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Abstract: Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or
is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular
space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may
also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs
bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products
(RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but
may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs
and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs”
or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”.
We selected original articles reporting data on acute brain injury pathophysiology, from which we
describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in
the development of brain injury. We will also discuss the clinical strategies that emerge from this
overview in terms of biomarkers and therapeutic perspectives

Keywords: acute brain injuries; damage-associated molecular pattern molecules; receptor for ad-
vanced glycation end-products; biomarkers

1. Introduction

The cells of the innate immune system search the extracellular environment for ex-
ogenous pathogens or self-molecules—either modified (e.g., oxidized lipids) or usually
confined within cells via pattern recognition and scavenger receptors (PRRs) [1–3]. In the
central nervous system these receptors are mainly expressed by microglial cells but also
by astrocytes, neurons, endothelial cells, and infiltrating leukocytes upon vessel injury
or blood–brain barrier (BBB) opening [1,3,4]. Nevertheless, resident microglial cells have
a larger repertoire of Toll-like receptors (TLRs) and a greater amount of the receptor for
advanced glycation end-products (RAGE) [1,5,6]. According to the context, PRRs may
polarize resident microglial cells and infiltrating leukocytes toward a panel of pro- or anti-
inflammatory phenotypes, playing a role in tissue damage clearance and repair but which
may also trigger neuronal and glial degeneration [1,3,5,7,8]. Although acute brain injuries
encompass a wide variety of mechanisms, they share a common feature as they all lead to
acute cellular necrosis with the release of intracellular ions, adenosine di- or triphosphate
(ATP), proteins, and nucleic acids in the extracellular space, and eventually the extravasa-
tion of red blood cells and hemoglobin [9–12]. Collectively, this wide variety of endogenous
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molecules released upon tissue injury are termed damage or danger-associated molecular
patterns (DAMPs).

Neurological recovery following acute brain injury depends on the patient’s prior
medical condition and primary injuries, but also on secondary damage [13,14]. Among
other secondary insults, the inflammation that is triggered by the release of DAMPs plays
a crucial role in the development of brain lesions which will be discussed in the present
review. The levels of inflammatory markers released in the systemic blood, such as the
C-reactive protein, or interleukin (IL) 6 and 12, are actually predictors of post-stroke
neurological dysfunction [14–16]. Moreover, the concomitant occurrence of a systemic
inflammation, such as during sceptic or anaphylactic shock, increases neurological damage
at the acute phase of stroke [17].

The acute increase of extracellular potassium after ischemia or hemolysis leads to the
depolarization and swelling of neighboring cells thereby starting propagating waves of
spreading depolarization [18] (Figure 1A,B). Potassium and ATP release from dying cells
also activate the inflammasome in neurons and astrocytes via pannexin1, purinoreceptor,
and nucleotide oligomerization domain receptors (NOD-like receptors) [1,19]. Larger
molecules, such as S100 proteins, hemoglobin derivatives or the high mobility group protein
1 (HMGB1), bind mainly to TLRs and RAGE [1,10]; the ligation of TLRs and RAGE triggers
a series of cellular signaling events, including the activation of nuclear factor-kappa B
(NF-κB), leading to the production of pro-inflammatory cytokines, and causing non-sceptic
inflammation [1,20,21]. However, the consequences of DAMPs ligation to PRRs depends
on the context and their concentration in the extracellular space. For instance, S100B, a
calcium binding protein that has several intracellular actions in astrocytes, can promote
cell growth in the nM extracellular range (i.e., physiological conditions) [22–24]; whereas
at higher concentration S100B activates astrocytes with a pro-inflammatory phenotype and
facilitate neuronal death [24,25]. HMGB1 expression may also promote neuroinflammation
related to brain injury but the deletion of the encoding gene is not able to prevent such
consequences [26,27]. Furthermore, sustained activation and up-regulation of RAGE on
neurons has been reported to cause death via stimulating the production of reactive oxygen
species [28], but also regulates neurite growth and cell survival [24], as well as apoptosis
and autophagy [20,29,30]. However, some extracellular soluble truncated receptors, such
as sRAGE, act as decoys for ligands, and thus have a cytoprotective effect against advanced
glycation end-products (AGE) and RAGE interactions; serum levels of sRAGE have been
investigated in pathological process and proposed as a biomarker of their intensity and
severity of outcome [31]. It seems that the net effect of DAMPs and PRRs, such as RAGE,
depends on the context, cell type, and the number of DAMPs and the level of expression
of PRRs.

In this review, we aimed to describe the current knowledge of the implication of
DAMPs and their receptors, in particular RAGE, in acute brain injury pathophysiology.
We will also discuss the clinical strategies that emerge from this overview in terms of
biomarkers and therapeutic perspectives.
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Figure 1. Damage-associated molecular patterns (DAMPs) and pattern-recognition receptors (PRRs) changes at the acute
phase of brain injury. (A) Morphological changes of neurons (grey), astrocytes (green), microglial and infiltrating leukocytes
(blue), and DAMPs release (orange); (B) local field potential (LFP) and extracellular KCl recordings during the spreading
depolarization triggered by the primary injury: the direct current (DC; 0–0.5Hz) shift is associated with a decrease of
neuronal activity (AC; >0.5 Hz) and a KCl release; (C) Pattern-recognition receptors (PRRs) activation pathways; (D) kinetics
of DAMPs and PRR expression as well as the course of cell death mechanisms. DAMPs: Damage-associated molecular
patterns; IL: Interleukin; iNOS: inducible nitric oxide synthase; LFP: local field potential; MLKL: Mixed-lineage kinase
domain-like pseudokinase; MyD88: Myeloid differentiation primary response 88; NFκB: nuclear factor-kappa B; RAGE:
Receptor for advanced glycation end-products; RIPK1: receptor-interacting protein kinase 1; TLR: Toll-like receptor; TNF:
Tumor necrosis factor; TNFR1: Tumor necrosis factor receptor 1.

2. Acute Lesion Progression Pathophysiology
2.1. Kinetics of DAMPs and Consequences after the Primary Insult

In addition to mechanical cell destruction, necroptosis is the main cell death pathway
at the acute phase of traumatic brain injury (TBI), intracerebral or subarachnoid hemorrhage
(SAH), and ischemic stroke (IS) [9,20,32]. Necroptosis is a morphologically lytic form
of cell death implicating the receptor-interacting protein kinase 1 and 3 (RIPK1-RIPK3)
and the mixed-lineage kinase domain-like pseudokinase (MLKL) pathway, resulting in
the release of the contents of the cell into the extracellular space [33] (Figure 1A). The
subsequent release of DAMPs peaks around 24 h after the primary insult and decreases
thereafter over several days [4,12,20,34–38]. There is a spillover of DAMPs into the core
of the primary injury, with a drastic decrease of intracellular HMGB1 [37] while HMGB1
is translocated from the nucleus to the cytoplasm of neurons but not glial cells at the
periphery [4,9,37,39]. This extracellular release of HMGB1 may also act as a chemoattractant
to monocytes [40] that infiltrate the core of the lesion from the first hours following the
injury [4,37]. After several days, HMGB1-positive cells are mainly phagocytic microglial
cells [4] (Figure 1D). Some authors have also described a biphasic expression of HMGB1
and S100 proteins with a second peak 14 days later [34,35]. The cellular consequences of
DAMPs depend on the expression of PRRs but also on their post-translational modification.
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For instance, HMGB1 contains three highly conserved cysteines that are readily oxidized
by reactive oxygen species, forming an intramolecular disulfide bridge thereby changing
its conformation [41,42]. The reduced form released upon the primary injury binds the
chemokine ligands (CXCL) 2 and 4 on monocytes and RAGE but not TLR-4, thereby
promoting autophagy and acting as a chemoattractant for monocytes [40,43]. Conversely,
the oxidized form may promote cell death and, at the late phase, vascular remodeling and
progenitor cell migration via TLR signaling [35,43].

The expression of RAGE on neurons and microglial cells follows the same time course,
with a biphasic pattern peaking on day 1 and 14 [12,20,34–36,44,45]. The amount of TLRs,
which are predominantly expressed on microglial cells, increases at the subacute phase (i.e.,
after day 1) when activated microglia are present [34] (Figure 1D). The ligation of DAMPs
to RAGE in turn activates the nuclear factor-kappa B (NF-κB) which in a positive feedback
loop will increase the expression of RAGE. The activation of PRRs is related to different
signaling pathways in neurons and glial cells. In neurons RAGE promotes the expression
of proteins involved in necroptosis (i.e., MLKL) and autophagy (i.e., Becline-1); accordingly,
blocking RAGE reduces autophagy, but also increases neuronal sensitivity to injury and
apoptosis [20]. Later, at the subacute phase, TLRs and RAGE activation will polarize
microglial cells and infiltrating leukocytes toward a pro-inflammatory phenotype, termed
M1, with the release of cytokines such as tumor necrosis factor (TNF), IL-6 or IL-1 and the
up-regulation of the inducible NO synthase [5,11,21,34,37,39]. Experimental overactivation
of RAGE or TLRs by DAMPs injection or an increase in glucose degradation products, such
as during hyperglycemia, will in turn increase the cytokine levels and worsen neuronal
injuries [5,11,37]. The progression of secondary lesions follows different pathways. The
ligation of TNF to the TNF receptor 1 (TNFR1) expressed by neurons will induce both
necroptosis (via RIP1-3 and MLKL) and apoptosis (via caspase 3 and 8) [9,33]. Moreover,
the pro-inflammatory cocktail can also activate astrocytes with a destructive phenotype
(termed A1) leading to neuronal death and fewer synapses [7] (Figure 1C).

2.2. DAMPs Clearence

Under normal conditions, there is a continuous flow of cerebrospinal fluid (CSF)
allowing the renewal of extracellular medium and the clearance of solutes such as amyloid-
β (Aβ), also called the glymphatic system [46]. the subarachnoid CSF circulates in para-
vascular spaces and enters the brain along penetrating arteries reaching the capillary bed;
the interstitial fluid is then cleared along a perivenous drainage pathway and cervical
lymphatic structures [46–48]. The glymphatic flux is driven by arterial pulse [47], water
flux through aquaporin-4 expressed on astrocytes [46,48], as well as sleep cycles [30].
The CSF convection in the glymphatic system participates in the clearance of DAMPs
to the peripheral blood [48], but also exhibits several changes following brain injury.
The spreading depolarization that occurs at the very beginning of brain injuries triggers
transient cell swelling, vasoconstriction [49,50] (Figure 1B), and increases the CSF flux in
the glymphatic system, participating in the increase in brain water content [51]. However,
the glymphatic flux is then impaired from 30 min to several days after the injury thereby
leading to an accumulation of extracellular proteins such as DAMPs and Aβ [52–55].
DAMPs are also actively cleared from the extracellular space by infiltrating myeloid cells
from the peripheral blood and activated resident glial cells. Infiltrating myeloid cells
penetrate the lesion then differentiate into phagocytes that express scavenger receptors
such as the macrophage scavenger receptor 1 (MSR1) that can bind and internalize HMGB1
and S100 proteins, as well as peridoxine [56]. These MSR1+ cells are present up to several
days after the injury and exhibit an M2 phenotype, as opposed to the pro-inflammatory
M1 phenotype of activated microglia that also internalize DAMPs [3,4,56]. Astrocytes
are also able to internalize S100B into lysosomes by a RAGE-dependent mechanism [57].
Activated phagocytes may release HMGB1 from secretory lysosomes when modified lipids
such as lysophosphatidylcholine are present at the subacute phase of acute brain injury,
which may explain its biphasic release [58–60]. DAMPs can also traffic across the BBB by
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transcytosis in endothelial cells via RAGE and eventually reenter the brain from the blood
compartment [61,62].

Increased expression of RAGE has been associated with the promotion of neuroin-
flammation in the main brain injuries, downstream HMGB1 release and NF-κB pathway
activation [36]. Such a positive feedback loop of neuroinflammation may be blocked by
intervention with antagonist of RAGE or the release of a truncated soluble form of RAGE
(sRAGE) which may act as a decoy receptor to mitigate the inherent consequences of
the inflammatory cascade. sRAGE is released upon brain injury [12], either secreted by
astrocytes or monocytes [63] or from the cleavage of the membrane-bound RAGE [64].
sRAGE can scavenge extracellular and circulating DAMPs thus preventing their refilling
into the brain [61] and reduce brain lesion progression [12,37,65]. The protective effect
of recombinant sRAGE in cerebral parenchyma has been recently depicted in an animal
model of SAH [65]. Although the characteristics of sRAGE sound interesting for clinical
objectives, it has been little studied in brain injuries, with inconsistent results for outcomes
such as in acute IS [66], or aSAH [31,67]. These discrepencies in data may result from
different types of sRAGE studied and timing of measurements. We can speculate that the
plasma level of sRAGE may be either positively associated with the intensity of injury,
or negatively because of the consumption by its ligants (i.e., HMGB1 or S100B) possibly
reflecting the healing process. Sometimes differences in plasma sRAGE may result from
previous patient conditions such as diabetes or renal dysfunction [68]. In such a complex
context it might be particularly interesting to combine more than one of these biomarker
measurements to characterize the entire process.

3. A Biomarker Approach

A biomarker is a defined physiological characteristic that is measured and monitored
objectively and reproducibly. It must be an indicator of biological processes or reactions to
an exposure or an intervention, including therapeutic interventions. The ideal biomarker
should be sensitive and specific to a pathological condition such as processes involved in
early brain injury progression. The clearance of cerebral molecules from the extracellular
space to the blood compartment as described in the previous section allows us to measure
them from accessible biofluids such as CSF, serum, plasma, and/or whole blood [47,48,69].

A biomarker is considered to be clinically useful if it provides information in addition
to the clinical assessment; it can shorten the time to diagnosis or therapeutic decision, or
allow a therapeutic follow-up if the kinetics of change are rapid and if the concentration
in biological fluid is correlated with the intensity of the disease [70,71]. The biomarker
and its analytical method must be adapted to the needs of physicians to shorten the time
of a therapeutic decision. Physicians face several challenges at the acute phase of brain
injury. The type and severity of brain injury (e.g., ischemic of hemorrhagic) is hard to
diagnose when access to brain imaging is not possible, such as during out of hospital
triage or in pediatric emergencies when general anesthesia could be required to perform
cerebral imaging [72–75]. The early prognostication of future complication and long-
term outcome is also uncertain using clinical data. For instance, neurological score and
radiological assessment are not always reliable at the early phase of TBI, IS, and stroke
mimics such as migraine or epileptic seizures [76,77]. However, they remain the gold
standard to guide clinical decision. During this early phase of brain injury management,
several applications of DAMPs as biomarkers have been investigated, such as early injury
severity rating [78], distinguishing ischemic or hemorrhagic lesions [79], or prognostication
of long-term outcome [80].

The most extensively studied biomarkers are those associated with damage to neurons
(neuron-specific enolase, NSE) and glial cells (S100B and glial fibrillary acidic protein—GFAP,
mainly expressed in astrocytes) [81]. S100B and GFAP allow the diagnosis of intracranial
hemorrhage in patients with cerebral ischemia [78–80,82–88] (Table 1). They are also
accurate diagnostic biomarkers that facilitate the triage and the need for brain imaging
within a few hours following mild and moderate TBI [89–91] (Table 2). Moreover, NSE and
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S100B have demonstrated a prognostic potential on early and long-term functional recovery
after ischemic or hemorrhagic strokes and TBI [80,84–88,92–95]. Likewise, elevated HMGB1
and sRAGE are predictors of poor prognosis after an IS [67,96] (Tables 1 and 2). Changes
in HMGB1, S100B, and sRAGE concentrations during the hospital stay can also help to
diagnose delayed injury such as proximal vasospasm and delayed cerebral ischemia after
SAH [10,31,97] (Table 1). Nevertheless, concomitant extracerebral injuries may bias the
interpretation of DAMPs and sRAGE levels as they induce a similar increase [98]. S100B
is also located extracerebrally, such as in chondrocytes, Schwann cells, adipocytes and
malignant melanoma cells, which influences S100B serum levels [81]. As described in
Tables 1 and 2, there is a large variability in the sensitivity and specificity of DAMPs and
sRAGE. This is likely to be in relation to the complexity of acute brain injury. Therefore, a
single protein biomarker may not be sufficient, and it is reported that a panel of several
biomarkers of different cellular origins and different kinetic profiles makes it possible
to better predict the prognosis [99,100] and improve the diagnostic accuracy [101–103]
(Table 3).

Unfortunately, there is no standardized assays measuring these biomarkers, which
constitutes a barrier to the dissemination of these measures in routine clinical practice with
established and reproducible cutoffs. For example, S100B can be measure with several
techniques such as enzyme-linked immunosorbent assay (ELISA; Sangtec, Saluggia Italy,
canAG Diagnostics, Gothenburg Sweden), automated luminometric immunoassay (Dia-
sorin, sangtec, Italy) or automated electrochemiluminescence immunoassay (Cobas, Roche
Diagnostics, Mannheim Germany); each method has its own normal and pathological
ranges [104,105]. Pre-analytical steps could also be a source of heterogeneity, although
S100B measurement have been reported to be unaffected by hemolysis [106], storing,
changes in temperature or freeze-thaw cycles [107]. Depending on the clinical and analytics
challenges one technique should be preferred over the others. For instance, when rapid
decision making is more relevant, rapid quantitative immunoassays are faster and available
at any time compared to the traditional ELISA assays (i.e., less than one hour vs. 4 to
5 h). Some biomarkers are at very low concentration in biofluids with sensitivity issues;
therefore, new platforms using digital ELISA (e.g., Simoa, Quanterix, Billerica USA) have
been developed to overcome this limitation and greatly improved the sensitivity of the
tests (e.g., Tau protein, GFAP or Neurofilaments) [108].

Table 1. Biomarker approach of damage-associated molecular patterns following ischemic or hemorrhagic stroke.

Author (Year) Marker Study Design Applications Outcome Results

Ren et al. [79]
(2016) GFAP Case-control

(132 IS; 57 controls) Diagnosis Stroke subtype
GFAP discriminated IS from ICH
within 4.5 h of symptoms onset

(Se = 61%, Sp = 96%, AUC = 0.86).

Luger et al. [82]
(2020) GFAP

Prospective
observational

(251 IS)

Diagnosis Stroke subtype ICH patients had higher serum level
of GFAP than IS patients and mimics.

Clinical severity CT lesion
volume

GFAP was correlated with ICH
volume (r = 0.296).

Katsanos et al. [83]
(2017) GFAP Case-control

(191 IS; 79 controls)

Diagnosis Stroke subtype GFAP discriminated IS from ICH
(Se = 91%, Sp = 97%, AUC = 0.97).

Clinical severity NIHSS

No correlation has been found
between serum levels of GFAP and

stroke severity on admission in IS of
different subtype.
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Table 1. Cont.

Author (Year) Marker Study Design Applications Outcome Results

Zhou et al. [84]
(2016) S100B

Prospective
observational
(46 ICH; 71 IS)

Diagnosis Stroke subtype ICH patients had higher plasma level
of S100B than IS patients.

Clinical severity NIHSS Positive correlation between S100B
and infarct size (r = 0.820).

Prognosis 90-day mRS S100B predicted a poor prognosis
(Se = 100%, Sp = 76%, AUC = 0.92).

Balança et al. [78]
(2020) S100B

Prospective
observational

(81 SAH)
Clinical severity 3-day GOS

Severe EBI was associated with
higher S100B concentration at

admission or day 1
(Cliff’s delta = 0.73, 95% CI [0.46;

0.88]), which predicted early
recovery (AUC = 0.87).

Branco et al. [85]
(2018) S100B

Prospective
observational

(131 IS)
Prognosis

12-week upper
limb

functioning

S100B predicted hand functioning
(Se = 69%, Sp = 90%, AUC = 0.84).

Kedziora et al. [86]
(2020) S100B

Prospective
observational

(55 SAH)
Prognosis GOS at ICU

discharge
S100B predicted ICU outcome

(Se = 91%, Sp = 63%, AUC = 0.81).

Kellermann et al.
[92] (2016) S100B

Prospective
observational

(45 SAH)
Prognosis 6-month GOS

S100N at day 1 predicted poor
outcome (OR = 4.38, 95% CI,

[1.08; 17]). A negative correlation
was found between serum level of

S100B and 6 months GOS (r = 0.434).

Kiiski et al. [87]
(2018)

S100B;
NSE

Prospective
observational

(47 SAH)
Prognosis 6-month mRS

No correlation has been found
between biomarker concentrations

and the neurological outcome.

Abboud et al. [88]
(2018)

S100B;
NSE

Prospective
observational

(52 SAH)
Prognosis 6-month GOS S100B and NSE at day 1 predicted

good outcome with 100% specificity.

Quintard et al. [80]
(2015)

S100B;
NSE

Prospective
observational

(48 SAH)
Prognosis 6-month GOS

Poor neurological outcome was
predicted by S100B levels at day 5

(AUC = 0.91) and NSE level at day 7
(AUC = 0.83).

Aida et al. [31]
(2019) sRAGE

Prospective
observational

(627 SAH)
Complication symptomatic

vasospasm

sRAGE level was lower in
symptomatic vasospasm group on
day 7, and predicted poor outcome
(Se = 70%, Sp = 86%, AUC = 0.77).

Yang et al. [67]
(2018) sRAGE

Case-control
(108 SAH and 108

controls)
Prognosis 6-month GOS

score

sRAGE within 24 h after SAH was
associated with clinical severity and
poor 6-month outcomes (Se = 83%,

Sp = 75%, AUC = 0.82).

Tang et al. [66]
(2015) sRAGE

Case-control
(106 IS and 150

controls)
Prognosis 3-month mRS

sRAGE level was higher in the IS
group and predicted poor

neurological score (OR = 2.44, 95% CI
[1.16; 5.16]).

Tsukagawa et al.
[109]

(2017)
HMGB1

Case-control
(183 IS and 16

controls)
Prognosis 1-year mRS

HMGB1 level on admission was a
significant independent predictor of

poor outcome (OR = 2.34, 95% CI
[1.02; 5.38]).

Wang et al. [96]
(2020) HMGB1

Prospective
observational

(132 IS)
Prognosis 3-month mRS

High concentration of HMGB1 at 6 h
after thrombolytic therapy was
associated with poor outcome

(Se = 87%, Sp = 74%, AUC = 0.87).

Kiiski et al. [110]
(2017) HMGB1

Prospective
observational

(47 SAH)
Prognosis 6-month mRS

No correlation has been found
between biomarker concentrations

and the neurological outcome.

ICH: intracerebral hemorrhage; IS: ischemic stroke; SAH: subarachnoid hemorrhage; NIHSS: national institute of health stroke scale; ICU:
intensive care unit; GFAP: Glial fibrillary acidic protein; NSE: neuron-specific enolase; GOS: Glasgow outcome scale; mRS; modified Rankin
scale; CT: computed tomography; CI: confidence interval; AUC: area under the curve; OR: odds ratio; PV: predictive value; Se: sensitivity;
Sp: specificity; CVS: cerebral vasospasm subtype; sRAGE: soluble receptor for advanced glycation end-products; HMGB1: high mobility
group box 1.
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Table 2. Biomarker approach of damage-associated molecular patterns following traumatic brain injury.

Author (Year) Marker Study Design Applications Outcome Results

Osier et al. [111]
(2018)

S100B SNP in
genes

Prospective study
(305 severe TBI) Risk factor 3, 6, 12, 24-months

GOS

The variant allele of one
S100B SNP (rs1051169) was

identified as a protective
factor at 3 months (OR =

0.39), 6 months (OR = 0.34),
12 months (OR = 0.32) and

24 months (OR = 0.30).

Mahan et al. [89]
(2019) GFAP; S100B

Case-control
(118 TBI and 37

controls)
Diagnosis CT lesion (CT+)

These biomarkers were
significantly higher in

patients CT+ than patients
CT−. GFAP had the greatest
prognostic capacity (0–8 h:
AUC = 0.89; and 12–32 h:

AUC = 0.94).

Meier et al. [90]
(2017) GFAP; S100B

Case-control
(32 TBI and 29

controls)
Diagnosis Sport-related

concussion

S100B could predict
concussion in athletes (AUC

= 0.72) but not for GFAP.

Çevik et al. [91]
(2019) GFAP; S100B

Cross-sectional
study

(48 mild TBI)
Diagnosis CT lesion (CT+)

S100B and GFPA were
significantly higher in mild

TBI patients with CT+.

Kellermann et al.
[92]

(2016)
S100B

Prospective
observational

(57 TBI)
Prognosis 6-month GOS

S100B at day 1 predicted a
poor outcome (OR = 7.6,
95% CI [2.24; 25.80]). A

negative correlation was
found between serum level
of S100B and 6 months GOS

(r = 0.494).

Park et al. [94]
(2018)

S100B; NSE;
IL-6

Prospective
observational
(15 pediatric

patients with TBI)

Prognosis 6-month GOS

S100B and NSE correlated
with the severity of brain
injury and predicted poor
neurological outcome, but

not IL6.

Park et al. [93]
(2019) S100B; NSE

Prospective
observational
(10 pediatric

patients with TBI)

Prognosis 6-month GOS

High concentration of S100B
at 1 week after admission
was associated with poor

outcome. No statistical
difference was found

for NSE.

Thelin et al. [95]
(2016) S100B; NSE

Prospective
observational

(417 TBI)
Prognosis

3-month GOS
CSF level of S100B at day 1

predicted poor outcome (OR
= 4.15, 95% CI [1.34; 12.84]).

6-month GOS
S100B had a betted
diagnostic accuracy

than NSE.

GOS: Glasgow outcome scale; GFAP: glial fibrillary acidic protein; NSE: neuron-specific enolase; TBI: trauma brain injury; CT: computed
tomography; CI: confidence interval; AUC: area under the curve; OR: odds ratio; SNP: single nucleotide polymorphism; Se: specificity;
Se: sensitivity.
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Table 3. Biomarkers panels approach.

Author (Year) Marker Study Design Applications Outcome Results

Posti et al. [101]
(2020)

Aβ40; Aβ42;
GFAP; H-FABP;

IL-10; NF-L; S100β;
Tau

Prospective
observational

(136 TBI patients)
Diagnosis CT lesion (CT+)

The combination of
two biomarkers (Aβ40
and IL-10) and clinical
characteristics (HCTS)

were better to
discriminate CT+ and

CT− patients
(Se = 91%, Sp = 59%)

than HCTS alone
(Se = 97%, Sp = 22%).

Posti et al. [102]
(2019)

Aβ40; Aβ42;
GFAP; H-FABP;

IL-10; NF-L; S100β;
Tau

Prospective
observational

(160 TBI including
93 mild TBI)

Diagnosis CT lesion (CT+)

H-FABP + S100B + Tau
were the best
association to

diagnose CT+ in mild
TBI (Se = 100%, Sp =

46%) whereas it was a
question of the

combination of GFAP
+ H-FAB + IL-10 in

group with all
severities TBI (Se =
100%, Sp = 39%).

Chen et al. [103]
(2019)

S100β; NSE; hK6;
PGDS

Case-control
(10 severe TBI and

10 controls)
Diagnosis Subtype severe TBI

S100B/hK6 and
NSE/PGDS ratios
(both AUC = 1.00)

diagnosed severe TBI
with greater accuracy
than S100B and NSE

alone (both
AUC = 0.97).

Thelin et al. [99]
(2019)

S100β; NSE;
GFAP; Tau; NF-L;

UCH-L1

Prospective
observational

(172 TBI)
Prognosis 12-month GOS

GFAP + NF-L was the
best association to

predict poor outcome.

Di Battista et al.
[100]

(2015)

S100β; GFAP; NSE;
BDNF;

MCP-1; ICAM-5;
PRDX-6

Prospective
observational

(85 TBI)
Prognosis Death and

6-month GOS

S100B and GFAP
levels were the most

discriminating to
predict poor outcome

(AUC = 0.82 and
AUC = 0.71,

respectively) and
mortality (AUC = 0.86

and AUC = 0.79,
respectively).

IL: interleukin; GOS: Glasgow outcome scale; GFAP: glial fibrillary acidic protein; UCH-L1: ubiquitin C-terminal hydrolase L1; NSE:
neuron-specific enolase; TBI: trauma brain injury; CT: computed tomography; CI: confidence interval; AUC: area under the curve; OR:
odds ratio; Aβ: β-amyloid; hK6: human kallikrein 6; PGDS: prostaglandin D2 synthase; H-FABP: heart fatty-acid bonding protein;
NF-L: neurofilament light; ICAM: intercellular adhesion molecule; PRDX: peroxiredoxin; BDNF: brain-derived neurotrophic factor; MCP:
monocyte chemoattractant protein; HCTS: Helsinki computerized tomography score; Sp: specificity; Se: sensitivity.

4. Therapeutic Perspectives

The brain levels of DAMPs and RAGE have been used as indirect markers of anti-
inflammatory drug efficacy following experimental acute brain injury [112,113], but these
could also be therapeutic targets, either by blocking the receptors leading to cellular death
or by improving clearance of DAMPs from the brain. For instance, blocking RAGE (e.g.,
with N-benzyl-4-chloro-N-cyclohexylbenzamide, or glycyrrhizin that can be used in hu-
mans) can reduce cerebral expression of PRRs, HMGB1 release, and cerebral edema in



Int. J. Mol. Sci. 2021, 22, 2439 10 of 18

models of TBI [39,114] or SAH [115,116]. Reducing cerebral edema following acute brain
injury can be critical in cases of intracranial hypertension that worsens the prognosis [117].
However, while reducing cerebral edema and expression of PPRs, blocking RAGE might
also increase neuronal apoptosis and down-regulate autophagy thereby worsening neu-
ronal lesions [20]. Autophagy may serve as a major cytoprotective process by maintaining
cellular homeostasis and recycling cytoplasmic contents [118]. Its role after acute brain
injury remains controversial [119,120], and the safety and efficacy of a strategy resulting in
autophagy down-regulation remains to be evaluated. Another cell death pathway involves
the release of TNF that binds the TNFR1 leading to both necroptosis and apoptosis [9,33].
The intracellular recruitment of RIPK1 by TNFR1 starts a cascade that leads to cell death.
Interestingly, the recruitment of RIPK1 is blocked by the endogenous TNF alpha-induced
protein 3 (also known as A20) [9]. The level of A20 therefore represents an endogenous
regulator of inflammation-induced cell death. Recently some authors described that the
expression of A20 can be increased by the administration of melatonin, thereby reducing
cell death and cerebral edema in experimental TBI or SAH models [9,121,122]. Melatonin
is already approved for the treatment of primary insomnia in adults to promote sleep
and could be a potent therapeutic agent to be used at the acute and subacute phase of
brain injury. The effect of daily melatonin administration in the acute phase of stroke on
inflammation (i.e., IL-6 systemic levels) is currently under investigation in a randomized
controlled trial (NCT03843008).

The BBB forms a natural shield that prevents neuroprotective drugs from accessing
brain tissue. However, small lipophilic molecules can cross the BBB and were therefore
used to design nanoparticles carrying hydrophilic drugs to deliver them to the brain
tissue [123]. The intranasal administration of nanoparticles can accumulate their cargo in
the brain unlike systemic free administration [124]. Moreover, some nanoparticles release
their cargo only in an acidic environment, which is a characteristic of ischemic tissue at
risk of irreversible damage; this molecular design allows the enriching of acutely injured
tissue without the risk of unfavorable off-target effects [125]. These new technological
breakthroughs are a major step forward in specifically targeting injured cerebral tissue
with drugs that interfere with DAMPs and PPRs. For instance, nanoparticles have been
used to carry antibodies against TNF or IL-6, as well as short hairpin ribonucleic acid
silencing the expression of TLRs thereby attenuating inflammation and improving tissue
recovery [126,127].

The clearance of DAMPs is also critical to resolve brain inflammation. As described
in the previous section the cleaning of DAMPs from the brain involves their scavenging
by infiltrating monocytes and microglial cells, and their removal via CSF outflow or
drainage. Infiltrating monocytes and macrophages can scavenge DAMPs via several
receptors, such as MSR1 [56]. The expression of scavenger receptors is under the regulation
of several transcription factors; MafB regulates the expression of MSR1. Vitamin A also
has profound effects on cell proliferation, homeostasis, and metabolism through nuclear
retinoid receptors [128]. Recently, agonists of the retinoid X receptor have been reported to
induce MafB mRNA expression in macrophages [129]. Tamibarotene is an orally active,
synthetic retinoid agonist that is more active than all-trans retinoic acid and improves
the survival of patients with acute promyelocytic leukemia [130]. In an experimental
stroke model tamibarotene enhanced expression of both MafB and MSR1, and in turn
reduced the infarct volume [56]. It could therefore be a future therapeutic agent for acute
brain injury; however, its tolerance and efficacy remain to be investigated in patients with
acute brain injuries. Nevertheless, there is currently a phase 2 clinical trial in patients
with Alzheimer’s disease investigating the administration of tamibarotene (NCT01120002).
sRAGE can also act as a decoy receptor and scavenge DAMPs in the extracellular space
and blood compartment. The administration of recombinant sRAGE reduced cell death
in vitro [12,65] and at high dosage in in vivo experimental models of IS and SAH [12,37,65].
However, its efficacy and tolerance in humans is so far unknown. In addition, restoring the
glymphatic system circulation after acute brain injury to enhance DAMPs clearance to the
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peripheral blood is also a future approach that should be investigated. CSF flux through
the glymphatic system can be influenced by sleep or sedation. For instance, some data
suggest that sevoflurane can enhance the clearance of Aβ by up-regulating the expression
of aquaporin-4 in astrocytes thereby improving the CSF flux in the glymphatic system [69].
As low doses of sevoflurane are not supposed to increase the cerebral blood volume, this
could be an additional tool to restore CSF clearance after acute brain injury and needs to
be evaluated [131]. Once evacuated to the blood compartment, DAMPs can be further
cleared using a hemadsorption extracorporeal circulation with porous polymer beads or
nanotraps, thereby removing them from the whole body and preventing their refilling to
the brain [132,133]. This strategy has yielded promising results in pre-clinical models of
sepsis or TBI [133,134]. CSF can also be evacuated by an external ventricular drain (EVD),
either when there is a hydrocephalus or to monitor intracranial pressure [135]; it can be
used to measure DAMPs following acute brain injury [55], but has yet to be evaluated for
the clearance of DAMPs. EVDs are also being used in several clinical trials investigating
the effect of intraventricular fibrinolysis to restore the CSF circulation on patient outcome
after SAH, when the subarachnoid space is covered with blood (e.g., the FIVHeMA trial,
NCT03187405).

5. Materials and Methods

The methodological approach is a narrative review to summarize the main pub-
lished findings in the field of DAMPs, RAGE, and acute brain injuries [116]. We con-
vened a working group of experts in neurological intensive care medicine (B.B. and
J.G.) and molecular biology and clinical chemistry (L.D. and A.P.L.). Section 2 is based
on a searched of the MEDLINE database using the PubMed search engine, looking for
original articles published in English language using the keywords: “Receptor for Ad-
vanced Glycation End-products”, “Damage-associated molecular patterns”, “traumatic
brain injury”, “subarachnoid hemorrhage” and “stroke”; with the following Boolean
operators: ((Receptor for Advanced Glycation End-products[Title/Abstract]) OR (Damage-
associated molecular patterns[Title/Abstract]) OR (S100[Title/Abstract])) AND ((trau-
matic brain injury[Title/Abstract]) OR (subarachnoid hemorrhage[Title/Abstract]) OR
(stroke[Title/Abstract])) NOT (Review[Publication Type]). We then excluded reviews and
articles not related to acute brain injuries and selected articles reporting data on acute
brain injury pathophysiology. We also searched clinicaltrails.gov for unpublished studies
described in Section 4.

6. Conclusions

To conclude, the release of DAMPs upon acute brain injury triggers RAGE activation
and steril inflammation, which is a major component of secondary damage progression.
It promotes cerebral edema, triggers secondary vascular lesions such as vasospasm and
microthrombi, and leads to cellular death via the release of inflammatory cytokines and
the polarization of microglial cells toward an M1 phenotype. DAMPs are then cleared
from the extracellular space through the glymphatic system to the peripheral blood, and
also scavenge by the inflitration of circulating leukocytes followed by activated mciroglia.
The concentration of DAMPs in the peripheral blood are therefore good biomarkers of the
severity and type of the primary injury. DAMPs can also be used to predict the outcome and
monitor the course of brain injury. The detection of a combination of different DAMPs may
also improve their diangositic performance. However, the proinflamatory cytokine cocktail
that has already been released upon the primary injury may worsen cerebral lesions, and
targeting the downstream intracellular consequences could be a future therapeutic strategy.
The recent developpment of nanoparticles may, in the near future, allow the administration
of neuroprotective drugs specifically in the injured area where in may be most helpful.
Clearing and scanvenging DAMPs from brain injury seems also to be critical to prevent
lesion progression, and could repesent future theraptic targets.
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Abbreviations

Aβ Peptide amyloid β

ATP Adenosine triphosphate
BBB Blood–brain barrier
CSF Cerebrospinal fluid
CXCL Chemokine (C-X-C motif) ligand
DAMPs Damage or danger-associated molecular patterns
EVD External ventricular drain
GFAP Glial fibrillary acidic protein
HMGB1 High mobility group protein 1
IL Interleukin
IS Ischemic stroke
MLKL Mixed-lineage kinase domain-like pseudokinase
MSR1 Macrophage scavenger receptor 1
NF-κB Nuclear factor-kappa B
NO Nitric oxide
NOD Nucleotide oligomerization domain
NSE Neuron-specific enolase
PRRs Pattern-recognition receptors
RAGE Receptor for advanced glycation end-products
sRAGE Soluble form of the receptor for advanced glycation end-products
RIPK Receptor-interacting protein kinase
SAH Subarachnoid hemorrhage
SD Spreading depolarization
TBI Traumatic brain injury
TNF Tumor necrosis factor
TNFR1 Tumor necrosis factor receptor 1
TLRs Toll-like receptors
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