
Linear Motif-Mediated Interactions Have Contributed to
the Evolution of Modularity in Complex Protein
Interaction Networks
Inhae Kim1, Heetak Lee1, Seong Kyu Han1, Sanguk Kim1,2*

1 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea, 2 School of Interdisciplinary Bioscience and Bioengineering, Pohang

University of Science and Technology, Pohang, Korea

Abstract

The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of
complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been
clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different
biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the
evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for
the reduction in module boundaries that originate from increased connections between different modules in complex PPI
networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular
characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping
the architecture and modularity of biological networks over the course of evolution.
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Introduction

Biological modules have played an important role in the evolution

of cellular systems. After all, it is a group of genes, rather than a single

gene, that cooperatively carries out cellular functions and determines

phenotypic consequences [1,2]. Modules facilitate functional inno-

vations in cellular systems, as modular rearrangements provide an

efficient way to invent new cellular functions with a limited set of

genes [3,4]. Moreover, modular architecture confers evolutionary

robustness and stability to a system, by insulating it from the

perturbing effects of genetic variation [5,6]. However, molecular-

level understanding of the mechanisms underlying modular change

in complex biological systems is currently not well developed.

Current approaches to identifying modules in protein-protein

interaction (PPI) networks often fail to consider the molecular

components of connections. Hence, they cannot explain the

molecular characteristics underpinning the evolution of network

modules. Instead, they often rely on network topology, describing

the organization of protein interactions [7–9]. Algorithms build

topological clusters from protein interactions and try to identify

clusters that correspond to certain biological modules, such as

functional groups, protein complexes, and subcellular localiza-

tions. However, these approaches usually treat all interactions as

equal and ignore differences in the nature of the connections.

Social network studies have shown that network architecture

and evolution are closely related to interaction strength [10,11].

Specifically, strong interactions, or long-term and intense

commitments between people, are most likely to exist within

communities (Figure 1a). By contrast, weak interactions, or

transient and distant acquaintances between people, tend to

connect individuals in different communities. This pattern has an

evolutionary origin: two unfamiliar people are more likely to

develop a social tie and build a community if both of them have

strong interactions to a common person [10]. Interaction strengths

also influence how global networks function, including the rate

and direction of information propagation [11]. Given that

biological and social networks often share similar design principles,

we anticipated that interaction strength would also affect the

evolution of the modular architecture of biological networks.

The physical characteristics of protein interactions are largely

determined by their interface structures, which in general are

classified into two groups: domain-domain interactions (DDIs)

and domain-linear motif interactions (DLIs) [12]. DDIs usually

display 103–106 fold stronger affinities than DLIs. Domains are

globular structures of long peptides with defined binding or

catalytic activities, whereas linear motifs are short peptides

composed of specific sequence patterns that bind to other

domains. Due to structural differences in the interacting

components, DDIs tend to be characterized by large, strong

interfaces between two globular domains, whereas DLIs are

typically composed of small, weak interfaces between short

peptides. In addition, domains and linear motifs have evolved in
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distinct manners. Domains are often conserved over a wide

evolutionary range, evolving in a divergent manner [13], whereas

linear motifs tend to emerge from few substitutions in short

peptides [14,15]. Therefore, we hypothesized that DDIs and

DLIs may have made different contributions to the evolution of

the modular architecture of PPI networks (Figure 1b).

In this study, we investigated the role of DLIs and DDIs in

biological modules and found that DLIs are more likely to

connect proteins between different biological modules, whereas

DDIs tend to connect proteins within the same biological

modules, including functional groups, protein complexes, and

subcellular localizations. Furthermore, evolutionary analysis of

PPI networks revealed that an expansion of DLIs in complex

organisms has contributed to an increase in modularity, which

may compensate for the cost of network complexity during

evolution. We also demonstrated that module identification could

be improved by utilizing DLI/DDI information. Indeed,

interaction strength represents a unique biological aspect of

network modules, one not incorporated by topology information

alone. Our study suggests that inclusion of the physical

characteristics of protein interactions will improve our under-

standing of the architecture and evolution of PPI networks.

Results

Classifying DDIs and DLIs in the human PPI network
We classified human PPIs into DDIs and DLIs to investigate the

relationship between interaction strength and the modular

architecture of networks (Figure 2a; see Materials and Methods).

Briefly, we categorized PPIs as DDIs if two interacting proteins

had one or more domain-domain interactions. Interacting domain

pairs were either identified directly from 3D structures of protein

complexes [12,16] or from databases of domain-domain pairs

[17]. We categorized PPIs as DLIs if two interacting proteins had

one or more interacting domain-linear motif pairs. Interacting

domain-linear motif pairs were identified from the Eukaryotic

Linear Motif (ELM) database, which catalogs sequence patterns of

linear motifs using regular expression and their interacting

domains [18]. This procedure resulted in an integrated human

PPI network containing 39,707 DDIs and 25,093 DLIs (Table S1).

We found that the quality of linear motifs increased during DLI

classification steps. Because linear motifs have high rate of false

positives [18], we assessed the fraction of true positive motifs in

each step of DLI classification. A positive set of 695 experimentally

validated motifs were collected from the ELM database and

compared with randomly selected ones (see Materials and

Methods). We found that the fraction of true positive motifs

significantly increased during the classification steps, especially, at

the steps exploiting PPI neighbors to detect motif-binding domains

and further removing overlap with DDIs (Figure 2b). In contrast,

the fraction of random sets remained unchanged during the steps.

We also assessed the conservation of motifs since it has been

reported that motifs involved in PPIs are relatively conserved [19].

We found that motifs selected from the classification steps are

more conserved (Figure 2b). Briefly, conservation score was

calculated based on the information entropy of each column in

multiple sequence alignments of orthologs and standardized over

flanking residues (see Materials and Methods).

We further compared assigned DDIs and DLIs to reference sets

in which the interfaces of human PPIs were identified directly from

3D structures or the literature (see Materials and Methods). We

found that assigned DDIs and DLIs accorded well with the

reference sets (Figure 2c). Specifically, 83.6% of the assigned DDIs

(n = 816) matched the reference DDIs, whereas only 1.0% of the

assigned DLIs (n = 10) were included in the reference DDI set. By

contrast, 52.6% of the assigned DLIs (n = 92) matched the

reference DLIs, whereas only 1.7% of the assigned DDIs (n = 3)

Figure 1. Interaction strength and modular architecture in networks. (a) The relationship between tie strength and community structure is
well established in social networks. (b) DDIs and DLIs correspond to strong and weak interactions in PPI networks, respectively.
doi:10.1371/journal.pcbi.1003881.g001

Author Summary

Modular architecture is important for the evolution of
cellular systems. Modular rearrangements facilitate func-
tional innovations and modular insulations provide ro-
bustness to perturbations. However, molecular-level un-
derstanding of the mechanisms underlying modular
network evolution is currently not well understood. Here
we show that strong domain-domain interactions (DDIs)
and weak domain-linear motif interactions (DLIs) made
different contributions to the evolution of the modular
architecture of PPI networks. Especially, DLIs mediate
between-module interactions, and that their relative
abundance has dramatically increased in metazoan spe-
cies. Linear motifs have been identified as evolutionary
interaction switches since subtle amino acid changes can
cause the short sequences in linear motifs to appear and
disappear. Our results suggest that subtle changes in linear
motifs have contributed to the rewiring of functional
modules and, consequently, to functional innovations in
metazoan species.
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were included in the reference DLI set. This also validates our

approach to a classification of PPIs into DDIs and DLIs.

DDIs and DLIs have different topological roles in the
network

We found that DDIs and DLIs have distinct roles in organizing

the modular architecture of the human PPI network. DDIs tend

to link proteins within the same topological clusters, whereas

DLIs are more likely to connect different topological clusters in

the network (Figure 2a). To quantify this observation, we

investigated the edge clustering coefficients of DDIs and DLIs

(see Materials and Methods). The edge clustering coefficient

measures the fraction of connections between neighbors of two

proteins connected by a given interaction [20]. Thus, interactions

with a high clustering coefficient tend to connect proteins within

the same topological cluster. We discovered that DDIs have

higher edge clustering coefficients than DLIs (Figure 2d, colored

arrows). The average clustering coefficient of DDIs was 0.16

and that of DLIs was 0.061 (Kolmogorov-Smirnov test,

p = 1.06102323).

We confirmed that the observed clustering coefficients of DDIs

and DLIs could not occur by random chance comparing them to

randomly assigned ones (Figure 2d, grey bars). The randomly

assigned DDIs and DLIs were constructed by shuffling domains

and linear motifs across proteins, while keeping the network

connections unchanged (see Materials and Methods). Note that

false classification of DDIs or DLIs would lead the clustering

coefficient similar to that of random ones because the network

topology was not changed. The high clustering coefficients of

actual DDIs and the low clustering coefficients of actual DLIs were

significantly different than those of randomly assigned ones

(p = 1.061025 for DDIs; p = 1.561023 for DLIs). This was further

confirmed based on the conservation of motifs constituting DLIs.

We changed DLI datasets by varying motif conservation scores

and measured average clustering coefficients. We found that the

average clustering coefficients of DLIs were lower than that of

Figure 2. DDI and DLI-assigned human PPI network. (a) Categorizing human PPIs as DDIs or DLIs. A part of the human PPI network is shown to
visualize DDI/DLI-assigned network. (b) Quality assessment of linear motifs during classification process. (c) Comparison of DDIs and DLIs categorized
using our method to reference sets. (d) Edge clustering coefficients of DDIs and DLIs in the human PPI network. Grey bars show the distribution of
average edge clustering coefficients in 105 networks with randomly assigned DDIs and DLIs.
doi:10.1371/journal.pcbi.1003881.g002
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DDIs, regardless of their motif conservation scores (Figure S1).

Interestingly, the average clustering coefficients even decreased as

the conservation of motifs increased. These indicate that the

observed clustering coefficient would not likely emerge from false

classifications.

Because of the degeneracy in regular expressions, certain motifs

could stochastically occur in many proteins. Therefore, we

removed DLIs with low information content and reanalyzed the

dataset. We confirmed that clustering coefficients of DLIs were

lower than that of DDIs when we removed motifs with higher

probability to be found by chance. DLIs showed lower clustering

coefficient compared to DDIs even after removed 89 motifs with

probability over 1025 (Figure S2a). Moreover, we found that the

probability and clustering coefficient of motifs did not show

significant correlation (Figure S2b; p = 0.15, Pearson’s correlation).

This confirms that DLIs generally have lower clustering coeffi-

cient, which is not restricted to several prevalent motifs.

DLIs connect different biological modules, while DDIs
connect proteins within biological modules

We next compared the role of DLIs and DDIs in various

biological modules. Because biological modules are groups of

proteins with tight functional relationships [1], we investigated

functional groups identified based on Gene Ontology (GO) terms.

Protein complexes and subcellular localizations were also inves-

tigated, since they represent protein groups with particular

functions [21–23].

We found that DLIs were enriched in protein interactions

connecting different functional groups, whereas DDIs were

enriched in interactions connecting proteins within the same

functional group (Figure 3a, Table S2). Functional groups were

identified using molecular functions (MFs) and biological processes

(BPs) based on GO terms, while controlling for module size and

overlapping relationships (see Materials and Methods). For

example, DLIs mediated by SH2 domains of Src kinase family

proteins (FYN, YES, LCK) connect ‘cell-cell adhesion’ and

‘leukocyte migration’ protein groups (Figure 3b). The Src kinases

transiently dissociate p120-catenin (CTNND) and cadherins

(CDHs) via phosphorylation, which results in short-lived gaps

between vascular epithelial cells [24]. This enables leukocytes to

transmigrate from blood vessel to tissue, which suggests that DLIs

contribute to transient interactions between different functional

groups. By contrast, DDIs connect proteins within the ‘cell-cell

adhesion’ group through their Arm and Cadherin_C domains.

And the proteins within the ‘leukocyte migration’ group are

connected by the DDIs of the Pkinase_Tyr and Ras domains. We

also confirmed that the bias of DLIs towards between-module

interactions was observed regardless of their motif conservation

(Table S3).

We found that DLIs were enriched in between-complex

interactions, whereas DDIs were enriched in within-complex

interactions (Figure 3c, Table S2). For example, DLIs mediated

by the BRCT domains of the BRCA1 protein connected the ‘RNA

polymerase II’ and ‘BRCA1-associated genome surveillance’

complexes (Figure 3d). The BRCT domain is a phosphopeptide-

binding domain that mediates signal transduction events in the

DNA damage response pathway [25]. BRCA1 interacts with the

phosphorylated and functionally processive form of the RNA

polymerase II complex to respond to DNA damage [26], suggesting

that DLIs contribute to transient interactions between different

protein complexes. By contrast, DDIs connect proteins within the

‘RNA polymerase II’ complex via the TFIIE_alpha and BSD

domains. In addition, the proteins within the ‘BRCA1-associated

genome surveillance’ complex are connected by DDIs between the

MutS and Helicase_C domains.

We found that DLIs were enriched in protein interactions across

different subcellular localizations, whereas DDIs were enriched in

protein interactions within subcellular localizations (Figure 3e,

Table S2). For example, the signal transducer and activator of

transcription 3 (STAT3) protein interacts with its partners in the

cytoplasm and nucleus via DLIs (Figure 3f). Specifically, the

STAT3 protein transiently binds to heat shock protein 90 (HSP90)

in the cytoplasm and translocates to the nucleus, where it releases

HSP90 to interact with other transcription factors [27]. By

contrast, DDIs connect proteins with the same subcellular

localization. For example, the Hsp70 and Hsp90 domains

participate in protein interactions in the cytoplasm, whereas the

Creb binding and Bromo domains participate in those in the

nucleus. This suggests that DLIs contribute to the transient

interactions of proteins that translocate between different subcel-

lular localizations. We also provide more examples for the

enrichment of DLIs and DDIs in interactions between and within

biological modules (Figure S3).

We confirmed that DDIs are biased toward within-module

interactions regardless of they are mediated by same or different

domains. One might ask that the observed bias of DDIs toward

within-module interactions emerged from similar functions of

identical domains. To test this question, we divided DDIs into two

groups, homo- or hetero-DDIs. Any DDIs mediated by one or

more pairs of same domains were classified as homo-DDIs and the

rest of them were classified as hetero-DDIs based on their Pfam

ID. We found that both homo- and hetero-DDIs are biased

toward within-module interactions for functional groups, protein

complexes, and subcellular localizations (Table S4). This indicates

that the observed bias is likely due to the differences between DDI

and DLI.

Metazoan PPI networks: An increase in DLIs accompanies
the evolution of modularity

Next, we investigated how the evolution of DLIs and DDIs

contributed to the modular architecture of PPI networks.

Comparative genomic studies have revealed that the number of

peptide-binding domains and linear motifs, the basic components

of DLIs, expanded as the complexity of organism increased [28].

We found the number of DLIs increased sharply in metazoan

species (Figure 4a; Table S5). PPI networks for 45 nonmetazoan

and 53 metazoan species were constructed using orthologous

protein interactions from the human PPI network (see Materials

and Methods). Although the number of both DDIs and DLIs

increased in metazoan PPI networks, the increase in DLIs was

greater than that in DDIs. The average proportion of DLIs was

24.6% in nonmetazoan species; it increased to 40.2% in metazoan

species (Figure 4b; t-test, p = 2.4610243). As expected, we found

that the increases of linear motifs and DLI domains are more

significant than that of DDI domains (Figure S4).

What was the impact of this increased proportion of DLIs upon

metazoan PPI networks? We measured the modularity of PPI

networks in eukaryotic species and found that the expansion of

DLIs contributed to the modular architecture of metazoan PPI

networks. To quantify the modularity of PPI networks in different

species, we first applied a widely accepted topological measure,

MPPI. By measuring the enrichment of within-module interac-

tions, this measure was designed to assess to what extent modules

are separated from each other (see Materials and Methods). We

discovered that the MPPI decreased sharply in metazoan PPI

networks relative to those of nonmetazoans (Figure 5a, Figure S5).

This decreased MPPI was due to an increase in between-module

Modular Architecture of Protein Interaction Networks
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interactions, which connect proteins in different modules and

reduce module boundaries (Figure 5b, Table S5). For example,

the fraction of between-module interactions for protein complexes

was 45.3% in nonmetazoans and 65.3% in metazoans (Figure S6;

p = 2.0610224). We again tested whether the decrease of MPPI is

due to any evolutionary association from same domains and found

that MPPI decreased for both homo- and hetero-DDIs (Figure S7,

S8).

Connections between different modules, however, do not

necessarily reduce the modularity of PPI networks, because

transient interactions between different modules are critical to

the proper function of modular architecture. Therefore, we

formulated a new modularity measure, MDLI/DDI, which takes

into account DLI/DDI information; it incorporates the idea that

DLIs mediate interactions between different modules, whereas

DDIs mediate interactions within the same modules (see Materials

and Methods). In contrast to the decrease observed in the MPPI,

we discovered that the MDLI/DDI increased in metazoan PPI

networks relative to nonmetazoan networks (Figure 5c, Figure S5,

S7, S8). Indeed, we found that DLIs tend to connect proteins at

module boundaries, improving module quality in complex PPI

networks (Figure 5d). For example, novel Src family kinase (FYN,

YES, LCK) DLIs emerged in metazoan species, regulating the

transient opening of the junction between vascular epithelial cells

in leukocyte migration [24]. Because of abundant connections

between the two modular groups, each module’s boundary is

unclear at first glance. However, DLIs mediate the between-

module connections of leukocyte migration and cell-cell adhesion

modules, helping them cluster independently (Figure 5e).

DLI/DDI information improves identification of biological
modules in PPI networks

Because DLIs and DDIs have distinct roles in the modular

architecture of PPI networks, we employed DLI/DDI information

in a topology-dependent module detection algorithm to improve

identification of biological modules. We anticipated that DDIs

would cluster proteins into modules, since they connect proteins

with the same biological functions, whereas DLIs would separate

Figure 3. Enrichment of DLIs and DDIs in interactions between and within biological modules. (a) Odd ratio in functional groups. (b) Two
functional groups, ‘cell-cell adhesion’ and ‘leukocyte migration’ were shown. (c) Odd ratio in protein complexes. (d) Two protein complexes, ‘RNA
polymerase II’ and ‘BRCA1-associated genome surveillance’ were shown. (e) Odd ratio in subcellular localizations. (f) Two subcellular localizations,
‘cytoplasm’ and ‘nucleus’, were shown.
doi:10.1371/journal.pcbi.1003881.g003
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proteins into different modules, since they involve transient

interactions between proteins with different biological functions

(Figure 6a). To test this idea, we compared conventional

topological PPI modules and DLI/DDI-identified modules. We

constructed conventional PPI modules by using a greedy module-

optimization algorithm, which consecutively merged single nodes

to determine the architecture with the highest modularity (see

Materials and Methods). To construct improved modules, we

applied DLI/DDI information by adjusting interaction weights.

We found that considering DLI/DDI information dramatically

improved the identification of biological modules (Figure 6b). The

quality of DLI/DDI-identified modules was significantly better

than that of conventional PPI modules; this was true of various

biological modules, including functional groups, protein complex-

es, and subcellular localizations. To quantify module quality, we

analyzed the similarity of functional annotations, membership in

protein complexes, and localization of subcellular compartments

(see Materials and Methods). The quality of functional groups was

analyzed in terms of both MF and BP terms. We found that DLI/

DDI-identified modules showed better quality than conventional

PPI modules for various module sizes (Figure S9).

Next, we investigated how DLI/DDI information could

improve the merge process, resulting in better-quality protein

clusters. By weighting network connections differently, the process

prioritized the merging of DDIs in early steps and delayed DLI

merges until later steps. For example, we found that voltage-gated

Na+/K+ channel proteins (HCN1-4) were grouped into the same

module (Figure 6c). A DDI between HCN2 and HCN4 ensured

the merging of the two proteins in an early step. Conversely, DLIs

between HCN proteins and Fce signaling proteins (FYN, SRC,

GRB2) delayed the merge events for these proteins, resulting in

separate modules. By contrast, based on conventional PPI

information alone, HCN2 clustered with the FYN, SRC, and

GRB2 proteins, becoming a member of the same functional

module. This indicates that DLI/DDI information can improve

the functional annotation process by identifying biologically

relevant modules not easily identified using network topology

alone.

Discussion

In this study, we show that interaction strength plays a crucial

role in shaping biological modules. Specifically, weak and transient

interactions between modules promote the formation of function-

ally competent modular architecture in PPI networks, while a

growing number of proteins and interactions have increased

network complexity. Interestingly, it has been reported previously

that weak interactions are enriched in between-module connec-

tions and are important for the proper function of various complex

networks. For example, in social networks, weak interactions

across community boundaries serve as passages along which novel

information can travel [10]. Similarly, in the human brain, weak

interactions connecting functional modules maximize information

transfer at minimal wiring cost [29]. Indeed, interactions mediated

by linear motifs are enriched in signaling and post-translational

regulation networks [30,31]. This suggests that transient interac-

tions mediating connections between modules may be a common

design principle in complex networks. Thus, we propose that

incorporating interaction strength into the study of network

architecture provides novel insight into the principles of organi-

zation in biological systems.

Due to the unstable characteristics, transient interactions are

more difficult to detect than stable interactions [31]. We tested

whether our conclusion is robust to underestimated transient

interactions. Because multiple reports likely indicate more stable

PPIs [32], we constructed a stable PPI (SPPI) network using the

PPIs found from two or more source of publications. We found

that the clustering coefficient of DLIs was significantly smaller

than that of DDIs (Figure S10; p = 3.7610253, u-test). We also

found that DDIs and DLIs in SPPI network are enriched in

within- and between-module interactions, respectively (Table S6).

Therefore, we expect that our conclusions remain unchanged

against future expansion of PPI networks with more transient

interactions.

We showed that DLI/DDI information can improve the

identification of biological modules (Figure 6). Here, we focused

on finding modules based on a conservative way, in which

Figure 4. Expansion of DLIs in metazoan PPI networks. (a) The number of conserved DLIs and DDIs in eukaryotic species. Values for nine
representative eukaryotic species are shown. (b) Average proportion of DLIs and DDIs in 45 nonmetazoan and 54 metazoan species.
doi:10.1371/journal.pcbi.1003881.g004
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modules likely comprise strong DDIs between proteins with similar

functions. Therefore, DLIs had been weighed lower than DDIs

using a conventional framework which was designed to separate

topological clusters. However, one might have another motivation

of finding dynamic modules composed of transient interactions.

We expect that DLIs and DDIs would also be informative in such

cases because transient PPIs involved in dynamic cellular functions

are likely mediated by DLIs [30,31]. One immediate way of

finding dynamic modules would be to weigh DLIs over DDIs to

find modules comprising DLIs rather than DDIs. This idea could

Figure 5. The expansion of DLIs contributed to the increase in modularity of metazoan PPI networks. (a) Topological modularity, MPPI,
in nine representative eukaryotic species. (b) A schematic showing how increased complexity is associated with MPPI. (c) Network modularity (MDLI/

DDI) in nine representative eukaryotic species. (d) A schematic showing how DLIs are associated with increased MDLI/DDI. (e) The evolution of ‘cell-cell
adhesion’ and ‘leukocyte migration’ groups is shown as an example.
doi:10.1371/journal.pcbi.1003881.g005

Modular Architecture of Protein Interaction Networks
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be systematically tested when there were more experimental

evidences for dynamic modules available from the advancement of

detection methods for transient interactions [33,34].

We found that complex PPI networks displayed highly modular

architecture when transient interactions were taken into account.

Without proper consideration of transient interactions, however,

complex PPI networks appeared to have lower levels of modularity

than simple ones (Figure 5). It has been suggested that modular

architecture is crucial in highly complex biological systems, to

alleviate the ‘‘cost of complexity’’ during evolution [35]. For

example, modules confer robustness to biological systems by

insulating against the spread of perturbations originating from

genetic variation. Without such insulation, perturbations could

alter various functions, which would be likely to result in

undesirable changes. Insulation becomes more critical as the

complexity of biological systems increases; complex networks

contain more components that can be perturbed than do simple

ones [36]. In general, yeast and mouse experiments have shown

that the effect of a single mutation is restricted, affecting a few

traits [5,6]. This implies that modular pleiotropic structure does

exist in the genotype-phenotype relationship. Our results highlight

the fact that transient interactions are key in shaping the modular

architecture of complex PPI networks.

We found that DLIs mediate between-module interactions and

that their relative abundance has dramatically increased in

metazoan species. Functional innovations in metazoan species

have often emerged from the rewiring of conserved functional

modules [3,37,38]. Therefore, DLIs may be a key component of

the rewiring of different functional modules in PPI networks.

Indeed, linear motifs have been identified as ‘‘evolutionary

interaction switches,’’ because subtle amino acid changes can

cause the short sequences in linear motifs to appear and disappear

[14,15,39–41]. Furthermore, structurally disordered regions,

where linear motifs are often located, have a high capacity for

evolutionary rewiring in PPI networks [42] and largely increased

in complex organisms [43]. This ‘‘switch-like’’ characteristic of

Figure 6. Employing DLI/DDI information to identify biological modules. (a) DLI/DDI information improves the identification of biological
modules. (b) Quality of modules identified using conventional PPI data vs. DLI/DDI data. Module quality reflects the similarity of biological
annotations in protein pairs within modules. (c) A detail of the merge process for conventional PPI and DLI/DDI-identified modules. The two
horizontal arrows represent the merge process for seven proteins associated with ‘Voltage-gated Na+/K+ channels’ and ‘Fce signaling pathway’.
Ordinal numbers of specific merge steps are shown.
doi:10.1371/journal.pcbi.1003881.g006
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short sequence motifs has been regarded as a prominent

evolutionary mechanism affecting developmental processes in

metazoan species. For example, mutations in cis-regulatory

elements can selectively alter the expression of specific functional

modules and result in dramatic changes in morphological patterns

[44,45]. Our results suggest that subtle changes in short coding

region peptides have also contributed to the rewiring of functional

modules and, consequently, to functional innovations in metazoan

species.

Materials and Methods

Integrated human PPI networks
To assign DDI and DLI status, we first collected human PPI data

from the following databases: the Human Protein Reference Database

(HPRD), release 9 [46]; BioGRID, release 3.2.107 [47]; IntAct [48],

downloaded December 3, 2013; the Molecular Interaction Database

(MINT) [49], released March 26, 2013; the Database of Interacting

Proteins (DIP) [50], released October 29, 2013; Reactome v46 [51];

MatrixDB [52], released August 1, 2012; and InnatedDB [53],

released July 11, 2013. The integrated human PPI network comprised

264,845 interactions between 15,857 proteins.

Classification of DDIs
We classified a PPI as a DDI if two partner proteins had one or

more interacting domain-domain pairs. Data on human protein

domains were obtained from the Protein Family Database (Pfam),

release 27.0 [13]. Interacting domain-domain pairs were either

identified directly from 3D structures or predicted using various

computational approaches [17]. We first obtained 9,616 structurally

characterized interacting domain-domain pairs from the Database

of Three-dimensional Interacting Domains (3did), downloaded

October 31, 2013 [12] and iPfam, release 1.0 [16], regarding them

as the gold standard set. Then, every predicted interaction between

domain-domain pairs received a confidence score:

CS(i,j)~
X

k

WkIk(i,j)

where CS(i,j) is the confidence score for the pair domain i and

domain j, k indicates the prediction method, W is a precalculated

weight factor for a specific prediction method, and I is an indicator

of the prediction result (Ik(i,j) = 1 if the method k gives a positive

prediction for the pair domain i and domain j; Ik(i,j) = 0 otherwise).

The weight factor assigned each prediction method was equal to its

precision:

W~
TP

TPzFP

where TP is the number of true positives, or the number of domain-

domain pairs predicted by a given method and found in the gold

standard set, and FP is the number of false positives, or the number

of domain-domain pairs predicted by a given method but missing

from the gold standard set. Predicted interactions between domain-

domain pairs were considered valid if their confidence scores were

greater than a cutoff value (CS0). To select a reliable CS0, we

investigated the F1 score of prediction results, increasing CS0 from 0

to 1.20 in 0.01 increments (Figure S11). The F1 score is the

harmonic mean of precision and recall:

F1~2
PR|RC

PRzRC

where PR and RC are the precision and recall, respectively, of

predicted interactions between domain-domain pairs with a CS.

CS0. Precision and recall were calculated as follows:

PR~
TP

TPzFP
,RC~

TP

TPzFN

where TP is the number of domain-domain pairs with CS.CS0 that

were present in the gold standard set; FP is the number of domain-

domain pairs with CS.CS0 that were missing in the gold standard

set; and FN is the number of domain-domain pairs with CS,CS0

that were present in the gold standard set. Using the CS0 with the

greatest F1 (CS0 = 0.13, F1 = 0.128), we obtained 6,911 interacting

domain-domain pairs predicted using various computational

approaches. In total, this procedure gave us 16,527 interacting

domain-domain pairs from both 3D structures and predictions. To

avoid any bias in biological modules, we excluded prediction

methods that exploited functional similarity.

Classification of DLIs
We classified a PPI as a DLI if two partner proteins had one or

more interacting domain-linear motif pairs. We identified linear

motifs in human proteins using regular expressions that represent

motifs [18]. In contrast to other approaches, regular expressions

have the flexibility to account for short indels and to provide

presence/absence matches for motif patterns, simplifying the

search. This feature is pertinent to our method, because

interactions at the protein level will filter out most over-

determined motifs. Two context filters provided by ELM server

were also applied to the search. A taxonomic range filter removed

linear motifs not related to human sequences. A structure filter

removed linear motifs that overlapped with predicted secondary

structures in globular domains. Interacting domain-linear motif

pairs were obtained from ‘‘ELM classes’’ [18]. Each ELM class

represents a pair of motif patterns and domains that interact with

each other. Among the six types of ELM classes, we used ligand

binding sites (LIG), docking motifs (DOC), and degron motifs

(DEG) to focus on protein binding rather than the cleavage,

targeting, or modification of motifs. PPIs remained unclassified if

they satisfied criteria for both DDIs and DLIs. In total, we

assigned 39,707 DDIs and 25,093 DLIs to 9,585 proteins.

Quality assessment of linear motifs
ELM instances, experimentally validated motifs in ELM database,

were downloaded June 12, 2014. Among them, we found 695

positive and 12 negative motifs presented in the network. Because

the number of negative motifs were too small to assess quantitatively,

we also generated 10,000 random sets comprising 695 motifs of

random selection for each and compared them to the positive set.

We assessed the conservation of a motif using relative local

conservation score (RLC) for each comprised residue and took

their average for the motif [54]. RLC was calculated as follows:

RLCi~
CSVi{mi

si

where CSV means conservation of residues from information entropy,

mi and si are mean and standard deviation of CSV, respectively, of [i2
10,i+10] residues including residue i itself. We used Shannon’s entropy

of each column in aligned ortholog sequences as CSV:

CSVi~
X

a

Pi(a)log Pi(a)
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where i denotes each column, a is an amino acid presented in a

column, and P(a) is the frequency of the amino acid a in a column.

Orthologs were obtained from Inparanoid database and only 100%

confidence orthologs were used [55]. Otholog sequenes were aligned

by MUSCLE algorithm [56]. For Figure S1 and Table S3, DLIs were

ordered by the highest conservation of comprising motifs and divided

into different groups.

Reference sets of DDIs and DLIs
We collected reference sets of human DDIs and DLIs whose

status could be directly ascertained from 3D structures and

literatures. Although 3did, iPfam and ELM databases provided

experimentally confirmed DDIs and DLIs, only part of them

might be interactions found in human proteins. Therefore, we

chose reference DDIs from 3did and iPfam, if two protein

constructs in the experiment were derived from human sequences

by tracking species information from Protein Data Bank [57].

Reference DLIs were collected from ELM interactions by filtering

out species other than human. Overlaps between reference DDIs

and DLIs were discarded. The procedure resulted in 976 reference

DDIs and 175 reference DLIs.

Topology difference between DDI and DLI
Edge clustering coefficient measures the ratio of observed cyclic

structures over possible cyclic structures around two connected

nodes. Specifically edge clustering coefficient, C, between two

nodes, i and j, was measured as follows [20]:

C
(g)
i,j ~

z
(g)
i,j z1

s
(g)
i,j

where z
(g)
i,j is the number of observed cyclic structures and s

(g)
i,j is

the number of possible cyclic structures among the partners of

node i and j; g is the order of cycles, i.e. the number of nodes

included in each cyclic structure. Here, we set g = 4. We generated

10,000 permutations of DDIs and DLIs to obtain empirical p-

values for the clustering coefficients. We permuted domains and

linear motifs preserving their number in each protein and

reassigned DDIs and DLIs.

Establishing biological modules
By definition, biological modules in PPI networks are groups of

proteins that have tight functional relationships [1]. To determine

functional groups of proteins, we used GO annotations, which

provide a wide range of descriptions for the cellular function of

proteins [58]. However, GO terms do not directly facilitate a clear

division among functional groups, as they are designed to create

hierarchical relationships in which parent terms include their child

terms. To employ GO terms in a way that clearly separated

functional groups, we first gathered certain GO terms with a

comparable number of annotated proteins. We removed GO

terms that displayed high levels of overlap, excluding the smaller of

two GO terms when the union of the pair contained more than

50% of associated proteins. The procedure described was

performed on terms from two functional GO categories: MF

and BP.

For protein complexes, we used the Mammalian Protein

Complexes (CORUM) database [59]. We employed only human

complexes, to prevent any bias originating from the higher level of

conservation observed in DDIs [39]. Since several protein

complexes with little variation can emerge from a subtle difference

in the conditions employed in detection experiments, we removed

those with high levels of overlap. As for functional groups, we

excluded the smaller of two complexes whose union shared more

than 50% of associated proteins. This procedure resulted in 1,217

protein complexes comprised of 2,646 proteins.

We used the consensus localization prediction (ConLoc) method

[22] to analyze subcellular localization. The algorithm first uses

Universal Protein Resource (Uniprot) annotations, if available

[60]. Then, it gives multiple predictions for subcellular localiza-

tions of a given protein, including associated confidence levels. In

the cases in which no Uniprot annotation was available, we used

the best prediction as the localization; we included the second

prediction as well, if it was assigned over 80% confidence. This

procedure resulted in 9 subcellular localizations for 18,575

proteins.

Enrichment of DLIs and DDIs in between and
within-module interactions

To investigate the role of DLIs and DDIs in biological modules,

we classified PPIs as within-module or between-module interac-

tions. PPIs were considered within-module interactions if the

interacting proteins had identical module memberships. Con-

versely, PPIs were considered between-module interactions if the

interacting proteins had no common module membership.

However, there were PPIs that met neither of these criteria

(dubbed ‘‘overlapping interactions’’ in Figure S12). These

overlapping interactions connected proteins that shared only part

of their module memberships; thus, they could be interpreted

either as within-module or between-module interactions. To be

robust, we built two datasets. One treated overlapping interactions

as within-module interactions, and the other classified overlapping

interactions as between-module interactions. In both sets, our

results were qualitatively similar, demonstrating that DLIs were

enriched in between-module interactions and DDIs were enriched

in within-module interactions (Table S2).

Next, we further characterized the association of DLIs and

DDIs with between and within-module interactions. We con-

structed a 262 contingency table with four types of interactions:

between-module DLIs (n11), between-module DDIs (n12), within-

module DLIs (n21), and within-module DDIs (n22). Enrichment

was calculated as the observed number of interactions over the

expected number of interactions for a specific association. For the

observed number of nxy, the expected number was calculated asP
j nxj|(

P
i niy=

P
i,j nij). For example, the expected number of

between-module DLIs was (n11+n12)6(n11+n21)/(n11+n12+n21+
n22), i.e., the number of between-module interactions multiplied

by the fraction of DLIs among the annotated proteins. We also

determined if the level of enrichment was significant by calculating

the p-value from Fisher’s exact test. An analysis of MF terms for

modules sized 80–160 proteins is shown in Figure 3.

PPI networks for eukaryotic species
We used protein orthology between human and other species to

construct PPI networks and their modular architecture, as most

interactomes were unknown when the genomes were sequenced. A

human PPI was regarded as conserved in other species if the

interacting pair of proteins had orthologs in them. Ortholog data

were obtained from the Inparanoid database, and only 100%

confidence orthologs were used [55]. Ortholog with the longest

sequence was chosen, in case of multiple orthologs presented. To

assign DDIs and DLIs, we searched domains and linear motifs in

each species. To find domains, ortholog sequences were searched

against the profile hidden Markov models of Pfam-A domains

using pfam_scan.pl script and HMMER3 [13,61]. Linear motifs

Modular Architecture of Protein Interaction Networks
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were searched using regular expressions and those overlapping

with any domain region were discarded [18]. In this way, we

constructed PPI networks for 45 nonmetazoan and 53 metazoan

species.

Measuring modularity
We used Newman modularity to measure MPPI [9]. The key

assumption underlying topological modularity is that modules are

separated from each other; the nodes within each module are

densely connected, and the nodes between modules are sparsely

connected. Specifically, topological modularity was calculated as

follows:

MPPI:
X

s

lW

L
{

ds

2L

� �2
( )

where lW is the number of interactions that connect proteins

within the module, L is the number of interactions in the network,

and dS is the sum of node degrees in the module. It measures the

extent to which the proportion of observed within-module

interactions exceeds the proportion expected by chance.

However, MPPI strictly focuses on the separation of modules in

network architecture, failing to recognize that biological modules

influence each other. Indeed, the best MPPI score occurs when

biological modules have no connection, which is unnatural. Given

that DLIs likely connect different biological modules to carry out

cellular functions, we revised MPPI to reflect that DDIs contribute

to within-module interactions and DLIs contribute to between-

module interactions. The revised modularity value, MDLI/DDI, was

calculated as follows:

MDLI=DDI:

X
s

lWD

L
{

lD

L

ds

2L

� �2
( )

z
lBL

L
{

lL

L

dS

2L

� �
2L{dS

2L

� �� �" #

where lWD is the number of DDIs that connect proteins within the

module, lD is the number of DDIs in the network, lBL is the

number of DLIs that connect proteins in the module to proteins

outside the module, and lL is the number of DLIs in the network.

The proportion expected by chance was adjusted for the

proportion of DDIs and DLIs in the network. An analysis of BP

terms for modules sized 80–160 proteins is shown in Figure 5.

Employing DLI/DDI information in module identification
To identify conventional PPI modules, we used a greedy

modularity optimization algorithm [62]. Initially, each node was

treated as a single module. Then, the algorithm merged nodes

consecutively, until the entire network became a single module. In

each step, all possible merge events between interacting nodes

were evaluated by calculating changes in topological modularity,

and the merge event with the greatest (or least decreased) value

was selected. Modules were finalized according to the merged

group of nodes with the highest modularity. Modules that

possessed only two proteins were excluded from the analysis.

We identified DLI/DDI-informed modules based on a proce-

dure similar to the one used to identify conventional PPI modules;

however, it weighted DDIs and DLIs differently [63]. In general,

PPIs were categorized in a binary manner (1 if they existed, 0 if

they did not). When an interaction was assigned to be DDI, its

contribution to merging process is greater than a conventional

PPI. By contrast, an interaction was assigned to be DLI, its

contribution to merging process works in the opposite way. Thus,

we weighted DDIs at 100 and DLIs at 0.1. We used commu-

nity_fastgreedy() function in python-igraph package to build both

PPI modules and DLI/DDI-identified modules (http://igraph.

org/python/). The resulting modules were provided in Table S7.

Module quality measure
We assessed module quality by measuring how similar proteins

within the same module were. The similarity of each protein pair

was calculated as the Jaccard index of biological annotations:

s(i,j)~
Xi\Xj

�� ��
Xi|Xj

�� ��
where i, j is the protein pair and X is the set of biological

annotations. Module quality was calculated as the average

similarity of protein pairs. Fold increase in module quality was

measured by comparing module quality to the average similarity

of all protein pairs in the network. The p-value comparing module

quality between the DLI/DDI-identified modules and conven-

tional PPI modules was calculated using the Kolmogorov-Smirnov

test. We also investigated the effect size of employing DLI/DDI

information upon module quality using Cohen’s d, designated e in

Figure S8. An analysis of MF terms for modules sized 80–160

proteins is shown in Figure 6.

Supporting Information

Figure S1 Edge clustering coefficient of DLIs with various

conservation scores. DLIs were ordered by the conservation of

comprising motifs and divided into 10 groups. Numbers in

parentheses show the number of DLIs in each group.

(TIF)

Figure S2 Clustering coefficients of DLIs according to the

probability of motif regular expression. (a) Clustering coefficients

of DLIs with varying probability cutoffs were compared with that

of DDIs. (b) Each dot represents a motif with unique regular

expression having its probability to be found by chance on x-axis,

while average clustering coefficient of interactions on y-axis. The

probability of motif regular expression was calculated as the

product of the amino acid probability in each position of a motif

[18].

(TIF)

Figure S3 Examples of DLIs and DDIs in interactions between

and within biological modules for (a) functional groups, (b) protein

complexes, and (c) subcellular localizations.

(TIF)

Figure S4 Number of domains and linear motifs mediating

DDIs and DLIs in the PPI networks of eukaryotes. Average

number per protein was calculated for each species and p-value

was taken comparing 45 nonmetazoan and 53 metazoan species

by t-test.

(TIF)

Figure S5 Enrichment of DLIs and DDIs in between and

within-module interactions. Non-overlapping GO terms were used

as functional groups. Module size represents the number of

proteins in a given GO term.

(TIF)

Figure S6 Enrichment homo-DDIs and DLIs in between and

within-module interactions.

(TIF)
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Figure S7 Enrichment hetero-DDIs and DLIs in between and

within-module interactions.

(TIF)

Figure S8 Increase in between-module interactions in metazoan

PPI networks among protein complexes. (a) The number of

between and within-module interactions in eukaryotic species

among protein complexes. Values are shown for nine represen-

tative eukaryotic species. (b) Average proportion of between and

within-module interactions in nonmetazoan and metazoan species.

(TIF)

Figure S9 Comparison of module quality between DLI/DDI-

identified modules and conventional PPI-identified modules for

different functional groups. For both molecular function and

biological process, the effect size, e, and the p-value are shown,

stratified by module size.

(TIF)

Figure S10 Edge clustering coefficient of DDIs and DLIs in

SPPI network.

(TIF)

Figure S11 F1 score for the prediction of interacting domain-

domain pairs in relation to the cut-off value, CS0. The F1 score

was calculated for positive predictions, which were domain-

domain pairs with a confidence score, CS, greater than the CS0.

(TIF)

Figure S12 Schematic illustrating how PPIs were categorized as

between or within-module interactions.

(TIF)

Table S1 DDI and DLI-assigned human PPI network.

(XLSX)

Table S2 Number of DDIs and DLIs as within- or between-

module interactions.

(XLSX)

Table S3 Fraction of DLIs with different conservation in

between- or within-module interactions.

(XLSX)

Table S4 Enrichment of homo- and hetero-DDIs in interactions

between and within biological modules.

(XLSX)

Table S5 Number of interactions in orthologous PPI networks of

eukaryotic species.

(XLSX)

Table S6 Number of DDIs and DLIs as within- or between-

module interactions in SPPI network.

(XLSX)

Table S7 Module membership of proteins for PPI modules and

DLI/DDI modules.

(XLSX)
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