent thermal conductivity
performance of Midel 7131 nanofluids with h-BN, MoS2, and h-BN/MoS2 at various filler fractions.
The synthetic ester did not show significant temperature dependency (less than 1% at 50 ◦C): actually,
a decrement in thermal conductivity was observed as temperature was increased, similar to other
authors’ findings [64,65]. In general, the thermal conductivity of the evaluated nanofluids gradually
increased for all the fillers and concentrations studied as temperature was also increased.
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Figure 4a depicts the effect of h-BN on the thermal conductivity of Midel 7131. As filler fraction and
temperature is increased, thermal conductivity also increases. For instance, at 323 K, improvements of
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12, 14, 15 and 19% are obtained at 0.01, 0.05, 0.10, and 0.15 wt.%, respectively. A maximum enhancement
of 24.2% in thermal conductivity was observed at 0.25 wt.% at 323 K. A similar improvement trend
was observed for the nanofluids with MoS2 addition (Figure 4b), showing higher enhancement than
h-BN reinforcement. Here, the improvement was 16, 19, 20.5, 23 and 26.5% at 0.01, 0.05, 0.10, 0.15,
and 0.25 wt.%, respectively. Thermal conductivity showed significant improvement when hybrid
nanostructures were applied as reinforcement. In this case, the incorporation of h-BN/MoS2 nanofiller,
contributed to improvement, was 20, 22, 24.5, 27 and 32% at 0.01, 0.05, 0.10, 0.15, and 0.25 wt.%,
respectively (Figure 4c).

Natural ester systems are shown in Figure 5 (FR3) and Figure 6 (VG-100). These two green
fluids displayed very similar levels of improvement for all fillers. Figures 5a and 6a show the effect
of h-BN-filler fraction and temperature rise, reaching a maximum improvement of ~20% in thermal
conductivity at 0.25 wt.% at 323 K.Nanomaterials 2020, 10, 1160 8 of 14 
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The addition of MoS2 within natural esters showed an improvement trend similar to h-BN
(Figures 5b and 6b). In this case, thermal conductivity enhancement of 10, 14, 16, 19 and 21% at 0.01,
0.05, 0.10, 0.15, and 0.25 wt.% was observed for FR3 fluid (Figure 5b). Moreover, VG-100 nanofluids
showed a slightly higher enhancement, reaching a maximum of 23% at 0.25 wt.% at 323 K (Figure 6b).

The incorporation of the h-BN/MoS2 nanofiller to natural esters resulted in significant
improvements in thermal conductivity. Achieving enhancements of 13, 19, 24, 27 and 30% at
0.01, 0.05, 0.10, 0.15, and 0.25 wt.% was observed for FR3 fluid (Figure 5c). Moreover, enhancements of
16, 21, 24, 30 and 32% at 0.01, 0.05, 0.10, 0.15, and 0.25 wt.%, respectively (Figure 6c), were observed for
VG-100 nanofluids.

The incorporation of 2D nanostructures significantly improves the performance of the nanofluids.
h-BN contributes to enhance thermal conductivity and MoS2 also contributes to the fluid’s reinforcement
and may help to obtain an homogenous dispersion of the nanofillers due to its well-known lubricant
properties [66,67]. It is suggested that due to the low filler fraction used, the observed enhancement
on thermal conductivity is due to molecular interactions (collisions) between the fluid and the 2D
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nanostructures [7,14,37,53,68,69]. However, observing thermal conductivity behavior during the
temperature-dependent evaluations indicates that this increase is based on the percolation mechanism
as well as the contribution of the Brownian motion of the sheet-like nanostructures [70–72]. As the
concentration of 2D nanostructures is increased in the synthetic or natural esters, the chance of phonons
to get scattered in the contiguous nanostructures increases proportionally, which leads to enhanced
contact conductance [73]. Consequently, thermal conduction channels are formed, which may increase
the thermal conductivity due to the percolation mechanism.

The heat transfer between colliding nanostructures may increase the thermal conductivity of the
nanofluids. Particularly, a higher temperature corresponds to a more intense Brownian motion [38].
Thus, at 323 K, the thermal conductivity of nanofluids is more apparent than at the other evaluating
temperatures. Moreover, liquid layering at the nanostructures/fluid can also contribute to the
improvement of thermal conductivity behavior [74–76].

In the hybrid nanofluids, it was observed that at room temperature, the effect of coupling h-BN and
MoS2 was similar as a single component reinforcement, either h-BN or MoS2. Moreover, as evaluating
temperature increased, the value of thermal conductivity was higher than the single component
nanofluids [77,78]. h-BN contributed to the increase of the thermal conductivity as well as MoS2,
promoting the dispersion of the nanostructures due to their lubricant properties [38,79].

4. Conclusions

Thermal transport phenomena in nanofluids was influenced by physical and chemical
characteristics of the base fluid, as well as interactions with the reinforcement nanostructures.
Environmentally-friendly nanofluids based on single h-BN, single MoS2, and hybrid h-BN/MoS2

nanostructures were developed at various filler fractions, and temperature-dependence evaluations
were performed for thermal conductivity. In general, all nanofluids showed a temperature-dependence
in thermal conductivity performance, indicating the role of the interaction of nanostructures among
synthetic and natural esters. The addition and homogeneous dispersion of these 2D nanomaterials
within conventional esters showed significant positive results on the effective thermal conductivity
performance. Thermal conductivity improved in the range of 21–23% for single reinforcement of h-BN
or MoS2 on natural esters and 23–27% for synthetic esters at 323 K, respectively. Furthermore, for the
hybrid h-BN/MoS2 nanofluids, an improvement of 30–32% was observed for natural esters and 32%
for synthetic esters at 323 K, respectively. Hence, the hybrid h-BN/MoS2 nanostructures dispersed in
conventional esters induced a high thermal conductivity, suggesting that the hybrid h-BN/MoS2 have
highly desirable multifunctional features for advanced materials applications.

This research showed the potential of an interesting synergistic effect resulting from the contribution
of two 2D nanostructures for synthetic and natural esters. Increased environmental awareness is
the main driving force for the development of novel technologies, such as the use of biodegradable
fluids and lubricants in environmentally-sensitive areas, which have great potential to succeed in
industrial applications.
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