
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
On the origin and evolution of biosynthetic pathways: integrating 
microarray data with structure and organization of the Common 
Pathway genes
Marco Fondi, Matteo Brilli and Renato Fani*

Address: Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italy

Email: Marco Fondi - marco.fondi@unifi.it; Matteo Brilli - matteo.brilli@dbag.unifi.it; Renato Fani* - renato.fani@unifi.it

* Corresponding author    

Abstract
Background: The lysine, threonine, and methionine biosynthetic pathways share the three initial
enzymatic steps, which are referred to as the Common Pathway (CP). In Escherichia coli three
different aspartokinases (AKI, AKII, AKIII, the products of thrA, metL and lysC, respectively) can
perform the first step of the CP. Moreover, two of them (AKI and AKII) are bifunctional, carrying
also homoserine dehydrogenasic activity (hom product). The second step of the CP is catalyzed by
a single aspartate semialdehyde dehydrogenase (ASDH, the product of asd). Thus, in the CP of E.
coli while a single copy of ASDH performs the same reaction for three different metabolic routes,
three different AKs perfom a unique step. Why and how such a situation did emerge and maintain?
How is it correlated to the different regulatory mechanisms acting on these genes? The aim of this
work was to trace the evolutionary pathway leading to the extant scenario in proteobacteria.

Results: The analysis of the structure, organization, phylogeny, and distribution of ask and hom
genes revealed that the presence of multiple copies of these genes and their fusion events are
restricted to the γ-subdivision of proteobacteria. This allowed us to depict a model to explain the
evolution of ask and hom according to which the fused genes are the outcome of a cascade of gene
duplication and fusion events that can be traced in the ancestor of γ-proteobacteria. Moreover, the
appearance of fused genes paralleled the assembly of operons of different sizes, suggesting a strong
correlation between the structure and organization of these genes. A statistic analysis of
microarray data retrieved from experiments carried out on E. coli and Pseudomonas aeruginosa was
also performed.

Conclusion: The integration of data concerning gene structure, organization, phylogeny,
distribution, and microarray experiments allowed us to depict a model for the evolution of ask and
hom genes in proteobacteria and to suggest a biological significance for the extant scenario.
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Background
The metabolic routes leading to the synthesis of
lysine\diaminopimelic acid, methionine and threo-
nine\isoleucine are closely interconnected forming a com-
plex system, three steps of which represent the so-called
Common Pathway (CP) [1] (Figure 1). The first of them is
the phosphorylation of aspartate, carried out by an aspar-
tokinase (AK, the product of the ask gene) leading to β-
aspartyl-phosphate, which, in turn, is oxidised by an
aspartate semialdehyde dehydrogenase (ASDH, the
enzyme encoded by asd) to aspartate semialdehyde that,
finally, may be transformed either into dihydrodipicoli-
nate, the precursor of diaminopimelic acid and lysine, by
dihydrodipicolinate synthase (coded for by dapA) or
homoserine by homoserine dehydrogenase (HD,
encoded by hom). Homoserine can be then channeled
towards threonine and/or methionine biosyntheses.
From an evolutionary point of view, the genes coding for
these three enzymes are particularly interesting, since at
least two different molecular mechanisms, i.e. paralogous
gene duplication and gene fusion, appeared to have
played a key role in their origin and evolution. In addition
to this, in some bacteria each CP step is catalyzed by
enzymes coded for by single monofunctional genes,
whereas in the enterobacterium Escherichia coli it has been
shown [2] (Figure 1) that:

i) the first step of the CP can be performed by three differ-
ent aspartokinases (AKI, AKII and AKIII);

ii) the second step is catalyzed by a monofunctional
ASDH encoded by lysC; and, lastly,

iii) the third step is carried out by two different homoser-
ine dehydrogenases, referred to as HDI and HDII, which
are fused to two of the three AKs: AKI and AKII, respec-
tively. These two bifunctional proteins are coded for by
two genes, thrA and metL, respectively.

The expression of the two E. coli bifunctional proteins are
differently regulated: threonine and isoleucine regulate
the expression of thrA, and threonine controls both enzy-
matic activities by a negative feedback. The transcription
of metL is repressed by methionine but no feedback inhi-
bition, by methionine itself, has been observed on this
enzyme. Finally, the expression of the gene coding for
AKIII (lysC) and the activity of its product, are regulated in
response to lysine concentration [2].

This particular structure pattern has raised the question of
how and why it emerged in the course of evolution. On
the basis of limited sequence data, Cassan et al. [3] pro-
posed that the present-day bifunctional enzymes may
have arisen from a fusion event involving the AK and the
HD ancestral coding genes. The duplication of this bifunc-

tional gene may have originated two redundant copies
carrying both AK and HD activity. Another gene duplica-
tion event may have led to the formation of the three AK
copies we observe nowadays. According to this model, the
monofunctional AK could have emerged in two different
ways: either by a partial gene duplication event involving
only the AK activity coding region of the bifunctional
genes, or by inactivation, as a result of accumulation of
mutations, of the HD coding sequence. Thus, both paral-
ogous gene duplication and gene fusion might have been
responsible for shaping the CP. The importance of gene
duplication in the course of evolution of genomes and
metabolic pathways is well established, (see [4] and refer-
ences therein): the production of two copies of a DNA
sequences leads to an increase of genome size, and it also
allows the rapid diversification of enzymatically catalyzed
reactions, providing new material for the invention of
new enzymatic properties and complex regulatory and
developmental patterns. In addition to gene duplication,
(see [4] and references therein), one of the major routes of
gene evolution is the fusion of independent cistrons lead-
ing to bi- or multifunctional proteins [5-9]. Gene fusions
provide a mechanism for the physical association of dif-
ferent catalytic domains or of catalytic and regulatory
structures [5]. Fusions frequently involve genes coding for
proteins functioning in a concerted manner, such as
enzyme catalyzing sequential steps within a metabolic
pathway [10]. Fusion of such catalytic centres likely pro-
motes the channelling of intermediates that may be unsta-
ble and/or in low concentration [5]; this, in turn, requires
that enzymes catalysing sequential reactions are colocal-
ized within cell [11] and may (transiently) interact to
form complexes that are termed metabolons [12]. The
high fitness of gene fusions can also rely on the tight reg-
ulation of the expression of the fused domains. This might
be the case of metL and thrA.

Thus, the CP might represent a very interesting model
study to shed some light on the mechanisms driving the
assembly of metabolic pathways and the refinement of
regulatory networks. Nonetheless, in spite of the availabil-
ity of several completely sequenced genomes and micro-
array data, neither a detailed analysis of the structure and
organization of CP genes has been carried out nor any cor-
relation of these data with expression (microarray) ones
has been established until now. The aim of this work was
to try to reconstruct the possible evolutionary and timing
pathway(s) leading to the extant ask and hom genes, to
analyse their phylogenetic distribution, to shed some light
on the molecular mechanisms responsible for the assem-
bly of the CP genes in bacteria and on the role that gene
duplication(s), fusion(s) and clustering might have had in
this context. To this purpose, the structure, organization
and phylogenetic distribution of all the available proteo-
bacterial ask, hom, and asd genes were analysed. Data
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obtained were integrated with expression data deriving
from microarray analyses. We focused our attention on
Proteobacteria for the following reasons: i) previous
works [6,7,9] have shown that gene rearrangement events,
such as gene duplication, fusion, and/or clustering have
strongly influenced their evolution, ii) this phylogenetic
branch includes the γ-subdivision, that is thought to be
one of the most recent branching point among Bacteria
and iii) they represent a good case-study since comprise
organisms living in very different habitats (going from the
deep-sea hydrothermal environments of the ε-subdivision
to the roots of plants in the case of some α-proteobacte-
ria), and with very different lifestyles, including endosym-
bionts and parasites.

Results and discussion
Structure and phylogenetic distribution of the genes 
coding for AK, ASDH and HD in Proteobacteria
The aminoacid sequences of the E. coli AK, ASDH, and HD
sequences were used as a query to probe the protein data-
base of completely sequenced proteobacterial genomes
with the BLASTP option of BLAST program [13], in order
to retrieve the most similar sequences. To this purpose 58
proteobacterial genomes were selected and, in most cases,
only one strain for each species was taken into account.
Data obtained are schematically reported in Figure 2,
where a phylogenetic tree constructed using the RpoD
sequences of the 58 proteobacteria is shown together with
the number and the structure of all the retrieved AK, and
HD coding genes. The asd genes were not included in Fig-
ure 2, since just one copy of this gene was retrieved from
the 58 proteobacteria. The analysis of data reported in Fig-
ure 2 revealed that:

The aspartate pathwayFigure 1
The aspartate pathway. Genes marked in red (ask, asd, and hom) constitute the Common Pathway [1].
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The structure of ask and hom genesFigure 2
The structure of ask and hom genes. Phylogenetic tree constructed using the RpoD sequences (Neighbor Joining, 2250 
Boostrap Replicates, Complete Deletion, Poisson Correction) of the 58 proteobacteria together with the number and the 
structure of all the retrieved ask and hom genes.
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a) in all the α-, β- and δ\ε-proteobacterial genomes a sin-
gle, monofunctional, stand-alone, copy of the gene cod-
ing for AK or HD was detected; moreover, neither
duplicated copies nor fusion events involving these genes
were detected.

b) multiple as well as fused copies of AK and HD were
found only in γ-proteobacteria, where the scenario is
(apparently) more complex and intriguing. Indeed, a var-
iable structure and copy-number of genes coding for AK
(1 to 5) and HD (1 to 2) can be observed. Moreover, there
is an apparent increasing complexity concerning these
genes that is parallel to the evolutionay branching of γ-
proteobacteria, with enterobacteria and vibrionaceae
showing the highest number of redundant and fused cop-
ies of AK and HD. This phylogenetic distribution strongly
suggests that the duplication of AK coding genes and the
fusion to HD apparently can be traced within γ-proteobac-
teria or soon after the divergence of the γ-proteobacterial
ancestor from α-, β- and δ\ε-proteobacteria.

A model for the evolution of the AK and HD coding genes
On the basis of the phylogenetic distribution of stand-
alone and bifunctional genes of the CP we propose a pos-
sible, plausible evolutionary and timing model explaining
the extant scenario. The model, which is schematically
reported in Figure 3, predicts that the proteobacterial
ancestor possessed a single copy of hom, ask and asd genes.
During evolution, this organization was maintained in
proteobacteria belonging to the α-, β- and δ\ε-subdivi-
sions. One of the cross-roads for the evolution of these
genes is represented by the branching point between β-
and γ-proteobacteria. It appears quite possible that, in the
ancestor of γ-proteobacteria, a first duplication of the ask
gene may have taken place, generating two redundant
copies that underwent an evolutionary divergence. The
finding that no bacterium (with the exception of Vibrio
strains, see below) shows two copies of monofunctional
ask genes, strongly suggests that this duplication event and
its further fusion to hom might have occurred in a rela-
tively short evolutionary time, giving raise to an ancestral
bifunctional gene, which might have retained the func-
tion of the extant metL and thrA. This sort of "gene dupli-
cation-gene fusion coupling" is quite similar to that
described recently for the evolution of γ-proteobacterial
hisN and hisB histidine biosynthetic genes [6,7,9]. Finally,
a paralogous duplication event of this bifunctional ances-
tor gene followed by evolutionary divergence (which very
likely concerned with the regulatory mechanism, rather
than the catalytic activity) led to the extant metL and thrA
genes. On the basis of the phylogenetic distribution of the
bifunctional genes (Figure 3), this "final" step might have
occurred just before the separation between the "clusters"
1 and 2 of the γ-proteobacterial subdivision.

The biological significance of this cascade of duplication
and fusion events might rely on the "patchwork" hypoth-
esis on the origin and evolution of metabolic pathways
[14]. According to this idea, metabolic pathways may
have been assembled through the recruitment of primitive
enzymes that could react with a wide range of chemically
related substrates. Such relatively slow, unspecific
enzymes may have been enabled primitive cells contain-
ing small genomes to overcome their limited coding capa-
bilities [4]. Paralogous gene duplication event(s) followed
by evolutionary divergence might have permitted the
appearance of enzymes with an increase and narrow spe-
cificity and/or the diversification of function. In this way,
an ancestral enzyme belonging to a given metabolic route,
is "recruited" to serve a single or other (novel) pathways.
Besides, it may permit the evolution and refinement of regu-
latory mechanismscoincident with the development of new
pathways and/or the refinement of pre-existing ones.

In our opinion, the evolutionary model proposed here to
explain the origin and evolution the extant metL and thrA
genes is in full agreement with the Jensen hypothesis and
the cascade of gene duplications and fusions involving ask
and hom genes might actually represent a mechanism for
the refinement of the feedback regulation mechanisms
controlling the activity of the enzymes they code for.

Phylogenetic analysis
If the evolutionary model proposed here is correct, one
should expect that the fused copies of AK (AKI and AKII)
and HD (HDI and HDII) share a degree of sequence sim-
ilarity higher than that exhibited with AKIII and HD,
respectively, and cluster together in a phylogenetic tree. In
order to check this hypothesis, the AK and HD aminoacid
sequences were aligned using the program ClustalW [15]
and the multialignments obtained used to draw the phyl-
ogenetic trees shown in Figure 4 and 5. The analysis of the
AK tree (Figure 4) showed that all the α-, β- and δ\ε-pro-
teobacterial sequences form a unique cluster separated
from γ-proteobacterial ones. Besides, the γ-proteobacterial
AKI, AKII, and AKIII sequences form three different and
separated clusters with AKIII representing the root of the
others. A similar situation can be observed in the HD tree
(Figure 5): α-, β- and δ\ε-proteobacterial HD sequences
form a distinct unique cluster, while HDI and HDII form
two close clusters.

The topology of the phylogenetic trees obtained fits well
with the evolutionary model proposed and indicates that
horizotal gene transfer of these genes rarely occurred and
did not strongly influenced the evolution of AK and HD
domanis. However, even though the evolutionary model
reported in Figure 3 is in agreement with gene structure
and phylogenetic analyses, the following exceptions have
to be explained:
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1) The absence of lysC and metL in a group of enterobac-
teria (Buchnera aphidicola strains, Candidatus Blochmannia
floridanus, Wigglesworthia glossinidia) and in Haemophilus
influenzae, the absence of bifunctional genes in H. ducrey,
and the lack of hom in Coxiella burnetii, Ricketsia prowazekii,
Wolbachia endosymbiont of Drosophila melanogaster and
Bdellovibrio bacteriovorus. This is very likely due to the
absence of the corrensponding metabolic route(s), which,
in turn, is correlated to the parasitic lifestyle of these pro-
teobacteria. Such a lifestyle may allow the bacteria to
acquire essential compounds directly from the metabolic
activities of their host and the adaptation to this environ-
mental condition might have caused the loss of entire
metabolic routes or part thereof.

2) The increase of the AK copies in Vibrio strains in respect
to other γ-proteobacteria is probably related to the high
genomic rearrangement rate typical of these species.

3) The absence of bifunctional ask-hom genes in Pseu-
domonas and Methylococcus capsulatus that, in spite of their

taxonomical position within γ-proteobacteria, exhibit the
same structural and organization pattern of bacteria
belonging to the α-, β- and δ\ε-subdivisions. This is not an
isolated example; in fact, the same situation has been
recorded for other biosynthetic pathways, such as histi-
dine biosynthesis [6,7]. The reason(s) of such structure
and organization is still unclear.

4) The fusion of ask to lysA in Xanthomonadaceae, which
represents an exception to this general model. In these
bacteria the paralogous duplication of ask gene originated
two copies, one of which fused to hom, whereas the other
one underwent another fusion event with lysA, a gene cod-
ing coding for DAPDC activity). The biological signifi-
cance of the last fusion might rely in the spatial
colocalization of the products of the two modules and a
faster feedback inhibition of the first enzyme (AK) by the
end product of the pathway (lysine), whose last biosyn-
thetic step is catalyzed by the enzyme coded for by lysA.

The evolutionary modelFigure 3
The evolutionary model. Evolutionary model proposed to explain the evolution of ask and hom genes in proteobacteria.
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Phylogenetic tree of AK sequencesFigure 4
Phylogenetic tree of AK sequences. Phylogenetic trees (Neighbor Joining, 2250 Boostrap Replicates, Complete Deletion, 
Poisson Correction) constructed with all the retrieved sequences of AK.
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Phylogenetic tree of HD sequencesFigure 5
Phylogenetic tree of HD sequences. Phylogenetic trees (Neighbor Joining, 2250 Boostrap Replicates, Complete Deletion, 
Poisson Correction) constructed with all the retrieved sequences of HD.
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Analysis of gene organization
If the model proposed and its biological significance is
correct, i.e. that the duplication and fusion events, and the
successive evolutionary divergence allowed the three cop-
ies of AKs and the two of HDs to narrow their specificity
and to become increasingly more sensitive to specific reg-
ulatory signals, then it is plausible to assume that the
ancestral copy of AK (AKIII) might serve different meta-
bolic pathways and hence might have been under the con-
trol of multiple different regulatory signals (i.e. the
availability of DAP, lysine, threonine, methionine etc).
On the other hand, the expression of the bifunctional
genes, thrA and metL, once they were channelled towards
the biosynthesis of threonine and methionine, should
have become increasingly more dependent on more spe-
cific signals (for example the concentration of the final
product of that route). In general, it is plausible that once
a "new" gene introgresses and becomes part of a pre-exist-
ing metabolic pathway, it will become co-regulated with
the other genes belonging to the same metabolic pathway.
In some cases, co-regulation of genes of the same biosyn-
thetic route is achieved by organizing genes in operon
structures, even though co-regulation may also be
obtained by regulon construction. This is particularly true
for fused genes; as reported in previous works, based on
the analysis of the histidine biosynthetic pathway in γ-
proteobacteria, the appearance of fused genes (specific for
a single pathway) is often parallel to their presence within
operons [6,7,9]. This raises the question whether the
structure and distribution of duplicated and fused copies
of ask and hom genes might somehow be correlated to
their organization in the proteobacterial genome. There-
fore, we analysed the organization of all the genes of the
lys, met and thr biosynthesis in all the 58 proteobacteria.
Data obtained revealed that:

1. Genes involved in the DAP\lysine biosynthesis are scat-
tered throughout the chromosome(s) of all the 58 proteo-
bacteria taken into account (data not shown).

2. In addition to ask, asd and hom genes, the other two
genes involved in threonine biosynthesis (thrB and thrC)
are scattered on the chromosome of bacteria belonging to
α-, β- and δ\ε subdivisions (except Bordetella strains that
own a hom-thrC operon) (Figure 6). The γ-proteobacterial
scenario is completely different; according to the hypoth-
esis mentioned above, in all of organisms possessing a
bifunctional thrA gene, it is endowed within a three-
cystronic operon, in the same relative gene order
(thrABC), also suggesting that its construction should
have been occurred once during evolution.

3. The organization of methionine biosynthetic genes in
proteobacteria partly reflects that exhibited by lys or thr
genes. In fact, in the α-, β- and δ\ε branches all the met bio-

synthetic genes are scattered on the chromosome(s) (Fig-
ure 7). This organization is also shared by γ-
proteobacteria; the only exception is represented by the
bifunctional metL, which is clustered with metB to form a
bicistronic metLB operon.

Thus, no bifunctional gene of the CP is located outside
operons. Data obtained strongly suggest that the produc-
tion of genes coding for enzymes specific of a single met-
abolic pathway coincides with their presence within a
polycistronic transcriptional unit that includes all (or at
least some of) the other genes of that route. Concerning
the timing of the operons construction, the comparative
analysis of Figure 2, 5, and 6 revealed that the "gene dupli-
cation-gene fusion coupling" occurring in γ-proteobacte-
ria appears to be coincident with gene clustering and the
formation of operons of different length.

Analysis of microarray experiments data
In order to elucidate the correlation existing between the
structure and organization of lys, met, and thr genes and
their expression within the cell, we analyzed the microar-
ray data from E. coli and P. aeruginosa, which show two
different arrays of structure and organization of CP genes.
Microarray data were downloaded as supplemental mate-
rial to published papers (see Additional File 1: Additional
References for the Expression compendium); only nor-
malized and filtered data were used. Values were trans-
formed into base 2 logarithm of the ratio of the wild type
(untreated) / mutant (treated) expression levels, if not yet
in that form.

For each of the three metabolic pathways we carried out a
pairwise comparison of the expression pattern of each
gene, by calculating the Pearson's correlation coefficient.

Data obtained are reported in Figure 8, whose analysis
revealed:

1. A low co-regulation of the methionine biosynthetic
genes (Figure 8a). Most of these genes are scarcely co-
expressed, and they appeared to be expressed independ-
ently from each other. The fact that both metL and metB
show very high correlation coefficient value in respect to
the other met genes is in agreement with their operonic
organization.

2. The three E. coli thrABC genes (Figure 8b) are highly co-
expressed, with correlation coefficient > 0.84. This is in
agreement with their organization in a compact operon.

3. The trend of the lysine pathway genes in the γ-proteo-
bacterium E. coli (Figure 8c) is quite surprising; although
the lys genes are scattered throughout the E. coli chromo-
some, they show a high degree of co-expression with cor-
Page 9 of 14
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Gene organization of threonine genesFigure 6
Gene organization of threonine genes. Structure and organization of threonine biosynthetic genes of the 58 proteobacte-
ria correlated with their phylogenetic position as established by RpoD analysis.
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Gene organization of methionine genesFigure 7
Gene organization of methionine genes. Structure and organization of methionine biosynthetic genes of the 58 proteo-
bacteria correlated with their phylogenetic position as established by RpoD analysis.
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relation coefficient values often > 0.8. It is not clear how
these genes can be highly co-expressed in the absence of
an operonic organization. However, it is known [16] that
lysine biosynthetic genes are regulated by the so-called
LYS element (lysine-specific RNA element) located in their
regulatory regions and able to repress or to allow their
trascription in response to lysine concentration. The high
coexpression pattern of lysine bosynthetic genes might be
due to this mechanism.

The same analysis was carried out on lysine, methionine
and threonine biosynthetic genes of Pseudomonas aerugi-
nosa, whose structure and organization pattern is the same
of the α-, β-, and δ\ε subdivision of proteobacteria. Data
obtained (reported in Figure 8) showed that, overall, there
is a low degree of co-expression between genes belonging
to the same pathway; this is particularly pronounced for
methionine, where in some cases, the correlation coeffi-

cient assumes negative values (Figure 8e), and lysine
genes, whereas the thr biosynthetic genes were more cor-
related between them. The low degree of co-expression of
P. aeruginosa genes is in agreement with their scattering on
the bacterial genome.

Conclusion
In this work a likely model for the evolution of the genes
involved in the common pathway (CP) is depicted, which
is based on the comparative analysis of data concerning
the structure, phylogenetic distribution, organization,
phylogeny and expression of ask and hom genes in proteo-
bacteria. The analysis of the structure of the CP genes gave
a strong support to the hypothesis that at least two differ-
ent molecular mechanisms played an important role in
shaping the pathway, that is paralogous gene duplica-
tion(s) and gene fusion [17,4]. The analysis of thr, met and
lys gene organization in different proteobacteria revealed

Microarray data analysisFigure 8
Microarray data analysis. Comparison between the expression pattern of each met, lys, thr gene of E. coli (a, b, c) and P. aer-
uginosa (d, e, f).
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that several gene arrays exist within this phylogenetic lin-
eage, with genes completely scattered throughout the
genome, partially scattered/clustered, or strictly com-
pacted. Even though different scenarios can be depicted
for this different organization, i.e. the presence of scat-
tered or clustered genes in the ancestor of proteobacteria,
data reported in this work supported the first hypothesis.
According to the model proposed, the ancestor of proteo-
bacteria possessed monofunctional hom, ask, and asd
genes scattered throughout the genome. The extant multi-
ple and fused copies of ask and hom genes are the outcome
of a cascade of paralogous gene duplication and fusion
events, which led to the appearance of bifunctional
enzymes catalyzing the same metabolic steps, but "sens-
ing" different regulatory signals.

The evolutionary history of the CP genes gives another
important support to the Jensen's hypothesis on the ori-
gin and evolution of metabolic pathways [14], strengthen-
ing the idea that gene duplication, gene fusion and
recruitment of genes encoding enzyme with a broad range
of substrate specificity played a crucial role in the assem-
bly of biosynthetic pathways and in the appearance of
new and/or more sophisticated regulatory networks [4,9].
Indeed, the biological significance of the presence of mul-
tiple copies of ask and hom genes might rely on the refine-
ment of regulatory mechanisms allowing each ask copy to
be regulated by specific signals, such as the availability of
the end-product of the pathway.

The question of why the duplicated copies of ask fused to
hom is rather intriguing. It is evident from their phyloge-
netic distribution that, once occurred, the fusion has been
fixed; thus, it should have been evolutionary advanta-
geous. Even though it cannot be a priori excluded, we do
not favour the possibility that this fusion might permit the
substrate tunnelling. It is possible that this gene fusion
(and gene organization) resulted from both regulatory
and metabolic constraints, for instance it might permit the
spatial colocalization of their products and so a faster
feedback inhibition of the first enzyme of the pathway,
coded for by ask, by the product of hom.

The existence of the thrA and metL gene fusions in the
genome of γ-proteobacteria is not an isolated example;
additional gene fusions occurred in these genomes, such
as those involving some histidine biosynthetic genes. It is
worth of note that most of bifunctional proteins recog-
nized to date are involved in metabolic pathways of the γ-
subdivision of proteobacteria [18]. Even though there is
no apparent reason to think that these organisms are
more prone to gene fusions than any others, it is interest-
ing that these gene fusions appeared to be parallel to the
increasing compactness of some operons [9] or to their
construction, as in the case of the thrABC and metLB ones.

Actually, the analysis of the organization of these genes
revealed that all the metL and thrA genes are embedded
within (compact) operons, whereas their monofunctional
counterparts as well as the second CP gene, asd, are
located outside gene clusters. This is not so surprising if
we agree on the existence of unspecific enzymes that
might serve different metabolic pathways. Indeed, it is
plausible that the expression of a gene, whose product
catalyses a chemical reaction leading to a product
involved in different metabolic pathways should be con-
stitutively expressed or controlled by multiple mecha-
nisms rather than being controlled by mechanisms
specific for a single route.

This is also in agreement with expression data retrieved
from the available microarray data; in fact, the greater the
scattering of genes belonging to the same pathway, the
lower the degree of correlation between them.

If our model is correct, the building up of thrABC and
metLB operons represents a recent invention of evolution
(dated in the γ proteobacterial ancestor) and is apparently
co-incident with the appearance of bifunctional ask-hom
genes. The origin and evolution of operons is still under
debate, and at least six different classes of models have
been proposed to explain the existence of operons (see [9]
and references therein); although different forces might
have driven the assembly of operons, in our opinion the
major ones were those enabling the fused genes to be
coregulated finely and the protein coded for synthesized
in the correct stoichiometric ratio.

Material and methods
Sequence retrieval
Amino acid sequences were retrieved from GenBank data-
base. BLAST [13] probing of database was performed with
the BLASTP option of this program using default parame-
ters. Only those sequences retrieved at an E-value below
the 0.05 threshold were taken into account.

Sequence alignment
The ClustalW [15] program in the BioEdit package was
used to perform pairwise and multiple amino acid
sequences alignments.

Phylogenetic trees construction
Phylogenetic trees were obtained with Mega 3 [19] soft-
ware using the Neighbor-Joining (NJ) and the Minimum
Evolution (ME) methods.

List of abbreviations
AKI, AKII, AKIII, Aspartokinase I, II, III; askI and askII can
also be named as thrA and metL; ASHD, Aspartate semial-
dehyde dehydrogenase; DAPDC, meso-diaminopimelate
decarboxylase; HD, homoserine dehydrogenase.
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