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SUMMARY

The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but 

the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, 

through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule 

of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for 

both protein-coding and noncoding genes to broaden our understanding of the immune response. 

Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding 

RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression 

changes related to multiple signaling pathways that detect viral infection. Co-expression networks 

isolate immune cell-type-related and interferon-response modules that represent specific biological 

processes that correlate with more robust antibody responses. These data provide insights into the 

early determinants of the variable immune response to the vaccine, highlighting the significance of 

splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.
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Kim et al. use genome-wide transcriptome analysis to reveal the molecular pathways, cell-type-

related and interferon-response modules, defining immune mechanisms associated with the titers 

of neutralizing antibody. These data contribute to a coherent emerging picture of vaccine-elicited 

immunity, highlighting the significance of splicing and isoform-level gene regulation in vaccine 

response.

Graphical Abstract

INTRODUCTION

Dengue is a mosquito-borne viral infection that causes global outbreaks and epidemics in 

tropical and sub-tropical regions with expanding ranges, creating an imminent threat to 

public health (Bhatt et al., 2013). Human illness caused by dengue virus (DENV) infection 

is clinically classified as uncomplicated dengue, dengue with warning signs, and severe 

dengue (Bhatt et al., 2013). Although most people who become infected with the virus 

recover on their own without requiring medical treatment, an estimated 500,000 people 

will develop severe dengue each year, which can be fatal (Bhatt et al., 2013). DENV 

belongs to the Flaviviridae family of single-stranded RNA viruses that includes other 

arthropod-borne viruses, including yellow fever virus, Zika virus, and Japanese encephalitis 

virus. DENV has four genetically related but distinct serotypes (DENV-1 through DENV-4), 

each of which is further classified into genotypes (Holmes and Twiddy, 2003; Katzelnick 

et al., 2015). A second infection with a different serotype heightens the risk of severe 
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dengue (Gibbons et al., 2007; Olkowski et al., 2013). Antibody-dependent enhancement of 

disease occurs when non-neutralizing cross-reactive antibodies bind to virus particles of the 

second infecting serotype to facilitate virus entry into cells through Fc-receptor-mediated 

endocytosis (Bournazos et al., 2020). The increased virus production and suppressed 

antiviral defenses can cause severe illness and pose a risk to vaccine recipients who were 

previously exposed to DENV (Deng et al., 2020).

The vaccine TAK-003, a formulation of four live attenuated chimeric viruses in which 

the prM and E proteins of each DENV-1, DENV-3, and DENV-4 replace DENV-2, is 

under active investigation in humans. It has demonstrated safety, immunogenicity, and 

effectiveness in preventing dengue illness that varied according to serotype (Biswal et 

al., 2019). Live attenuated vaccines induce immunity by stimulating the innate immune 

system and providing antigen to specify the adaptive immune responses (Iwasaki and 

Medzhitov, 2015). Pattern-recognition receptors (PRRs), including the endosome-associated 

Toll-like receptor 3 (TLR3) and TLR7 and the cytoplasmic retinoic acid-inducible gene 

I (RIG-I), melanoma differentiation-associated protein 5 (MDA5), and NOD-like receptor 

protein 3 (NLRP3)-specific inflammasome, activate downstream signaling pathways through 

recognition of their ligands (Medzhitov, 2007). The activation of downstream signaling 

pathways can induce and effect type I and type III interferons (IFNs) and proinflammatory 

cytokine productions and hundreds of interferon-stimulated genes (ISGs) that contribute to 

the early control of DENV infection (Hur, 2019; Lazear et al., 2019). DENV, however, can 

interfere with interferon regulator factor (IRF) and nuclear factor-κB (NF-κB) activation to 

replicate its genome within its human host (Garcia-Sastre, 2017).

In addition to direct antiviral activity and innate immune cell activation, type I IFN 

signaling can regulate adaptive immune responses by promoting or inhibiting the activation, 

proliferation, and differentiation of various immune cell types (Iwasaki and Medzhitov, 

2015). The transcriptional and post-transcriptional regulation of gene expression in signaling 

pathways that trigger IFN production is intrinsic to the activation of DENV-specific adaptive 

immunity (Carpenter et al., 2013). The ISGs induced by vaccination may correlate with 

and sometimes predict the variations in the adaptive immune responses (Chaussabel and 

Baldwin, 2014; Gaucher et al., 2008; Li et al., 2014; Querec et al., 2009). However, 

information about how regulation of innate immunity affects the kinetics and magnitude 

of the protective adaptive immune response for a vaccine and how they correlate with 

transcriptional activation of the primary immune response genes, post-transcriptional 

regulators, and coregulatory interactions remain poorly defined.

In this study, we performed extensive analyses of the protein-coding, noncoding, and 

alternatively spliced transcriptome and gene and isoform co-expression networks in blood 

samples collected from healthy adults without previous dengue exposure who received 

two doses, 90 days apart, of the TAK-003 vaccine candidate. Our analysis reveals distinct 

gene expression and transcript isoform expression patterns and differential splicing for 

protein-coding and noncoding genes in defining the early transcriptomic signatures elicited 

by TAK-003. Our data suggest that signatures of innate immunity correlate with the 

neutralizing antibody titers. Co-expression networks isolate immune celltype-related and 

IFN-response modules, implicating early B cell activation and differentiation, antigen 
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presentation by dendritic cells, and cell cycle phase transition in the induction of a more 

robust antibody response. Together, these data demonstrate the specific transcriptional 

pathways and the immune cell types involved, emphasizing the significance of splicing 

and isoform-level gene regulatory mechanisms for inducting IFNs and ISGs in promoting an 

effective immune response.

RESULTS

Study design

Twenty recipients of a two-dose regimen of the TAK-003 vaccine candidate were selected 

for study from a phase 1 clinical trial involving healthy adults from an admixed Columbian 

population without pre-existing immunity to DENV or other flaviviruses (Osorio et al., 

2014). An overview of the study design is provided in Figure S1. Blood samples were 

collected at baseline and days 2, 4, and 7 after the first dose and day 2 after the second 

dose (92 days after the first dose). The first dose induced functional antibody responses that 

were significantly higher in the high response group when compared with the low response 

group (445.9 ± 162.5 versus 25.5 ± 17.0, respectively; Mann-Whitney U Test, p = 0.0003) 

and persistent in both groups (Figure S1B). The vaccine elicited higher serotype-specific 

antibody titers to DENV-2 than the other serotypes (Osorio et al., 2014). A booster dose 

of TAK-003 given 90 days after the primary dose elicited a modest increase of neutralizing 

antibodies against DENV-1, DENV-2, and DENV-3. The high and low response groups (n 

= 11 and n = 9, respectively) were matched for sex, age, and genetic ancestry (data not 

shown). We detected transient low-level viremia by quantitative serotype-specific RT-PCR 

more frequently after the first dose, particularly among those in the high response group 

(Fisher’s exact test, p = 0.0379) (Osorio et al., 2014), suggesting that the attenuated vaccine 

strains replicated more efficiently in those vaccine recipients and led to a more vigorous 

immune response. No correlation was found between viremia and the titer of neutralizing 

antibody in the high response group. The minimal viremia after the second dose may involve 

more limited virus replication and spread by the innate and adaptive immune responses 

induced by the first dose (Reinhardt et al., 1998).

Identification of the differentially expressed genes and transcripts

RNA sequencing (RNA-seq) results from blood specimens collected over time enabled 

comprehensive assessments of gene expression and transcript isoform expression for 

protein-coding and noncoding genes (Figure S1F). The proportion of total reads mapping 

to the DENV reference was low but comparable between groups (Figure S1C). The lowest 

proportions observed were at day 4. Differentially expressed genes (DEGs; DESeq2 negative 

binomial model) were identified for all samples across a four-point time course with 

the baseline for each vaccine recipient as their control. Only genes with an absolute log-

transformed fold-change (|log2FC|) >1 at false discovery rate (FDR) < 0.05 and identified 

in at least 60% of the vaccine recipients were considered DEGs (Table S1A). To validate 

the differential gene expression results, we performed a multiplex analysis of immune 

response-related gene expression (both protein-coding and noncoding) on 347 genes on a 

custom nCounter panel (nanoString Technologies). We found significant concordance in 
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log2FC compared with those for RNA-seq (average Pearson correlation coefficient across 

replicates, r2 = 0.89, p ≤ 2.2 × 10−16)(Figures S1D and S1E; Table S2).

We compared the high and low response groups to identify genes whose baseline expression 

(|log2FC|) ≥ 1, FDR <0.05) might predict the outcome for TAK-003 vaccination. We 

identified five genes – GIMAP2, ZBTB34, ZNF354A, SOCS5, and hnRNPF – that were 

significantly associated with the magnitude of the functional antibody response (Figure 

S2A). This specific gene subset was a baseline predictor for our cohort (Tsang et al., 2020). 

We observed pervasive differential gene expression changes, compared with baseline, across 

the four-point time course (n = 480, n = 13, n = 101, and n = 2,308 genes at days 2, 4, 7, and 

92, respectively). Those DEGs were more likely to be upregulated than downregulated (n = 

400 versus 80, n = 9 versus 4, n = 84 versus 17, and n = 1981 versus 327 genes at days 2, 

4, 7, and 92, respectively) (Figure S2B). To capture the transcription kinetics, we generated 

z-scores from the transformed DEGs. We segregated the expression data into clusters by the 

k-means algorithm. We identified eight distinct clusters with similar temporal patterns across 

the four-point time course (Figure S2D and Table S1B). Those clusters related to innate 

immunity exhibited substantial enrichment for known molecular pathways involved in type I 

IFN signaling, immunometabolism, and the inflammasome complex (Figure S2C).

Differential expression analysis revealed both distinctive and shared genes that were 

significant after adjustment for multiple comparisons (FDR <0.05) when comparing the 

two groups, with higher expression levels after the first dose associated with higher antibody 

titers (Figures 1A and S3A–S3C; Table S1C). We identified 3,108 DEGs with activity after 

the first and second doses. The kinetics of these DEGs varied between time points in the two 

groups without a temporal delay in their expression in the low response group. These DEGs 

were mostly observed at days 2 and 92 (n = 406 and n = 2,819, respectively) compared 

with days 4 and 7 (n = 62 and n = 162, respectively). Those gene signatures consisted of 

a similar set of DEGs involved in the type I IFN response, including DDX58 (also known 

as RIG-I) and IFIH1 (also known as MDA-5), the primary cytosolic receptors responsible 

for the recognition of RNA, and the IFN-inducible genes RSAD2, OAS2, OASL, PARP9, 

MX1, IFI6, ZBP1, XAF1, and ZBP1, that have essential roles in viral restriction and 

apoptosis-promoting activities (Figures 1B and S3D; Table S1C). Negative regulators of the 

type I IFN response were identified, including USP18, HERC5, and ISG15, which code for 

ubiquitin-like proteins that maintain cellular homeostasis mechanisms triggered by viruses 

(Ivashkiv and Donlin, 2014). Compared with previously published yellow fever vaccine 

YF-17D clinical trials datasets, there were few similarities in their transcriptional signatures 

of vaccination that correlate with and predict the subsequent adaptive immune response 

(Figures S4A and S4B) (Kotliarov et al., 2020; Querec et al., 2009).

To better understand how the transcriptomic response might relate to biological processes 

specific to the first or second dose, we performed Gene Ontology (GO) enrichment 

analysis of DEGs (|log2FC| ≥ 1, FDR <0.05) between the two groups or genes selectively 

upregulated or downregulated when compared across the four-point time course. A more 

robust functional antibody response showed a significant correlation (−log10p > 10) with 

the upregulated DEGs in the GO enrichment analysis (Figure 1C). We found that genes 

involved in TLR-mediated My88-dependent signaling, TIR domain-containing adaptors 
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signaling, type I IFN and antiviral innate immune response, and inflammatory response were 

upregulated in both groups (Frishberg et al., 2019; Uhlen et al., 2019). When comparing the 

enriched gene sets shared between the two groups, the GO analysis revealed a significant 

upregulation of genes involved in biological processes related to the activation of an IFN-

regulated gene expression program (Figures S4C–S4F). We found both groups displayed 

elevated expression of the genes involved in the type I IFN signaling responses, various 

responses to stress, ribosomal RNA processing, and mitochondrial translation datasets most 

significantly after the second dose (Figure 1C). The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Reactome pathway analyses on these genes confirmed that an IFN-

regulated gene expression program is highly enriched in the high response group, most 

significantly at day 2 compared with day 92.

We expanded these analyses to the transcript isoform-level to discover additional gene 

expression alterations. We observed substantial sharing of the differential transcript 

expression (DTE) and DEG signals and a transcriptome gradient reflecting the log2FC 

from baseline across the four-point time course (Tables S1C and S1D). The isoform-level 

changes (DTE) showed a larger differential expression effect size (|log2FC|) compared 

with gene expression changes (two-sided Kolmogorov-Smirnov test statistic, p < 2.2 × 

10−16), especially for the protein-coding genes (Figure 2A). The most significant changes 

were observed 2 days after the second dose. DTE and DEG showed similar GO term 

enrichments (−log10p > 30) for upregulation in viral replication, immunometabolism, and 

catabolic process pathways and downregulation in cell-type-related activation and cell 

process pathways (Figure 2B). The combined GO and KEGG functional networks and 

Reactome pathways demonstrated significant enrichment for RIG-I-like receptor signaling, 

type I IFN signaling, response to type I IFN, antiviral mechanisms, cellular response to type 

I IFN, and negative regulation of viral genome replication.

Expression of the noncoding transcriptome

We mapped 445 long noncoding RNAs (lncRNAs) that matched the annotated loci in 

Ensembl, passed filter for |log2FC| ≥ 1 (FDR <0.05), and were differentially expressed 

(Figure 3A and Table S1E). Noncoding RNAs have been shown to participate in various 

stages of immune cell development and PRR pathways, with direct functional effects 

through the regulation of chromatin structure, gene expression, and mRNA translation 

(Zhang and Cao, 2016). Notable examples are NRAV, which suppresses ISG transcription; 

NEAT1, which promotes inflammasome activation; and BISPR, which stimulates ISG 

production (Carpenter et al., 2014).

We found high correlations between the expression of 254 candidate lncRNAs and their 

related 702 protein-coding genes (Pearson correlation test, p < 0.01), adding evidence to 

the idea of the regulatory potential of individual lncRNAs in the cooperative dynamics 

of gene activation (Tables S3A and S3B). We found distinct candidate lncRNAs, most 

of which do not have functional annotation, related to one group or the other (n = 155 

and n = 67 for the high and low response groups, respectively) (Peng et al., 2010). A 

correlation matrix revealed significant (Pearson correlation test, p < 0.01) associations 

between lncRNAs and their proximal protein-coding gene (Figure 3B). Multiplex analysis of 
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candidate lncRNA-related gene expression examining 14 noncoding RNAs (AC012645.3, 
SPDYE11, CIRBP-AS1, AL022311.1, SNHG9, AC012615.4, EP300-AS1, A1BG-AS1, 
AC136475.3, NALT1, AC245052.4, AC069281.2, AC138028.1, and AC005387.1) revealed 

a substantial correlation with 30 protein-coding genes across the two groups (Table S3B). 

Protein-protein interaction (PPI) enrichment analysis revealed candidate lncRNAs that are 

potential local regulators of DEGs in peptide chain elongation, the metabolism of RNA, and 

G protein coupled receptor (GPCR) ligand binding (Figure 3C). Notably, DDX49, RPS5, 

RSP15,and TBL3 (log10p< −1.90) are involved in the major pathway of rRNA processing 

in the nucleolus and cytosol. The significant overlap of lncRNAs and DTE suggests that 

the lncRNAs may have a role in RNA processing and gene transcription, involving diverse 

mechanisms that include splicing regulation (Engreitz et al., 2016).

We transformed the data to a topographical overlap matrix using Weighted Gene Co-

expression Network Analysis (WGCNA) for hierarchical clustering of the transcripts to 

identify clusters of highly correlated candidate lncRNA and protein-coding genes (Figure 

3D; Tables S4A and S4B) (Langfelder and Horvath, 2008). The most substantial evidence 

for highly connected DEGs and lncRNAs with similar patterns of expression (cutoff value 

of 0.2, log10p< −1.34) was found in the annotation networks groups for the metabolism of 

RNA, type I IFN signaling, regulation of cytokine production, and myeloid cell activation 

functions. Notable examples of significant lncRNA hub genes included NRIR, which 

produces a functional lncRNA transcript for a negative regulator of the IFN response, 

AC004551.1, which is antisense to OAS1, OAS2, and OAS3; AL445490.1, which is 

antisense to IFI6; and AP001610.2, which is antisense to the reverse strand of MX1 (Figure 

3D). The noncoding genes had a more comprehensive representation. The incomplete 

overlap between the two networks is in keeping with the observation that splicing provides 

another layer of gene regulation for the innate immune-regulated cellular machinery (Ip et 

al., 2007).

Alternative splicing

Post-transcriptional regulation of gene expression, including differential splicing (DS) of 

precursor mRNAs (pre-mRNAs), is essential for controlling cell-type- and tissue-specific 

expression of the immune response (Braunschweig et al., 2013; Carpenter et al., 2014). 

Alterations in intron usage through exon skipping, alternative 5' exon inclusion, alternative 

3' splice site usage, and intron retention can increase the complexity of gene expression and 

lead to distinct functional roles in regulating a coordinated, IFN-regulated gene expression 

program (Braunschweig et al., 2013; Carpenter et al., 2014).

We used LeafCutter to identify variable splicing events and detect shifts in splicing 

patterns (Li et al., 2018; Reyes and Huber, 2018). We distinguished eight sets of 

significant (FDR <0.05) DS intron clusters across the four-point time course for the 

two groups (Figures S5A–S5C; Tables S5A and S5B; supplemental information). The 

annotated changes in intron usage identified exon skipping, alternative 5' exon inclusion, 

and alternative 3' splice site usage (Table S5A; supplemental information). The overlap 

among DEGs (both upregulated or downregulated) and DTE across the two groups was 

significant (hypergeometric test of enrichment, p < 2.2 × 10−16, Figure 4A). DS overlapped 
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significantly with DTE 2 days after the first and second dose, suggesting that splicing 

changes are coordinated (Baralle and Giudice, 2017; Bhatt et al., 2012). There was a 

substantial correlation in DS measured by differences in intron excision events and, as a 

result, overlap among DS genes (Figure 4B). DS genes exhibited significant enrichment 

(FDR <0.05) for regulation of mRNA processing, RNA splicing, RNA catabolic processes, 

and transmembrane receptor protein kinase signaling (Figures 4C and S5C). We validated 

the differences in alternative splice isoform expression for IFIT1 and IFIT3 using real-time 

RT-PCR (Pearson correlation test, p < 0.05; data not shown).

DS is regulated by RNA-binding factors that interact with cis-acting RNA elements to affect 

cellular spliceosome assembly at nearby splice sites and can vary across immune cell types 

(Amit et al., 2009). The relative abundance of the multiple transcript isoforms is influenced 

further by expression levels of trans-acting splicing factors (Baralle and Giudice, 2017). 

Removal of introns from nascent RNA and exon ligation catalyzed by the spliceosome can 

determine splice site selection, influence transcript isoform profiles and differential gene 

expression, and regulate transcription (Shi, 2017). We measured the expression levels of 

230 candidate regulatory splicing factors identified through PPI networks and their GO 

term enrichments and found high correlations between splicing factor expression and DS 

events (Figures S5D–S5F and Table S5C) (Hegele et al., 2012). We observed substantial 

enrichment for many transcription factors and RNA-binding proteins, which are primary 

regulators of gene expression and RNA processing essential for gene function (Figure S5E 

and Table S5C) (Amit et al., 2009). Hierarchical clustering exhibited changes in distinct 

clusters of immune genes that may be subject to transcriptional and post-transcriptional 

regulation, suggesting that coordinated DS events can regulate their cognate biological 

processes (Figure S5D).

Gene correlation networks

After regressing out all covariates, we performed a correlation-based expression analysis 

to construct correlation networks using WGCNA to capture biologically significant gene 

expression patterns (Figure 5A and Table S4A). We then partitioned the complex networks 

into sets of highly correlated temporally co-expressed genes or modules using hierarchical 

clustering (Table S4B). After the first dose, the relatedness dendrograms in the hierarchical 

clustering identified nine modules describing temporal and diverse GO term pathway 

activities. We clarified the module interconnection patterns by combining the module 

correlations that overlap within and between groups to identify community structures 

(Figure 5B) (Yip and Horvath, 2007). Though we built the protein-coding and noncoding 

gene correlation networks independently, the separate networks largely mirrored similar 

biological processes in the hierarchical clustering.

The H8-L8 community module captured the biology of the overlap for known elements of 

type I IFN signaling mechanisms. These include the cytoplasmic PRRs, the transcriptional 

regulators, and the molecular pathways associated with the type I IFN response, the 

cellular response to viral infection, and cytokine signaling. We observed enrichment 

for DDX58, IFIH1, and STAT1, and several ISG effectors, including HERC5, MX1, 

and USP18, that have direct antiviral activities. The top hub genes represented in the 
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transcriptional regulatory networks with the highest degree of connectivity within a module 

included the IRF7 and STAT1 transcription factors (Figure 5C). Those genes exhibited 

the strongest correlation across all modules (Pearson correlation test, p < 0.01). Notably, 

the innate immunity interactome for type I IFN is associated with a robust functional 

antibody response shown in the network analysis (Figures 5D and S6). The protein clusters 

with significant correlations (confidence score >0.7) include CXCR3 chemokine receptor 

binding, postchaperonin tubulin folding pathway, neddylation, and transcription factor AP-1 

complexes. These findings exemplify that independent gene- and isoform-level networks 

refine the cellular processes and interactions.

The modular transcriptional repertoire

To resolve the functionally related and co-regulated genes expressed in response to TAK-003 

vaccination, we performed gene set enrichment analysis (GSEA) on genes annotated in 

a modular transcriptional repertoire according to their biological functions (Tables S6A 

and S6B) (Chaussabel and Baldwin, 2014; Gaucher et al., 2008; Li et al., 2014; Querec 

et al., 2009). The modular transcriptional signatures of vaccine recipients after the first 

dose identified a conserved pattern of gene expression related to antiviral innate immunity 

and type I IFN response, including M127, M150, and M75; myeloid cell/inflammation, 

including M11, M32.0, and M32.1; and cell cycle activity, including M4.0, M4.1, and 

M32.2, blood transcription modules (BTMs) (Figures 6, 7, and S7; Table S6).

The first dose led to a substantially broader innate immune response in the high response 

group than the low response group. In addition to the TAK-003-induced IFN-response 

modules, the high response group had significant increases (FDR <0.05; normalized 

enrichment score [NES]) in gene expression in cell-type-related activation and cell cycle 

activity-related modules at day 2. It is notable that the first dose led to significant differences 

in the directionality of enrichment (upregulated versus downregulated NES) for 17 modules 

with unassigned transcriptional program activity, including intracellular transport (M147), 

Golgi membrane (M237), and inositol phosphate metabolism (M129), and other modules 

that do not have a functional assignment (Figures 6 and S7). This pattern contrasts with 

the module activity at day 7, when most BTMs exhibited shared enrichment patterns across 

the two groups. Notable exceptions are modules that had significant increases for antigen 

presentation (M95) and dendritic cell activation (M168) in the high response group, and 

chemokine cluster (M27.1), and cell division in stimulated T cells (M4.6) and signaling in T 

cells (M35.0) in the low response group.

On day 2, the first dose induced a transcriptional signature of B cell transmembrane 

signaling receptor and co-stimulatory molecule activity in the high response group (Figure 

7A). The fold changes of the genes within those modules, including M47.2, M47.3, M69, 

M182, and M9, showed an increase in CD79B, which is related to the B cell antigen 

receptor complex, and IGKV4 and IGKV1–5, which are related to the V region of the 

variable domain of immunoglobulin light chains that take part in antigen recognition. One 

module, M152, which contains genes related to B cell function and inflammatory response, 

was negatively enriched in the low response group. In addition, the cell cycle activity-related 

modules that were significantly enriched, including M144, M250, M37.3, M23, and M145, 
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mirror the genes implicated in cell cycle phase transitions and the regulation of DNA 

replication dynamics of B cells (Braun et al., 2018; Franco et al., 2013; Li et al., 2009, 

2014; Nakaya et al., 2011; Obermoser et al., 2013). This pattern of module activity for B 

cell signatures was not captured in the low response group on day 4 or 7, suggesting that the 

trajectory of rapid plasma cell development and expansion was not delayed (Figure 6).

The high response group tended to have more significant changes in the myeloid cell 

(M37.0, M11.0, S4, M118, M37.1, and M16) and dendritic/antigen-presenting cell (M47.0, 

M47.1, M47.2, M69, M182, and M9) modules. The average fold changes of those modules 

were consistent at days 4 and 7 regardless of the enrichment of modules at day 2 

that differed between the two groups (Figure 7A). Collectively, these data suggest that 

significant early gene expression changes related to B cell activation and plasma cell 

development, antigen presentation by dendritic cells, and other unassigned transcriptional 

program modules are required for a robust functional antibody response (Figure 7B).

Compared with the modules characterizing the first dose, the second dose increased cell-

type-related module expression reflective of the same, or distinct, immune processes in the 

high and low response groups. Significant associations with both groups were observed for 

monocyte signatures (M37, M11, S4, M118), platelet activation (M32.1, M32.0), TLR and 

inflammatory signaling (M16), neutrophil activity (M37.1), inflammatory response (M33), 

dendritic cell activation (M165, M95, M43.1), antigen presentation (M71), lysosomal and 

endosomal proteins (M139), cell division (M46), T cell activation (M7.0, M7.1, M7.3, 

M52), and NK cell activation (M7.2). We identified BTMs associated with the high 

response group, including proinflammatory dendritic cell response (M86.1), chemokines 

and receptors (M38), ubiquitination (M138), transmembrane transport (M87), dendritic cell 

activation (M64), T cell activation (M5.1), and cell cycle (M167) modules. BTMs that 

showed association with the low response group, including lipopolysaccharide-activated 

dendritic cell surface signature (S11) and enriched in NK cell (M61.2) modules, emphasize 

the different recognition pathways of the innate immune system that can instruct the 

adaptive immune response.

DISCUSSION

In this study, we have performed a longitudinal RNA-seq analysis of cells, including 

immune cells, in blood obtained from 20 healthy adults to broaden our understanding 

of the early determinants of the variable immune response to the TAK-003 vaccine. 

Extensive analyses of gene expression, splicing, transcript isoform expression, and co-

expression networks allowed the identification of protein-coding and noncoding genes with 

differential expression in the various immune cell types. Cell-type-related enrichment and 

molecular pathway analysis demonstrate that most changes in gene expression, splicing, 

and lncRNAs in response to vaccination involve type I IFN signaling, immunometabolism, 

and inflammatory response pathways. These data reveal an early transcriptional signature 

of antiviral innate immunity and cell-type-related activation, highlighting the significance of 

alternative splicing and isoform-level gene regulatory mechanisms in defining the immune 

response to the TAK-003 vaccine.
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Post-transcriptional regulation is a critical mechanism for tuning and modulating the innate 

immune response (Ashraf et al., 2019; Carpenter et al., 2014). By creating multiple 

transcript isoforms from a single gene, differential transcript utilization expands the 

complexity of the proteome, leading to potential functional consequences for the immune 

response (Carpenter et al., 2013). The tight correlation for the coordinated changes in DEGs 

and DTE emphasizes the significance of differential isoform usage and pre-mRNA splicing 

mechanisms in post-transcriptional gene regulation and immune function (Gandal et al., 

2018; Martinez and Lynch, 2013; Rotival et al., 2019; Schaub and Glasmacher, 2017). The 

pervasive DS isoforms and the array of functional gene groups that it affects emphasize 

the importance of splicing as an essential mechanism of gene regulation, allowing exons 

to be expressed at different levels across different immune cell types (Baralle and Giudice, 

2017). Notably, the TLR and RIG-I signaling pathways are regulated by diverse transcripts 

for fine-tuning and modulating signal transduction (Ashraf et al., 2019; Carpenter et al., 

2014). Moreover, the expression levels of candidate regulatory splicing elements showed 

substantial enrichment for transcription factors and RNA-binding proteins that can affect 

RNA processing and regulation of gene expression. It is notable that DENV, like other RNA 

viruses, disrupts splicing to suppress host defenses (Banerjee et al., 2020; De Maio et al., 

2016).

Co-expression of lncRNAs with DEGs suggests that these noncoding RNAs are involved 

in similar biological functions and may dynamically regulate gene expression. Functional 

elements in the noncoding genome, including upstream molecular regulators, promoters, and 

distant-acting enhancers, can control innate immune defense, inflammation, and immune 

cell development (Chen et al., 2017; Consortium et al., 2007; Wang and Chang, 2011). 

Notable examples of lncRNAs with proven immunity roles include NRAV, which negatively 

regulates ISG expression, NEAT1, which affects both RIG-I signaling and the cGAS-

STING-IRF3 pathway, and BISPR, which positively regulates the expression of BST2 (Qiu 

et al., 2018). We identified candidate lncRNAs as potential cis-acting regulatory elements 

for ISGs with roles in immunity and inflammation, providing good evidence that they may 

contribute toa coordinated, IFN-regulated gene expression program. We cannot exclude 

other mechanisms, such as alternative gene activation states in innate immune cells or many 

environmental and genetic factors that may affect functional diversity in gene expression 

patterns. The substantial overlap between lncRNAs and DS signals highlights pre-mRNA 

splicing as an essential mechanism for post-transcriptional regulation of gene expression, 

allowing immune cell functions to proceed more rapidly (Ashraf et al., 2019; Carpenter et 

al., 2014).

Application of a modular repertoire framework to the analysis of transcriptional data 

reduces the bias of using predefined functional pathways and increases the correlation 

analysis information, assigning biological significance of the co-expressed genes to the 

observed trends (Gaucher et al., 2008; Querec et al., 2009). We identified a substantially 

broader innate immune response with increased enrichment of BTMs at day 2 significantly 

associated with a higher magnitude functional antibody response. Notably, a signature 

associated with the upregulation of B cell and cell cycle activity-related modules reflects 

the B cells’ clonal expansion and differentiation into plasma cells. Whether the altered early 

innate immune response affects the kinetics or regulation of effector B cell priming will 
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require further investigation. Most modules exhibited shared enrichment patterns across the 

two groups at days 4 and 7, suggesting that the generation and function of plasma cells 

are not delayed in the low response group. Other modules implicate antigen presentation 

by dendritic cells, NK cell or T cell feedback, and cell cycle phase transition. In addition 

to identifying an early transcriptional signature of antiviral innate immune responses, we 

recognized 17 modules with unassigned transcriptional program activity that may help 

identify previously unexamined grouping of genes of immunological relevance.

In conclusion, we provide insights into the molecular pathways and immune cell types 

involved, emphasizing the importance of splicing and isoform-level gene-regulators of 

immunity elicited by a live attenuated DENV vaccine. These results illustrate how genes 

involved in regulating the innate immune response have a substantial role in conditioning 

adaptive immunity that could be exploited to elicit the production of functional antibodies 

and inform vaccine formulation optimization. These results also have important implications 

for clinical trials. They suggest an early correlate of vaccine immunogenicity to identify 

those who respond poorly to primary vaccination and inform mechanisms by which the 

vaccine generates the adaptive immune responses.

Limitations of the study

Although neutralizing antibodies are the principal mechanistic correlate of protection 

against yellow fever and Japanese encephalitis, the precise immune parameters that confer 

protection against DENV are unknown (Plotkin, 2010). Because of the limited blood 

volumes, we did not assess effector T cell responses that have essential roles in mediating 

immunity to DENV or plasma levels of cytokines, chemokines, and acutephase proteins. 

Another constraint is that we did not characterize cell identity and state or dissect cell-type-

related molecular circuitry of single cells, as those multimodal omics data were unavailable. 

Nevertheless, we merged gene expression, transcript structure, and regulatory variation 

data using statistical and computational methods for an in-depth understanding of gene 

and isoform expression changes, differential expression of the noncoding transcriptome, 

alternative splicing, and immune celltype-related signals. We envision those future studies 

can leverage larger numbers of vaccine recipients with viable cell samples at even earlier 

time points to understand better post-transcriptional regulation of antiviral innate immunity 

in controlling the antibody response.

STAR*METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to the lead contact, Steven Wolinsky (s-wolinsky@northwestern.edu)

Materials availability—This study did not generate new unique reagents.
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Data and code availability

• The raw files for the datasets generated in this study are available at GEO: 

GSE146658. The software referenced in the paper is provided via a link to 

GitHub (https://github.com/eykim909/TDV_paper_Scripts).

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design—We collected and analyzed blood specimens and data from twenty healthy 

adults with no serologic evidence of previous flavivirus infection (mean age overall, 20 

years range, 18 to 26 years; 50% female) who enrolled in phase 1, double-blind, placebo-

controlled trial of a two-dose schedule of the TAK-003 vaccine candidate manufactured by 

Takeda Pharmaceutical Company (Osorio et al., 2014). TAK-003 is an admixture composed 

of DENV-2 and three chimeric viruses with the DENV-2 prM and E proteins exchanged for 

DENV-1, DENV-3, and DENV-4 in the DENV-2 genome. One dose of TAK-003 contained 

about 3.70, 3.90, 4.00, and 5.30 log10 plaque-forming units of DENV-1, DENV-2, DENV-3, 

and DENV-4, respectively. Serotype-specific serum neutralization titers were measured by 

microneutralization testing and vaccine plasma viremia by quantitative serotype-specific 

RT-PCR. The demographic characteristics of the vaccine recipients were similar in the 

two groups, which were well-balanced for age and sex and not confounded by ancestry 

(chi-squared test for a trend in proportions, p = 0.2446; data not shown).

METHOD DETAILS

RNA-seq—We extracted total RNA from blood collected in PAXgene Blood RNA 

Tubes with the use of PAXgene Blood RNA Kits (BD Biosciences) according to the 

manufacturers’ instructions. The extracted RNA underwent DNase digestion and cleanup 

using RNeasy MinElute kits (Qiagen). The purified RNA samples were quantified by RNA 

High Sensitivity Assay kits (ThermoFisher) with a Qubit 3.0 fluorometer. We assessed 

RNA integrity number (RIN) and yield using RNA High Sensitivity ScreenTape on the 

TapeStation 2200 (Agilent Technologies). Only RNA samples with RIN greater than eight 

were used for downstream cDNA synthesis and library preparation. The ribosomal RNA 

and globin mRNA were removed. Then the enriched RNA was fragmented and primed for 

cDNA synthesis using TruSeq Total Stranded RNA HT kit with Ribo-Zero Globin on a 

Microlab STAR automated liquid handling system (Hamilton). TruSeq HT indices allowed 

for multiplexing. The barcoded libraries were enriched by ligation-mediated PCR for 15 

cycles and purified with the Agencourt AMPure XP beads system (Beckman Coulter). We 

assessed the libraries for quality with a high-sensitivity DNA ScreenTape assay on the 

2200 TapeStation System (Agilent) and quantity with KAPA Library Quantification Kits for 

Illumina platforms (Kapa Biosystems). The libraries were diluted to 2 nM and combined 

equimolarly in pools of 12. They were then clustered using an Illumina cBot with a HiSeq 

3000/4000 paired-end cluster kit on a patterned flow cell, one pool per lane, and a HiSeq 

3000/4000 SBS kit (300 cycles, Illumina) on the HiSeq 4000 sequencing platform.
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We obtained more than 61 million high-quality paired-end reads (range, 61 to 80 million) 

for each blood sample after quality filtering. This depth of coverage is ample for robust and 

reproducible differential expression and splicing analyses (Mehmood et al., 2019; Shen et 

al., 2012). Measurements performed at the same time minimized batch effects. Technical 

replicates are highly correlated with one another (average Spearman rank correlation 

coefficient across replicates, ρ = 0.93). The biological replicates clustered with small 

dispersion distributions across all genes for equal sequencing depth and coherent genome 

sequence and assembly quality. We corrected for individual effect by adding the sample 

information as a covariate.

RNA-seq data processing—We converted the sequencer-generated base call (BCL) 

files to multiplexed FASTQ files, separating the individual files using bcl2fastq 

conversion software. We used FastQC (version 0.11.4) to calculate quality control metrics 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The FASTQ files were quality 

filtered using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) with the invocation 

fastq_quality_filter -q 30 -p 50 -v -Q 33. Reads were mapped to the GRCh38.p10 (Ensembl 

release 90) reference genome using HISAT2 (Kim et al., 2015). We used SAMtools (version 

0.1.19) to sort and convert the SAM files to BAM files (Li et al., 2009). We then assembled 

the aligned sequences into potential transcripts, including splice variants, and the abundance 

of the transcripts and genes in each sample quantified using StringTie (version 1.2.2) (Pertea 

et al., 2015).

Population stratification analysis—Variants were inferred from the processed 

RNA-seq data using GATK HaplotypeCaller (version 3.5.0) and filtered by setting 

to missing any genotype with a genotype quality threshold for calling variants to 

≤20 (https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-

discovery-SNPs-Indels-). Ancestry estimates were obtained from running the model-based 

clustering program ADMIXTURE (version 1.3) with the k value for this dataset populations 

(based on low cross-validation error) fixed for the number of postulated ancestral on 

these vaccine recipients with 1000 Genomes Project Native American, African, Asian, and 

European superpopulations as reference data (Alexander et al., 2009; Galanter et al., 2012; 

Purcell et al., 2007).

Digital multiplexed gene expression analysis—The expression of immune response-

related genes was measured with a nanoString custom nCounter panel for 347 target 

protein-coding and noncoding genes. Copies of individual RNA molecules were labeled 

with gene-specific barcodes, and each one was counted with the nCounter system 

(nanoString Technologies). The gene expression data were normalized to negative and 

positive control lanes and reference gene lanes on the panel using nSolver Analysis software 

(version 4.0). The significantly differentially expressed genes were adjusted for multiple 

statistical comparisons in the analysis using the Benjamini-Hochberg method (Benjamini 

and Hochberg, 1995).

RT-qPCR validation of differential isoform usage—Validation of DS was performed 

using isoform-specific primers that bridge a region that can be used to differentiate between 
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isoforms for known immune response genes. We used the lactate dehydrogenase A gene for 

internal normalization with the transcript primer set. RT-qPCR primers are detailed in the 

key resources table. All RT-qPCR data were analyzed in technical duplicate.

Differential gene expression analysis—DEGs and differentially expressed transcripts 

normalized on the fragments per kilobase of transcript per million (FPKM) mapped reads 

were identified across all samples with DESeq2 multivariate negative binomial generalized 

linear model (version 1.10.1) (Love et al., 2014) and a likelihood ratio test (Anders and 

Huber, 2010; Frazee et al., 2015; Robinson et al., 2010). Principal component analysis 

(PCA) identified the top 500 upregulated and downregulated genes found in at least 60% 

of the vaccine recipients with the highest coefficient of variation (standard deviation to the 

mean) after variance stabilizing transformation. We accounted for noise or changes that 

might have occurred after some lag time despite being time matched. The p values were 

adjusted for multiple comparisons (Benjamini and Hochberg, 1995).

Gene expression and antibody correlation analyses—To investigate the 

discriminate predictive capability of each DEG, we performed a Pearson correlation analysis 

of the log2FC enrichments. The correlation analysis provided how genes behave differently 

in each group and whether the difference is far from the null. The direction of the coefficient 

depends on relative changes of log2FC between the two groups, and it shows whether a gene 

exhibited greater or lower log2FC in the high than the low response group. The strength of 

correlation indicates the extent of changes of log2FC from each group and if the extent of 

changes is statistically different. Note that the direction and the strength of correlation do not 

necessarily represent characteristics of a particular group. A positive correlation coefficient 

does not always represent a correlation with the high response group. Instead, those two 

quantities depict relative expression level changes from baseline in each group.

lncRNA quantification and differential expression analysis—We employed the 

same pipeline for quantifying and differential expression testing of known genes, using the 

lncRNA Ensembl gene annotation from the Ensembl regulatory build (Guttman et al., 2009).

Co-expression analysis of lncRNAs and neighboring genes—We annotated the 

chromosomal coordinates of differentially expressed lncRNA and mRNA transcripts aligned 

to the GRCh38.p10 (Ensembl release 90) reference genome with the Ensembl BioMart tool 

(Durinck et al., 2009; Guberman et al., 2011). For each differentially expressed lncRNA, 

neighboring RNAs within 500 kb upstream or downstream of transcription start and stop 

sites were extracted using a custom R script. We performed a Pearson correlation test on 

each candidate lncRNA’s expression level. We defined significant associations as having a p 

value <0.05.

Alternative splicing analysis—We used LeafCutter to count aggregate changes in intron 

usage that affect exons shared by multiple transcripts, regardless of genome annotation, and 

group introns into clusters of potential splicing disruption rather than exon skipping (Li et 

al., 2018; Reyes and Huber, 2018). We called intron clusters supported by at least 50 split 

reads across all samples and have a maximum length of 500 kb, resulting in 78,993 intron 

clusters, and then filtered the intron clusters to have at least one read in 5 or more samples. 
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We identified exon-inclusion ratio in terms of PSI values of greater than or equal to 20%. 

Pairwise differential splicing analysis was then performed by comparing its corresponding 

value at baseline (day 0). For each pairwise comparison, intron clusters were required to 

have at least 20 reads in at least three samples in each comparison. The p values were 

corrected for multiple comparisons. We defined a significant cluster as having an FDR 

<0.05. We performed a hypergeometric test of enrichment for significant overlap among 

DEGs and DTE (|log2FC| > 1, FDR <0.05) and DS (likelihood ratio test, FDR <0.05). The 

background pool was the number of genes filtered from the gene count matrix.

Hierarchical clustering of splicing factors—For the correlation clustering of splicing 

factors, gene expression of 230 splicing factors was extracted from the gene count data 

(Hegele et al., 2012). We calculated the Pearson correlation coefficients for all possible 

combinations of splicing factors and clustered those correlations using unsupervised 

clustering based on Euclidean distance and complete linkage.

Pathway, process, PPI enrichment, and network analyses—For the pathway and 

process enrichment analysis, we carried out the analyses on each significant list of genes 

with the open-access ontology sources for Gene Set (GO) and Biochemical Pathway 

(KEGG, Reactome, Canonical Pathways, Panther, Pathview, Metascape, and CORUM) 

databases (Luo and Brouwer, 2013; Ogata et al., 1999; Reimand et al., 2019; Thomas et 

al., 2003; Zhou et al., 2019). We chose the most statistically significant term within a cluster 

as the one representing the cluster. For the GSEA method (Subramanian et al., 2005), we 

ranked all genes by log2FC by comparing its corresponding value at baseline. We then 

compared the distribution of gene ranks from the gene set to the other genes using the 

NES (one-sided Kolmogorov-Smirnov statistic). The biological interpretation of the lists of 

genes was performed with ClueGO (Bindea et al., 2009), which integrates GO and KEGG 

functional networks and BioCarta pathways to create a functionally organized GO/pathway 

term network. Network visualization of the functionally grouped terms was performed in 

Cytoscape (version 3.2.1.) (Shannon et al., 2003), where each node represented an enriched 

term and colored by its cluster identifier annotated by their p value.

We used a pipeline written with a Python script for network analysis and visualized it with 

Cytoscape applications. First, we extracted DEGs (|log2FC|>1, adjusted p value <0.05), then 

constructed a network based on interactions between the proteins coded for by these genes 

across days 2, 4, and 7. We selected the STRING - Human Protein Links - High Confidence 

(Score R0.7) interactome (Reimand et al., 2007) to extract PPIs between DEGs (Szklarczyk 

et al., 2017). This network was then imported to Cytoscape, where we identified densely 

connected areas of the network (that is, community detection) using OSLOM (Lancichinetti 

et al., 2011), via the CDAPS (Singhal et al., 2020) app in Cytoscape. This new network 

featured communities of proteins represented by network nodes that were annotated using 

gProfiler (Reimand et al., 2007) through the functional enrichment feature of CDAPS. The 

edges signify the containment of one community by another.

Weighted gene co-expression network analysis (WGCNA)—We constructed gene 

co-expression networks with the WGCNA R package (Langfelder and Horvath, 2008). We 

used the counts per million normalizations with measured values in at least 60% of all 
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the samples analyzed (n = 17,588 and n = 17,646 for the high and low response groups, 

respectively). We chose the cutoff to eliminate noise from very rarely detected genes 

or whose expression was difficult to correlate with other genes due to the few samples 

measured. An initial hierarchical clustering with the expression data confirmed that there 

were no outliers. We used a scale-free topology criterion to choose the soft threshold power 

β. The β, six, resulted in approximate scale-free topology using a free topology fitting 

index. A signed hybrid network was constructed using the adjacency matrix of the biweight 

mid-correlation of all pairwise comparisons of gene expression values, that is, the matrix of 

connection strengths by using the soft threshold power. Modules were identified using the 

cutreeDynamic function, setting the branch height cutoff to 0.99, the minimum module size 

to 50, and the merging cut height, that is, the dissimilarity threshold below which separate 

modules would be merged, to 0.35.

We calculated eigengene-based connectivity, also known as module membership kME 

measures for a particular gene within a given non-preserved module to identify highly 

connected or hub genes representative of the module’s overall function with a high 

likelihood to be critical components within the module. We determined module membership 

by correlating the gene and the module eigengene value (the first principal component of 

each module output value). This value quantified how close a gene is within a given module, 

and we applied this measure to detect the hub genes. Genes with absolute kME membership 

≥0.9 were considered hub genes to the respective module (Langfelder and Horvath, 2008).

Identification of module communities—We calculated pairwise biweight mid-

correlations between module eigengenes, determining correlation significance with the 

Student’s t-test. We also determined overlap in gene content between modules in the two 

groups, calculating the significance of this overlap using a one-tailed Fisher’s exact test. 

Both correlation and overlap p values were adjusted for multiple comparisons by control of 

FDR. We created correlation and overlap module networks, defining module correlations 

or overlaps with FDR <0.01 as connections between individual modules. The module 

communities were detected based on greedy optimization of modularity implemented in 

igraph (https://igraph.org/r/).

Modular transcriptional signature and antibody correlation analyses—GSEA 

(Subramanian et al., 2005) was performed using modules that contain at least ten genes 

(Li et al., 2014). The dimension reduction circumvents the mixed expression signals that 

reduce the sensitivity of the analysis. We ranked transcripts according to their log2FC by 

comparison with their corresponding value at baseline. The modules were grouped further 

into seven families (Braun et al., 2018). Housekeeping genes enabled the deconvolution of 

cell-type-related gene expression signatures to estimate the celltype-related frequency and 

expression signals. We determined the module’s correlation by calculating each module’s 

NES. We then compared the NES obtained by GSEA for the genes in each module with 

its corresponding value at each time point, controlling the proportion of false positives. 

Significant modules were defined using p <0.05 after adjustment made for multiple 

comparisons (FDR <0.05). We calculated Pearson’s correlation of NES with antibody 

response. Significant correlation was defined as having a p value <0.05. We compared the 
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NES obtained by GSEA for each transcription module to its corresponding value at baseline 

to identify predictive transcriptional signatures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on specific quantification methods is described in associated Method details, 

or main text. Statistical tests were performed using R software (version 4.1.1), parameters, 

statistical test, and significance, are reported in Figures and Figure legends or Method details 

section. We did not use statistical tests to predetermine sample size. The experiments were 

not randomized, and we were not blinded to distribution during experiments and outcome 

measurement.

ADDITIONAL RESOURCES

The trial was conducted in a region of Columbia, where dengue is endemic, in accordance 

with the Declaration of Helsinki principles, Good Clinical Practice guidelines, and 

applicable local regulations. Written informed consent was obtained from all participants 

before enrollment. Full details of the trial design, conduct, oversight, and analyses can be 

found in (Osorio et al., 2014). This study is registered with ClinicalTrials.gov identifier 

NCT01224639.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Genome-wide transcriptome analysis of dengue vaccine-elicited immune 

responses

• A temporality of changes in lncRNA, splicing, and gene expression patterns

• Genes strongly enriched for pathways involved in antiviral innate immunity

• Cell-type-related modules exhibit a significant correlation with antibody titers
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Figure 1. Immune gene expression changes in blood sampled from vaccine recipients
(A) Circos plot of the overlap across the two groups in genes expressed after each dose. 

The two segments of the outer circle represent the two groups. Each segment of the 

middle circle represents the four-point time course. Inner circle line colors represent the 

upregulated or downregulated genes. Lines connect upregulated (red), downregulated (blue), 

or conflictingly regulated (green) genes.

(B) Heatmap depicting the scaled log2FC expression for the DEGs represented in 

inflammation, TLR-mediated My88-dependent signaling pathway, TIR domain-containing 

adaptors signaling, and innate and type I IFN signaling pathways. The dendrograms 

alongside the heatmap cluster the DEGs based on the hierarchal clustering.

(C) Bubble maps depicting the GO term enrichments corresponding to the top DEGs. 

The top upregulated and downregulated DEGs enriched pathways (top and bottom panels, 

respectively) are shown for the two groups. Scale bar exhibits the negative log10p value, and 

the circle’s size represents the percentage of genes in each set.
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Figure 2. Gene and isoform expression changes in blood samples
(A) Differential expression effect size histograms showing the significant number of 

upregulated or downregulated protein-coding genes and lncRNAs. The isoform-level (DTE) 

changes exhibit a larger effect size than the gene-level (DEG) changes in the high and low 

response groups (top and bottom panels, respectively).

(B) GO term enrichments showing the top significant upregulated and downregulated DEGs 

and enriched pathways (left and right panels, respectively) across the four-point time course 

in each group.
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Figure 3. Overlap and enrichment of lncRNAs
(A) Venn diagrams showing the overlaps between the significant differentially expressed 

lncRNAs.

(B) Correlation matrix showing both significant (Pearson correlation test, p < 0.05; purple) 

and nonsignificant (Pearson correlation test, p > 0.05; gray) associations between lncRNAs 

and their proximal protein-coding genes.

(C) Pathway networks for lncRNA-associated PPI modules showing the subset of proteins 

that interact in translation elongation, metabolism of RNA, GPCR ligand binding, 

mitochondrial translation, and complex 1 biogenesis.

(D) WGCNA identifying the network of protein-coding and noncoding genes in the magenta 

module (Table S4) involved in inflammatory and immune-related pathways based on GO 

and KEGG enrichment analyses.
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Figure 4. DEGs, splicing, and transcript isoform usage in high and low response groups
(A) Venn diagrams showing the overlaps between the significant genes across the four-point 

time course for the two groups (p values were from hypergeometric test).

(B) Significant intron clusters in IFIT3 (chr10: 89,328,078–89,338,661) and PLAC8 
(chr2:86,503,430–86,563,497) illustrating differentially excised introns and exon skipping 

in the two groups. Splicing events for IFIT3 and PLAC8 measured in terms of the change 

in the percent spliced in (△PSI) values indicate an increase (red) or decrease (turquoise) 

for intron exclusion. FDR-corrected p values are shown for each comparison. Histograms 

depicting the distribution of log2FPKM values for isoform-level changes at baseline and 

across the four-point time course for IFIT3 and PLAC8. Line plots show significant (FDR 

<0.05) fractional changes in transcript usage for IFIT3 and PLAC8.
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(C) Examples of specific PPIs of overlapping DEGs and DTEs exhibiting physical 

interactions in the network (−log10p > 10). Pie chart represents the proportion of nodes 

with significant enrichment in the pathway network analysis.
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Figure 5. Co-expression networks capture shared and unique biological processes and 
interactions
(A) Heatmap depicting the adjacency matrix (pairwise correlations) of eigengenes (including 

the trait weight) from the WGCNA. The gene-level network relationships reveal both 

positive and negative correlations in a two-group comparison. The color module clustering 

for nine distinct modules in the high and low response groups (H1-H9 and L1-L9, 

respectively) is based on the weighted correlations (minimum module size set to 50). 

Each color-coded module contains a group of highly connected genes for a height cutoff 

of 0.30, corresponding to a similarity of 0.70 to merge. The colors represent the scaled 

expression values of the topological overlap matrix for the module-trait relationships based 

on module-trait positive correlation, negative correlation, or no correlation (red, blue, and 

white, respectively). The p values are adjusted for multiple comparisons in the analysis.

(B) Co-expression modules capture correlation, overlap, and community networks for the 

high and low response groups (pink and blue, respectively). Communities of related modules 

are identified in a merged network of gene correlations and gene overlap with p values 

corrected for multiple comparisons (FDR <0.01). The network construct demonstrates four 

core-centric communities with a set of isolated communities (H8 and L8).

(C) Functional enrichment analysis displaying the hub genes for the isolated H8 and L8 

communities.

(D) A network map of the 15 identified subnets displaying 655 high confidence protein 

interactors (score >0.7 STRING). The network comprises interconnected nodes that 

represent the proteins, and the edges represent the PPIs for the biological process. The 

average log2FC of each community network is color coded.
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Figure 6. Transcriptomic signatures induced by TAK-003 vaccination
Heatmaps show the enrichment in the gene module-trait relationships. The NES reflects 

the degree to which a gene set is overrepresented at the top or bottom of the ranked gene 

list. The modules demonstrate enrichment within gene lists ranked by correlation with 

log2FC for distinct biological processes and identify meaningful gene expression patterns 

and dynamic progression. Days 2, 4, 7, and 92 were compared against day 0. Only modules 

with gene lists correlated with the functional antibody response were plotted.
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Figure 7. BTM correlations to TAK-003 functional antibody responses
(A) Cleveland dot plots depict the modules that were significantly enriched (FDR <0.05) at 

day 2 after the first dose. GSEA was used to identify enrichmentof modules within gene lists 

(Tables S6A and S6B) ranked by correlation with the functional antibody response at day 

30. Day 2 was compared against day 0. The response at days 4 and 7 after the first dose and 

at day 2 after the second dose were broadly similar between the two groups. Days 2, 4, 7, 

and 92 were compared against day 0.

(B) Lollipop plots comparing Pearson’s correlation between neutralizing antibody titers on 

day 30 and the modules significantly enriched by GSEA at days 2, 4, and 7 after the first 

dose.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

PAXgene samples from humans: Safety and Immunogenicity 
Study to Assess TDV, a Live Attenuated Tetravalent Vaccine for 
Prevention of Dengue Fever

NCT01224639 https://clinicaltrials.gov/ct2/show/
NCT01224639

Critical commercial assays

Paxgene Blood RNA Kit Qiagen Cat# 762164

RNeasy MinElute Cleanup kit Qiagen Cat# 74204

Qubit RNA High Sensitivity Assay kit Thermo Fisher Cat# Q32852

RNA ScreenTapes Agilent Cat# 5067-5576

Superscript II Invitrogen Cat# 18-064-022

nanoString custom nCounter panel (XT_GX CodeSet 384 rxn) nanoString 
Technologies

Item No.116000004

nCounter Master Kit – 192 rxns (NAA-AKIT-192) nanoString 
Technologies

Item No.100050

SuperScript™ VILO™ cDNA Synthesis Kit Thermo Fisher Cat# 11754050

TaqMan™ Fast Advanced Master Mix Thermo Fisher Cat# 4444963

Taqman assay Gene Expression: Assay 
IDs Hs00356631_g1,Hs01675197_m1,Hs00382744_ 
m1,Hs00155468_m1,Hs01597859_m1,Hs00931718_ 
m1,Hs00748900_s1, and Hs03405707_g1

Thermo Fisher Cat# 4331182, and 4448490

TrueSeq RNA CD Index Plate (96 Indexes, 96 samples) Illumina Cat# 20019792

TruSeq Total Stranded RNA HT kit (w/Ribo-Zero Globin) Illumina Cat# 20020612

D1000 ScreenTapes Agilent Cat# 5067-5582

Agencourt AMPure XP beads system Beckman Coulter Cat# A63881

KAPA Library Quantification Kit Illumina Kapa Biosystems Cat# 79960298001

HiSeq 3000/4000 paired-end cluster kit Illumina Cat# PE410-1001

HiSeq 3000/4000 SBS kit Illumina Cat# FC410-1003

Deposited data

RNA-seq transcript and gene data This study https://www.ncbi.nlm.nih.gov/geo GEO: 
GSE146658

Software and algorithms

Network analysis scripts This study https://github.com/eykim909/
TDV_paper_Scripts

FastQC v 0.11.4 Babraham 
Bioinformatics

http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

FASTX-Toolkit Hannon Lab http://hannonlab.cshl.edu/fastx_toolkit/

HISAT2 v 2.0.4 Kim et al. (2015) http://ccb.jhu.edu/software/hisat2/manual.shtml

StringTie v 1.2.2 Pertea et al. (2015) http://ccb.jhu.edu/software/stringtie/

Samtools v 0.1.19 Li et al. (2009) http://samtools.sourceforge.net/

DESeq2 Love et al. (2014) https://bioconductor.org/packages/release/bioc/
html/DESeq2.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

BioMart Durinck et al. (2009) https://bioconductor.org/packages/release/bioc/
html/biomaRt.html

Igraph The igraph core team https://igraph.org/

WGCNA Langfelder and 
Horvath (2008)

https://cran.r-project.org/web/packages/
WGCNA/index.html

GSEA v 4.0.0 Broad Institute, Inc https://www.gsea-msigdb.org/gsea/index.jsp

Leafcutter Li et al., 2018 https://github.com/davidaknowles/leafcutter

Picard v 2.18.15 Broad Institute, Inc https://broadinstitute.github.io/picard/

GATK v 3.4.46 Broad Institute, Inc https://gatk.broadinstitute.org/hc/en-us

Python prepDE.py https://www.python.org/

GO biological process The Gene Ontology 
Consortium, 2015

http://geneontology.org/

Panther Thomas et al. (2003) http://www.pantherdb.org/

Reactome Reactome 2016 https://reactome.org/

NDEx NDEx v2.5.0 https://public.ndexbio.org/#/

STRING - Human Protein Links - High Confidence (Score ≥0.7) Szklarczyk et al. 
(2017)

https://public.ndexbio.org/#/network/
275bd84e-3d18-11e8-a935-0ac135e8bacf

R studio R project https://www.r-project.org/(version 3.5.0)

KEGG Ogata et al. (1999) https://www.genome.jp/kegg/annotation/

Metascape Zhou et al., (2019) http://metascape.org/gp/index.html#/main/step1

Cytoscape Shannon et al. (2003) https://cytoscape.org/(version 3.4.0)

OSLOM Lancichinetti et al. 
(2011)

http://www.oslom.org/

gProfiler Reimand et al., (2007) http://biit.cs.ut.ee/gprofiler/

CDAPS Singhal et al. (2020) https://cdaps.readthedocs.io/en/stable/

admixture v1.3.0 Alexander et al. (2009) https://dalexander.github.io/admixture/
publications.html

Plink v1.9 Purcell et al. (2007) https://www.cog-genomics.org/plink/1.9/

Cell Rep. Author manuscript; available in PMC 2022 April 09.

https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://igraph.org/
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://www.gsea-msigdb.org/gsea/index.jsp
https://github.com/davidaknowles/leafcutter
https://broadinstitute.github.io/picard/
https://gatk.broadinstitute.org/hc/en-us
https://www.python.org/
http://geneontology.org/
http://www.pantherdb.org/
https://reactome.org/
https://public.ndexbio.org/#/
https://public.ndexbio.org/#/network/275bd84e-3d18-11e8-a935-0ac135e8bacf
https://public.ndexbio.org/#/network/275bd84e-3d18-11e8-a935-0ac135e8bacf
https://www.r-project.org/
https://www.genome.jp/kegg/annotation/
http://metascape.org/gp/index.html#/main/step1
https://cytoscape.org/
http://www.oslom.org/
http://biit.cs.ut.ee/gprofiler/
https://cdaps.readthedocs.io/en/stable/
https://dalexander.github.io/admixture/publications.html
https://dalexander.github.io/admixture/publications.html
https://www.cog-genomics.org/plink/1.9/

	SUMMARY
	In brief
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Study design
	Identification of the differentially expressed genes and transcripts
	Expression of the noncoding transcriptome
	Alternative splicing
	Gene correlation networks
	The modular transcriptional repertoire

	DISCUSSION
	Limitations of the study

	STAR*METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Study design

	METHOD DETAILS
	RNA-seq
	RNA-seq data processing
	Population stratification analysis
	Digital multiplexed gene expression analysis
	RT-qPCR validation of differential isoform usage
	Differential gene expression analysis
	Gene expression and antibody correlation analyses
	lncRNA quantification and differential expression analysis
	Co-expression analysis of lncRNAs and neighboring genes
	Alternative splicing analysis
	Hierarchical clustering of splicing factors
	Pathway, process, PPI enrichment, and network analyses
	Weighted gene co-expression network analysis (WGCNA)
	Identification of module communities
	Modular transcriptional signature and antibody correlation analyses

	QUANTIFICATION AND STATISTICAL ANALYSIS
	ADDITIONAL RESOURCES

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	KEY RESOURCES TABLE

