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The influence of heterogeneous 
learning ability on the evolution of 
cooperation
Xiaogang Li1, Yini Geng1, Chen Shen1 & Lei Shi2,1

In this paper, we design a simple coevolution model to investigate the role of heterogeneous learning 
ability on the evolution of cooperation. The model weakens the winner’s learning ability in order to keep 
its current advantage. Conversely, it strengthens the loser’s learning ability for increasing the chance 
to update its strategy. In particular, we consider this coevolutionary model separately applying to both 
cooperators and defectors (rule I), only cooperators (rule II), as well as only defectors (rule III) in spatial 
prisoner’s dilemma game. Through numerical simulations, we find that cooperation can be promoted 
in rule II, whereas, cooperation is hampered in rule I and rule III. We reveal its potential reason from 
the viewpoint of enduring and expanding periods in game dynamics. Our results thus provide a deeper 
understanding regarding the heterogeneous learning ability on game theory.

As the core of all social dilemmas, the clash between personal prosperity and collective interests (social welfare) 
has become the focus of research in the fields of biology, economics and sociology1–3. Over the past two decades, 
the application of evolutionary game theory is consistently proven to be the most effective and mature tool for 
exploring the emergence and sustainability of cooperation4–6, and none has received as much attention as the 
prisoner’s dilemma game (PDG)7,8. By ranking the four payoffs (see the methods section for details), mutual 
cooperation can yield the highest collective payoff, yet the best choice for selfish individuals is defection regardless 
of the strategy adopted by the opponent.

Based on the research of Nowak et al.9, cooperation in a selfish environment has been maintained stably and 
further promoted under the application of many mechanisms10,11. Based on the more realistic situation, many 
mechanisms have been also proposed12–16, such as asymmetric interaction17–19, reward (or punishment)20,21, social 
diversity22–25, partner selection26, different update rules27,28, mobility29–32, multi-strategy (loner, tit-for-tat)33–36, to 
name but a few. Besides, heterogeneity provides diversity phenomenons for evolutionary games37–43. For example, 
the heterogeneity of age that is introduced into individual payoff by constructing an age-dependent function can 
promote the level of cooperation among population, especially when some individuals with certain characteristics 
or abilities became more influential44. Moreover, Amaral et al. explored the heterogeneity of the game and found 
that cooperation was reborn and greatly promoted by playing mixed games (including four different classes of 
game) on two different networks45. However, contrary to the above conclusions, Perc explored the impact of 
heterogeneity in public goods game by setting two types of scaling factors with uniform distribution and expo-
nential distribution, and found that strong heterogeneity did not show advantage in facilitating cooperation46. 
In addition, the experimental test found that there is almost no difference in the level of cooperation observed 
between the lattice and the scale-free network in the paired interactive prisoner’s dilemma47. More recently, the 
investigation about the effect of heterogeneity has the answer already: it depends on the specific definition of 
heterogeneity and updating rule48.

In this paper, we further investigate the effect of heterogeneous learning ability on the evolution of coopera-
tion. We therefore design a simple coevolutionary model, where the winner-weaken-loser-strengthen rule was 
incorporated, to test its performance on cooperation. This model decreases a player’s learning ability once its 
payoff is no less than the average payoff of its neighbors. Conversely, the learning ability of a player is increased 
when its payoff is less than the average payoff of its neighbors. Particularly, we also consider this coevolutionary 
model separately applying to both cooperators and defectors (rule I), only cooperators (rule II), as well as only 
defectors (rule III) in spatial prisoner’s dilemma game. Obviously, the heterogeneity of players’ learning ability is 
thus introduced in these three rules by this simple coevolutionary model. Interestingly, we find that the evolution 
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of cooperation has different performance in a heterogeneous population, where cooperation can be promoted in 
rule II, however, both rule I and rule III hamper the evolution of cooperation. Through our coevolutionary model, 
heterogeneous learning ability can be formed spontaneously no matter what rule is applied. However, heteroge-
neity alone can not explain the above results. We seek to its potential reason from the viewpoint of enduring and 
expanding periods as suggested in Wang et al. and Shigaki et al.49,50. Evolutionary snapshots reveal that, in rule 
II, cooperators have lower learning ability compared with defectors during the enduring periods, which enables 
the best environment for cooperation to evolve and increases the strength of network reciprocity. Whereas, in 
the other two rules, the situation is different, which decreases the survival chance of cooperators and lead to the 
easier invasion of defectors.

Results
We first consider the level of cooperation in dependence on the temptation to defect b for different values of incre-
ment d in Fig. 1. Compared with the basic version of the game (d = 0, each player can only carry out the evolution of 
strategy and learning ability w will maintain the homogeneous initialization setting throughout the game), coopera-
tion is restrained effectively. It is obvious that cooperators can survive in smaller range of b with increasing values of 
d. The same phenomenon can be also observed when considering the correlation between d and the threshold bC of 
cooperation vanishing in the inset. There is analogously linear negative correlation between d and bC, and bC drops 
to 1 when d approaches 0.08, which means that it is harder for cooperators to survive for higher values of d.

Apparently, heterogeneous learning ability can not facilitate cooperation in rule I, which further confirms the 
conclusion about the diversity impact of heterogeneity on cooperation that we mentioned in above. In order to 
find out the key point that affects cooperative behavior, we present evolutionary snapshots of strategy (the top 
row) and learning ability w (the bottom row) at the same MC step in Fig. 2. Specifically, in the beginning, cooper-
ators and defectors are separated into four bar-type parts, where learning ability of players on the left and right are 
fixed as the minimum value 0.1 and the maximum value 1, respectively. Such a setting provides us a convenient 
way to investigate the coevolution of strategy and learning ability evolving for players with extreme w.

Initially, cooperators and defectors on the boundary adopt strategies from each other. And the rougher inter-
face signifies the strategy learning behavior is more acute between players with higher w (players on the right). 
During this process, learning ability of players on the boundary changes slowly for their frequent learning behav-
ior. Particularly, players on the left (right) boundary tend to increase (decrease) the value of w in account of their 
initial learning ability setting. In contrast, players regardless of cooperators or defectors within the cluster prefer 
to decrease their learning ability until w reaches its minimum value 0.1 for they always have the same payoffs 
with environment, in which inside players on the left keep their initial lowest learning ability 0.1 unchanged. The 
system is relatively stable up to 100 MC steps, where the value of w of players inside the cluster equals to 0.1, while 
players on the boundary appear heterogeneity on learning ability. In this case, most border area is occupied by 
cooperators for their lower payoffs, which makes it convenient to separate cooperators by invading of defectors 
subsequently and indicates the start of enduring (END) period mentioned in49. The rapid downfall of cooperation 
stops at the domination of defectors, where cooperators in the cluster can gain the highest payoffs and defectors 
can hardly obtain payoffs for being surrounded by players with the same decision. Naturally, the conditions of 
cooperators and defectors shift and switch to the expanding (EXP) period, so that cooperators can survive ulti-
mately. However, it is also hard for cooperators to spread widely for their higher learning ability.

As we can find in Fig. 2, cooperators on the boundary are easy to enhance their learning ability under the 
exploitation of defectors. Even though they reverse the situation slightly later, there are still some cooperators with 
higher learning ability existing in the population. Thus, cooperators can survive by enduring defectors’ invasion 
successfully, but it is hard for them to prevail. In order to have an embedded understanding of learning ability, we 
further employ two extension rules, where only cooperators (defectors) are allowed to evolve their learning ability 
w through iteration process.

Figure 1.  Density of cooperation fC in dependence on temptation to defect b for d = 0, 0.01, 0.02, 0.03 and 0.05. 
Compared with the basic version of the game (d = 0), fC declines monotonously with increasing values of d. The 
inset shows the linear negative correlation between d and the threshold of b when cooperators disappear.

https://doi.org/10.1038/s41598-019-50451-2


3Scientific Reports |         (2019) 9:13920  | https://doi.org/10.1038/s41598-019-50451-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

For the above extension rules, we show how density of cooperation fC varies in dependence on the temptation 
to defect b for four different values of increment d. In Fig. 3, the left and right panels depict the cases of only coop-
erators and defectors evolving their learning ability, respectively. Intuitively, cooperation can be facilitated if only 
cooperators have coevolutionary behavior, whereas the phenomenon in the right panel is generally consistent 
with the results in Fig. 1, where cooperation is suppressed for increasing d. In addition, the positive effect in the 
left panel does not enhance continuously with increasing values of d and meets its optimal level at d = 0.05. As 
shown in the inset of depicting the correlation between d and bC, a peak arises at d = 0.05, whereafter bC declines 
with increasing d and always remains larger than the threshold in traditional version. As for the situation of only 
defectors evolving learning ability, the threshold of cooperation vanishing is pretty small and almost the same for 
most values of d (as shown in the right inset).

Likewise the initial distribution setting in Fig. 2, we employ characteristic snapshots to analyze the evolution 
of strategy and learning ability for the above two extension rules in Figs 4 and 5. We first consider the evolution in 
Fig. 4, where only cooperators have the right to evolve their learning ability. The evolution processes are similar 
for players with w = 0.1 between Figs 2 and 4. In detail, the value of w of players in the cluster remains the same, 
while a few cooperators on the boundary can enhance their learning ability. However, for players on the right, 
defectors with changeless w = 1 prefer to adopt strategies from cooperators with lower w through evolution, so 
that cooperators can collapse the field of defectors effectively. Conversely in Fig. 5, cooperators with w = 1 are 
exploited by defectors, whose learning ability has already reached the minimum value w = 0.1 through evolution. 
In this case, defectors with lower learning ability and higher payoff disintegrate cooperation camp rapidly.

Figure 2.  Characteristic snapshots of strategy (the top row) and learning ability (the bottom row) under 
specific initial distribution at 0, 10, 20, 100, 1000 and 50000 Monte Carlo steps. Initially, players are separated 
into four parts, where learning ability of cooperators (red) and defectors (gray) on the left and right is fixed as 
0.1 and 1, respectively. The results are obtained for d = 0.03, b = 1.01 and L = 300.

Figure 3.  Density of cooperation fC in dependence on b for d = 0, 0.01, 0.05 and 1 for two extension rules, 
where the coevolutionary behavior can only happen on cooperators (the left panel, rule II) or defectors (the 
right panel, rule III). The inset shows the correlation between d and the threshold of b when cooperators 
disappear.
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Comparing above evolution processes of two extension rules, cooperators with coevolutionary ability success-
fully survive over END period and expand through forming clusters in EXP period for enough higher learning 
ability of defectors. However, the rule of only defectors have the right of coevolution leads defectors possessing 
absolute advantage to plunder cooperators in a great extent. Thus, cooperators can rarely survive for they fail to 
enter EXP period ultimately.

Discussion
To discuss, we study the environment induced coevolution of learning ability in the prisoner’s dilemma game. 
In our model, a player can enhance (weaken) its learning ability if its payoff is less than (no less than) the aver-
age payoff of its neighbors. In order to investigate the role of heterogeneous learning ability on the evolution of 
cooperation, we also consider three related rules, where the evolutionary rules are affected by both cooperators 
and defectors (rule I), only cooperators (rule II) and only defectors (rule III). Quite interestingly, we find the 
flourishing cooperation in rule II, whereas the bad cooperation behavior in rule I and rule III. Characteristic 
snapshots reveal that the learning ability of boundary cooperators is always lower than boundary defectors, thus 
defectors are more willing to change its strategy, further lead cooperators have a higher probability to survive 
in the enduring period and introduce enhanced network reciprocity into the system. For the cases of rule I and 
rule III, the situation is the opposite. From previous understanding, the effect of heterogeneity on cooperation 
depends on specific definition of heterogeneity and updating rules. In this paper, our results show more diverse 
phenomena. Although the heterogeneity of player’s learning ability in these three rules is introduced via our 
coevolution rule, the performance of cooperation is totally different. From characteristic snapshots, we argue 
that heterogeneity alone cannot explain the flourishing cooperation phenomenon, the key lies in the two periods 

Figure 4.  Characteristic snapshot of strategy (the top row) and learning ability (the bottom row) for rule II, 
where only cooperators have the right to evolve their learning ability under specific initial distribution at 0, 10, 
200, 900 and 50000 MC steps. The implication of each colors is consistent with the meaning in Fig. 2. The results 
are obtained for d = 0.05, b = 1.02 and L = 300.

Figure 5.  Characteristic snapshot of strategy (the top row) and learning ability (the bottom row) for rule 
III, where only defectors have the right to evolve their learning ability under specific initial distribution. The 
parameters are consistent with those in Fig. 4.
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suggested in refs49,50. In the END period, cooperation must endure the exploit of defection and begin to form 
the compact cooperative clusters to support each other. If cooperation can survive in that period, then they can 
expand their territory in the EXP period to stable state with the support of network reciprocity. These two periods 
give us a useful analytical framework to explain the promotion or reduction of cooperation. In our results, the 
higher survival probability is the direct benchmark of the enhanced network reciprocity. In addition, we also 
implement the same procedure on scale-free network and find that the value of increment d has rare impact on 
the evolution of cooperation, for simple, here, we don’t present the results. We further consider that the payoff 
comparison only happens among players having the same or different strategies during the process of learning 
ability updating [refer to Appendix for details].

In our previous investigation51, we performed the same procedure in interdependent networks, and found that 
the promotion of cooperation was derived from the species diversity and the enabled equality. In this paper, the 
lacked species diversity induced by single network leads cooperation to extinction in rule I, which is consistent 
with our previous findings. We thus provide a deeper understanding of the evolution of cooperation especially 
from the viewpoint of heterogeneity.

Methods
In the present work, we propose a coevolution model on a L2 square lattice with periodic boundary conditions, 
where each player located at each node of the network is designated either as a cooperator (C) or defector (D) 
with equal probability initially. We resort to the weak PDG as a pairwise interaction model. Here, defector yields 
the temptation T = b while its adjacent player with payoff S = 0 chooses to cooperate, cooperators and defec-
tors can yield the reward R = 1 and the punishment P = 0 when encountering neighbor with the same strategy, 
whereby 1 < b≤ 2 ensures a proper payoff ranking T > R > P ≥ S9. And such an arrangement can meet all rele-
vant requirements of general PDG.

Irrespective of the initial strategy, the game iterates in accordance with the Monte Carlo (MC) simulation 
procedure and comprises the following elementary steps. First, a randomly selected player x acquires its payoff 
Px by summing payoffs from playing game with its four nearest neighbors. Simultaneously, its neighbors can also 
acquire their payoffs in the same way. Then player x decides whether to adopt the strategy sy from one randomly 
selected neighbor y with payoff Py via Fermi function52:
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where K = 0.1 depicts the uncertainty of strategy adoption53. In general, players with higher payoff are more likely 
to spread their strategies. Moreover, wx characterizes the strength of learning activity of player x and evolves after 
strategy adoption procedure at each MC step.

To ensure the fairness of the game, each player is endowed with the maximum learning ability wx = 1 in the 
beginning. The heterogeneity of learning ability is caused by updating the value of wx with an adjustable factor d 
(0 ≤ d ≤ 1):
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where Pi denotes the payoff of the i-th neighbor and kx represents the number of neighbors (degree) of the player 
x. Here, we fix the minimum learning ability wx = 0.1 for avoiding frozen states. Intuitively, our model turns to a 
classical homogeneous system (traditional version) if d = 0.

One full Monte Carlo (MC) step involves all players having a chance to update their strategy and learning 
ability on average. The density of cooperation fC reaches its stationary state after a sufficiently long relaxation 
time within 5 × 104 to 105 full MC steps and is determined by averaging in the last 5 × 103 steps. Depicted results 
were obtained on populations varied from L = 100 to 400 and were averaged over 20 independent realizations to 
further improve accuracy.
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