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Abstract: Gallium-based liquid metal (GaLM) alloys have been extensively used in applications
ranging from electronics to drug delivery systems. To broaden the understanding and applications
of GaLMs, this paper discusses the interfacial behavior of eutectic gallium-indium liquid metal
(EGaIn) droplets in various solvents. No significant difference in contact angles of EGaIn is observed
regardless of the solvent types. However, the presence or absence of a conical tip on EGaIn droplets
after dispensing could indirectly support that the interfacial energy of EGaIn is relatively low in
non-polar solvents. Furthermore, in the impact experiments, the EGaIn droplet bounces off in the
polar solvents of water and dimethyl sulfoxide (DMSO), whereas it spreads and adheres to the
substrate in the non-polar solvents of hexane and benzene. Based on the dimensionless We number,
it can be stated that the different impact behavior depending on the solvent types is closely related
to the interfacial energy of EGaIn in each solvent. Finally, the contact angles and shapes of EGaIn
droplets in aqueous buffer solutions with different pH values (4, 7, and 10) are compared. In the pH
10 buffer solution, the EGaIn droplet forms a spherical shape without the conical tip, representing
the high surface energy. This is associated with the dissolution of the “interfacial energy-reducing”
surface layer on EGaIn, which is supported by the enhanced concentration of gallium ion released
from EGaIn in the buffer solution.

Keywords: liquid metal; interfacial behavior; solvents; impact dynamics; contact angles

1. Introduction

Gallium-based liquid metal (GaLM) alloys in a liquid state at room temperature have
attracted considerable attention because of their fluidity, low viscosity, low toxicity, high
electrical/thermal conductivity, and deformability. When exposed to oxygen, a gallium
oxide layer with a thickness of 1–3 nm forms on the GaLM surface, lowering the surface
tension to ~0 [1–4]. Because of the low surface tension, the metals can be patterned into
various structures, allowing GaLM to be used in flexible and stretchable electronics, strain
or pressure sensors, and biomedical applications [2,5–10]. The metals have been handled
and used in an inert gas environment for applications that require the oxide-free, metallic
surface of GaLMs [11,12].

The surface of GaLMs is significantly affected by the type and composition of the
liquid environment as well as the gas environment. For example, a gelatinous gallium
oxide hydroxide (GaOOH) with lower mechanical strength than gallium oxide is formed in
deionized (DI) water [13,14]. The gallium oxide skin is reduced in a strong acid or strong
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base, exposing the pure GaLM to the solvent [15,16]. In addition to aqueous solvents, the
surface of GaLMs can also be manipulated when exposed to organic solvents. Lin et al.,
for example, reported a carbon layer-coated GaLM in ethanol [17]. Furthermore, organic
solvents are also commonly used as dispersion media of GaLM micro-/nano-particles
for applications of printable inks and electrolytes of energy devices [18–20]. To improve
the understanding and applications of GaLMs, it is important to know the interfacial
behavior of the metals in various solvents. However, to date, few studies on this topic have
been conducted.

Herein, we present the interfacial behavior of a eutectic gallium-indium alloy (EGaIn,
75.5% Ga and 24.5% In by weight) on a Si wafer in various solvents, including polar (DI
water, ethanol, dimethyl sulfoxide (DMSO)), nonpolar (hexane, benzene, silicone oil), and
pH buffer solutions (pH 4, 7, 10). EGaIn is one of the most widely used GaLMs because,
at room temperature, it is a homogeneous liquid at the eutectic composition. To reduce
complexity, this study focuses on the interfacial characteristics of EGaIn, which is the
gallium-indium binary alloy, as a model GaLM rather than gallium-indium-tin ternary
alloy (i.e., Galinstan). To investigate the interfacial properties of EGaIn, we measured
contact angles and conducted an impact experiment with EGaIn droplets in the various
solvents. It was examined whether the presence or absence of the conical tip of EGaIn
extruded from the syringe needle is determined by types of solvents with different dipole
moments. Furthermore, the different impact behaviors of the EGaIn droplets were observed
when they drop on the substrate in the solvents. Finally, the contact angles of the EGaIn
droplets and the concentrations of the released ions in the pH buffer solutions (pH 4, 7,
and 10) were measured to analyze how the acidic, neutral, and basic aqueous solvent
environments affect the surface of the metal droplets, as well as their interfacial properties.

2. Materials and Methods
2.1. Materials

EGaIn (Gallium 75.5%, Indium 24.5%, >99.99%) and silicone oil (for oil bath, 100 mPa·s,
product no. 85409) were purchased from Sigma Aldrich (St. Louis, MO, USA). DMSO
(>99.5%), benzene (>99.5%), and n-hexane (>95%) were purchased from Daejung Chemicals
& Metals (Siheung, Korea). Ethanol (>95.0%), and pH 4, 7, and 10 buffer solutions were
obtained from Samchun Chemicals (Seoul, Korea). DI water (≥18 MΩ cm) was produced
using a Millipore/Direct-Q3UV Water purification system (Burlington, MA, USA).

2.2. Measurement of Contact Angles and Impact Dynamics

The contact angles of EGaIn were measured using a drop shape analyzer (DSA100S,
KRUSS, Germany) at 20 ◦C and analyzed using ImageJ (Java-based image processing
program). A Si wafer was placed in a 5 × 5 × 5 cm3 cubic glass chamber and various
solvents were poured into it. Subsequently, 4–5 µL of the EGaIn droplet was placed on the
Si wafer through a 25 G syringe needle (outer diameter: 0.5 mm; inner diameter: 0.26 mm)
in each solvent. For the impact dynamics analysis, EGaIn was dropped from a 22 G syringe
needle (outer diameter: 0.72 mm; inner diameter: 0.41 mm) at 1 cm from the Si wafer
immersed in each solvent at 20 ◦C. The impact behavior of the droplets was recorded using
a Canon digital camera (Digital SLR Camera EOS 700D).

2.3. Elemental Analysis

Initially, 50 µL of the EGaIn droplet was placed in a vial filled with 3 mL of each pH
buffer solution. The samples of the buffer solutions with the eluted ions were taken at
given time points up to 24 h at 20 ◦C. The ion concentrations of the samples were measured
using an inductively coupled plasma-mass spectrometer (iCAP-Q, Thermo Fisher Scientific,
Waltham, WA, USA).
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3. Results and Discussion

As one of the most direct and intuitive approaches to identifying the interfacial energy,
the contact angles of the EGaIn droplets were measured in different types of polar and
non-polar solvents. In the case of the polar solvents, we selected water, DMSO, and ethanol.
The values for their relative polarity are 1.000, 0.444, and 0.654, respectively [21]. We
selected benzene, hexane, and silicone oil as non-polar solvents. Benzene and hexane have
relative polarities of 0.111 and 0.009, respectively, and silicone oil has a low polarity [21–23].
Based on Young’s equation, the contact angle on an ideal flat solid surface is determined by
the interfacial tensions of three immiscible phases [24]. Therefore, we hypothesized that
the contact angles of the EGaIn droplets would vary depending on the polarity of solvents
due to the different interfacial energy values between the solvents and EGaIn. Figure 1a
shows the contact angles of the EGaIn droplets in various polar and non-polar solvents.
Contrary to our expectation, all EGaIn droplets show high contact angles at ~160 ◦C with
negligible difference regardless of the solvent types. This result may be associated with the
viscoelastic thin layer newly formed on the EGaIn droplet in solvents. For EGaIn droplets
in solvents, the surface of the metal could be coated with organic or inorganic layers such
as oxides, hydroxides, self-assembled monolayers, and their composites, depending on
the types of surrounding solvents [25–27]. It is known that gallium-rich surface layers
formed on EGaIn readily adhere to a wide range of surfaces, including metals, metal oxides,
plastics, and glass, as well as the native silicon oxide on the Si wafer. Consequently, when
the EGaIn droplet is placed on the Si wafer, the surface layer adhering to the substrate
(1) pins the EGaIn droplet to the contact line and (2) withstands the tensile stress to yield
the surface layer (Figure 2) [28]. For this case, the contact angle behaves similarly to an
advancing angle rather than a static contact angle. Thus, because of the sticky, solid-state
surface layer formed on the EGaIn droplet in the solvents, it would be difficult to determine
the interfacial energy of the EGaIn/solvents interface by the contact angle measurement.
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Figure 1. (a) Contact angles of EGaIn droplets on a Si wafer in polar and non-polar solvents. (b,c) Side-
view images of EGaIn droplets placed on a Si wafer in (b) polar and (c) non-polar solvents. The scale
bars are 0.5 mm. The contact angles were measured at 20 ◦C.
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Figure 2. Schematic of the contact angle of the EGaIn droplet placed on a Si wafer. The viscoelastic
surface layer (1) pins the metal to the substrate and (2) withstands the tensile stress.

Notably, the side-view images of the EGaIn droplets in the non-polar solvents differ
from those in the polar solvents. In the polar solvents, except in ethanol, the EGaIn droplets
have a spherical shape (Figure 1b), whereas in the non-polar solvents, the EGaIn droplets
have conical tips on the top (Figure 1c). The conical tip forms when EGaIn bifurcates and is
separated at the end of the needle by Plateau–Rayleigh instability [29] as the syringe needle
is retracted. The presence or absence of the conical tip allows us to indirectly estimate
the interfacial energy. The conical tip of the EGaIn droplet in the non-polar solvents in
Figure 1c implies that the surface of the droplets has been modified to reduce the interfacial
energy; otherwise, the droplets would form spherical shapes because of the strong cohesive
force between the metal elements of EGaIn. The droplet in ethanol also has a little conical
tip on the top presumably due to low interfacial energy compared to those in other polar
solvents. Because the surface Ga atoms of EGaIn readily form Ga-O bonds [27,30], the polar
solvents containing oxygen atoms may cover the droplet’s surface and cause it to behave
similarly to a micelle. In contrast, in the non-polar solvents such as hexane and benzene,
the surface of the EGaIn droplets is not likely to react with the solvent molecules to form
Ga-C bonds [31]; however, it is still possible that the solvent molecules physically adsorb to
the surface of the droplet. Thus, the interfacial energy of the EGaIn droplets in solvents is
influenced by the types and polarity of solvents.

Analyzing the impact dynamics of droplets could be another way to examine the
interfacial energy. The droplet impact dynamics, such as splash, bouncing, spreading, and
adhesion, strongly depend on interfacial tensions as well as the impact velocity [32,33].
We observed the impact behavior of an EGaIn droplet falling on a Si wafer in the various
solvents. Figures 3 and 4 compare the impact behaviors of the EGaIn droplets in water
(polar solvent) and hexane (non-polar solvent) when they collide with the Si wafer. In
water, the EGaIn droplet bounces off after collision while maintaining its spherical shape.
The droplet in another polar solvent of DMSO also shows similar bouncing behavior
(Figure S1 in Supplementary Materials). In ethanol, the EGaIn droplet does not show
significant bouncing behavior but slightly adheres to the wafer (Figure S1). The slight
adhesion prevents the EGaIn droplet from sliding down on the Si wafer tilted by up to ~20◦.
(Figure S3). In contrast, in the non-polar solvents, hexane and benzene, the EGaIn droplets
spread and adhere to the Si wafer upon collision (Figure 4 and Figure S2 in Supplementary
Materials). In silicone oil, the EGaIn droplet neither bounces off nor adheres to the wafer.
It gently lands on the wafer with high contact angle (Figure S2). The different adhesion
behaviors of the EGaIn droplet in the non-polar solvents are observed when the wafer is
tilted. In hexane and benzene, the EGaIn droplets adhere to the wafer and do not slide
down even when the wafer is tilted by 22 ± 1◦, whereas the droplet rolls off in silicone oil
when the wafer is tilted only by 10◦ (Figure S3 in Supplementary Materials).



Materials 2022, 15, 706 5 of 10

Materials 2022, 15, x FOR PEER REVIEW 5 of 11 
 

 

We = 
మோబఙ  , (1)

where ρ is the density of the solvent, ν is the velocity on impact, R0 is the droplet radius, 
and σ is the interfacial tension of the droplet. Based on the We number, the impact behav-
ior can be predicted; when the We number is larger, the impacting liquid droplet is more 
likely to spread to the substrate [34,35]. In our impact experiment, the interfacial tension 
between the EGaIn droplet and the surrounding solvent is the most crucial parameter to 
determine the We number and therefore the impact dynamics of the EGaIn droplet as 
other parameters do not change significantly. Because the We number is inversely propor-
tional to the interfacial tension, the bouncing behavior of the EGaIn droplet in water and 
DMSO, i.e., low We number, means relatively high interfacial tension of the liquid metal 
in the polar solvents. In contrast, the adhesion behavior of the EGaIn in hexane and ben-
zene, i.e., high We number, indicates low interfacial tension of EGaIn in the non-polar 
solvents. In the additional impact experiment in the air (Figure S4 in Supplementary Ma-
terials), the EGaIn droplet spreads out and sticks to the Si wafer similarly as in hexane or 
benzene. It is well known that the surface tension of EGaIn in the air dramatically de-
creases due to the formation of the gallium oxide surface layer [1–4]. In ethanol, the EGaIn 
droplet slightly adheres to the Si wafer without the bouncing behavior. This may be be-
cause the interfacial tension of EGaIn in ethanol is not as high as that in other polar sol-
vents. It has been reported that EGaIn in ethanol is coated by a carbon layer that could act 
as a surfactant to reduce the interfacial tension of EGaIn [17]. In silicone oil, the EGaIn 
does not spread to the Si wafer but maintains a high contact angle. This should be mainly 
because the impact velocity is low in the highly viscous oil medium (viscosity = 100 
mPa·s), resulting in a decrease in the We number. Thus, the interfacial energy between 
EGaIn and various solvents can be examined by analyzing the impact dynamics of the 
EGaIn droplets in the solvents. 

 
Figure 3. (a) Video snapshots of the EGaIn droplet impacting a Si wafer in water at 20 °C. Scale bar 
is 2 mm. (b) Schematic of the “bouncing” behavior of the EGaIn droplet in (a). 

Figure 3. (a) Video snapshots of the EGaIn droplet impacting a Si wafer in water at 20 ◦C. Scale bar is
2 mm. (b) Schematic of the “bouncing” behavior of the EGaIn droplet in (a).

Materials 2022, 15, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 4. (a) Video snapshots of the EGaIn droplet impacting a Si wafer in hexane at 20 °C. Scale 
bar is 2 mm. (b) Schematic of the “adhesion” behavior of the EGaIn droplet in (a). 

Table 1 compares the molecular structures and properties of the six polar and non-
polar solvents and summarizes the experimental results of the interfacial characteristics 
of the EGaIn droplets in the solvents. The polar solvents, except for ethanol, have high 
surface tension, where the EGaIn droplet shows bouncing behavior on the Si wafer. The 
cohesive force between the solvent molecules is strong enough to prevent the droplet from 
adhering to the substrate and repel the droplet from the substrate. The ethanol has rela-
tively low surface tension and presumably forms an interfacial layer, leading to the slight 
adhesion of EGaIn without any bouncing. The non-polar solvents tend to have low surface 
tension, where the EGaIn droplet spreads and adheres to the Si wafer. The silicone oil has 
extremely high viscosity compared to other solvents, which may prevent EGaIn from 
spreading and adhering to the wafer substrate. The interfacial behaviors of EGaIn can be 
correlated to Kamlet–Taft parameters, which include the information of basicity (β) and 
polarity (π*) of solvents (Table 1) [36]. Figure 5 shows the correlation between interfacial 
behavior of the EGaIn droplet and the Kamlet–Taft parameters. As β and π* increase, the 
EGaIn droplet tends to bounce off, whereas as β and π* decrease, it is more likely to show 
strong adhesion to the substrate. Thus, the interfacial characteristics of EGaIn strongly 
depend on the types and surface tension values of surrounding solvents. 

  

Figure 4. (a) Video snapshots of the EGaIn droplet impacting a Si wafer in hexane at 20 ◦C. Scale bar
is 2 mm. (b) Schematic of the “adhesion” behavior of the EGaIn droplet in (a).

To explain the different impact dynamics of the EGaIn droplets depending on the
solvent types, the Weber (We) number can be utilized. The We number represents the ratio
of the kinetic energy on impact to the interfacial energy and is defined by the following
equation:

We =
ρv2R0

σ
, (1)

where ρ is the density of the solvent, ν is the velocity on impact, R0 is the droplet radius,
and σ is the interfacial tension of the droplet. Based on the We number, the impact behavior
can be predicted; when the We number is larger, the impacting liquid droplet is more
likely to spread to the substrate [34,35]. In our impact experiment, the interfacial tension
between the EGaIn droplet and the surrounding solvent is the most crucial parameter to
determine the We number and therefore the impact dynamics of the EGaIn droplet as other
parameters do not change significantly. Because the We number is inversely proportional
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to the interfacial tension, the bouncing behavior of the EGaIn droplet in water and DMSO,
i.e., low We number, means relatively high interfacial tension of the liquid metal in the
polar solvents. In contrast, the adhesion behavior of the EGaIn in hexane and benzene, i.e.,
high We number, indicates low interfacial tension of EGaIn in the non-polar solvents. In
the additional impact experiment in the air (Figure S4 in Supplementary Materials), the
EGaIn droplet spreads out and sticks to the Si wafer similarly as in hexane or benzene.
It is well known that the surface tension of EGaIn in the air dramatically decreases due
to the formation of the gallium oxide surface layer [1–4]. In ethanol, the EGaIn droplet
slightly adheres to the Si wafer without the bouncing behavior. This may be because the
interfacial tension of EGaIn in ethanol is not as high as that in other polar solvents. It has
been reported that EGaIn in ethanol is coated by a carbon layer that could act as a surfactant
to reduce the interfacial tension of EGaIn [17]. In silicone oil, the EGaIn does not spread
to the Si wafer but maintains a high contact angle. This should be mainly because the
impact velocity is low in the highly viscous oil medium (viscosity = 100 mPa·s), resulting
in a decrease in the We number. Thus, the interfacial energy between EGaIn and various
solvents can be examined by analyzing the impact dynamics of the EGaIn droplets in
the solvents.

Table 1 compares the molecular structures and properties of the six polar and non-
polar solvents and summarizes the experimental results of the interfacial characteristics of
the EGaIn droplets in the solvents. The polar solvents, except for ethanol, have high surface
tension, where the EGaIn droplet shows bouncing behavior on the Si wafer. The cohesive
force between the solvent molecules is strong enough to prevent the droplet from adhering
to the substrate and repel the droplet from the substrate. The ethanol has relatively low
surface tension and presumably forms an interfacial layer, leading to the slight adhesion
of EGaIn without any bouncing. The non-polar solvents tend to have low surface tension,
where the EGaIn droplet spreads and adheres to the Si wafer. The silicone oil has extremely
high viscosity compared to other solvents, which may prevent EGaIn from spreading and
adhering to the wafer substrate. The interfacial behaviors of EGaIn can be correlated to
Kamlet–Taft parameters, which include the information of basicity (β) and polarity (π*) of
solvents (Table 1) [36]. Figure 5 shows the correlation between interfacial behavior of the
EGaIn droplet and the Kamlet–Taft parameters. As β and π* increase, the EGaIn droplet
tends to bounce off, whereas as β and π* decrease, it is more likely to show strong adhesion
to the substrate. Thus, the interfacial characteristics of EGaIn strongly depend on the types
and surface tension values of surrounding solvents.
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Table 1. Molecular structures and physical properties of solvents used and interfacial characteristics
of EGaIn in the corresponding solvents.

Polar Solvents Non-Polar Solvents

DI Water DMSO Ethanol Hexane Benzene Silicone Oil

Molecular structure
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Relative
polarity 1 0.444 0.654 0.009 0.111 -

Dipole moment (D) 1.8 3.72 1.66 0 0 0.6–0.9

Hydrogen bond
acceptor (β) 0.47 0.75 0.76 0.00 0.10 0.191

Dipolarity-
polarizability

(π*)
1.09 1.00 0.54 −0.04 0.59 0.11 1

Surface tension
(mN/m) in air (25 ◦C) 72 43.5 22.3 18.8 28.9 <16

Viscosity (mPa·s)
(25 ◦C) 0.89 1.99 1.04 0.30 0.603 100

(20 ◦C)

Interfacial characteristics of the EGaIn droplets in corresponding solvents

Contact angle on Si
wafer (◦) 158 160 158 158 159 160

Impact behavior Bouncing Bouncing Slight
adhesion Adhesion Adhesion Sitting 2

Formation of conical
tip after dropping × × 4 O O O

1 The values of silicone oil were derived from poly(dimethyl siloxane); 2 Neither bouncing nor adhesion, but
sitting with a high surface tension.

In an aqueous environment, pH values could also be critical in determining the inter-
facial properties of EGaIn because, in strong acids or bases, the gallium-rich surface layer
(e.g., gallium oxide and gallium oxide hydroxide) on EGaIn is susceptible to dissolution.
We observed the EGaIn droplet in different pH solutions to understand how the pH value
affects the interfacial properties of the EGaIn liquid metal in the aqueous environment.
Figure 6a–c shows the contact angles of EGaIn droplets in pH 4, 7, and 10 buffer solutions.
The droplets in all of the pH buffer solutions have high contact angles of ~160◦, which is
comparable to the values previously discussed in Figure 1a. The shapes of the droplets
vary depending on the pH of the buffer solutions. In pH 4 and 7 buffers, the EGaIn droplets
form the conical tips on top, whereas in pH 10 buffer solution, the EGaIn droplet forms
a spherical shape. This is because the surface layer of EGaIn droplet is dissolved in the
strong basic condition of pH 10, whereas the acidity of the pH 4 buffer solution is not
strong enough to remove the surface layer thoroughly. As per the Pourbaix diagram, the
gallium oxide skin of EGaIn is reduced at pH < 3 or pH > 10 [15,16]. Interestingly, the
EGaIn droplet in the pH 7 buffer solution has the conical tip, which differs from that of
the tip-less spherical EGaIn droplet in DI water (Figure 1b), although the DI water should
also have a near-neutral pH. We speculate that this may be due to the ions dissolved in the
buffer solutions. A large amount of potassium, sodium, or phosphate ions might lower the
interfacial energy between EGaIn and the aqueous buffer solution.
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To confirm the dissolution of the surface layer by the reduction in the pH 10 buffer
solution, the amount of Ga and In ions in each pH buffer solution in Figure 6a–c was
measured and compared using mass spectroscopy. The time-dependent ion concentrations
of Ga and In dissolved from EGaIn droplets in each pH buffer solution are shown in
Figure 6d. In all pH conditions, Ga ions are more abundantly released from EGaIn than
In ions, indicating that the surface layer is gallium-rich. Both concentrations of Ga and
In ions increase with time but differ with pH. The elution of Ga ions from EGaIn occurs
most at pH 10 and the least at pH 7. In the pH 10 buffer solution, Ga ions eluted are up to
688 µM in 24 h, which is 112 times higher than the concentration of Ga ions eluted in the
pH 7 solution. It is caused by the basic solution reducing gallium oxide to Ga ions. Thus, in
an aqueous environment, the pH value is another crucial factor to determine the interfacial
energy of EGaIn because of the pH-dependent elution of the gallium-rich surface layer.

4. Conclusions

To summarize, we investigated the interfacial characteristics of EGaIn droplets in
different types of polar and non-polar solvents. The difference in contact angles of the
EGaIn droplets was insignificant, and the conical tip on top of the EGaIn droplets was
formed in solvents with low surface tension. The impact dynamics of the EGaIn droplets in
various solvents were analyzed where the droplet showed the different impact behaviors
of bouncing, sitting, and adhesion after collision with the Si wafer. With the dimensionless
We number, the different impact behaviors could be explained by the interfacial tension
values of the EGaIn droplets in each solvent. In general, EGaIn tends to bounce off in polar
solvents such as water and DMSO, representing high interfacial energy. In contrast, EGaIn
spreads and adheres to the substrate in the non-polar solvents, indicating low interfacial
energy. Furthermore, to investigate the pH effect on the interfacial behavior of EGaIn, the
contact angles and shapes of the EGaIn droplets in pH 4, 7, and 10 buffer solutions were
compared. The EGaIn droplet maintained the conical tip on top in pH 4 and 7, whereas
the metal droplet had a spherical shape in pH 10 solution. This is presumably due to the
pH-dependent dissolution of the surface layer, which was supported by the measurement
of the ions released from EGaIn in the buffer solutions. This research provides a useful
guideline for selecting suitable solvents for using GaLMs depending on their fabrication
processes and applications. Further study is now underway to investigate the chemical



Materials 2022, 15, 706 9 of 10

compositions and molecular structures of the surface layers formed on EGaIn surface in
various solvents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15030706/s1, Figure S1: Video snapshots of a EGaIn droplet
impacting on a Si wafer (a) in DMSO and (b) in ethanol. Scale bars are 2 mm. The red arrows indicate
the movement of EGaIn droplets; Figure S2: Video snapshots of a EGaIn droplet impacting on a Si
wafer in (a) benzene and (b) silicone oil. Scale bars are 2 mm; Figure S3: Video snapshots of EGaIn
droplets when the wafer is tilted in (a) ethanol, (b) benzene, (c) hexane, and (d) silicone oil. Scale bars
are 2 mm. The tilting angles are 22 ± 1◦ in (a–c) and 10◦ in (d); Figure S4. Video snapshots of a EGaIn
droplet impacting on a Si wafer in the air. Scale bar is 2 mm.
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