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a b s t r a c t

The mitigation of an infectious disease spreading has recently gained considerable attention from the
research community. It may be obtained by adopting sanitary measurements (e.g., vaccination, wearing
masks), social rules (e.g., social distancing), together with an extensive vaccination campaign. Vaccination
is currently the primary way for mitigating the Coronavirus Disease (COVID-19) outbreak without severe
lockdown. Its effectiveness also depends on the number and timeliness of administrations and thus
demands strict prioritization criteria. Almost all countries have prioritized similar classes of exposed
workers: healthcare professionals and the elderly, obtaining to maximize the survival of patients and
years of life saved. Nevertheless, the virus is currently spreading at high rates, and any prioritization cri-
terion so far adopted did not account for the structural organization of the contact networks.
We reckon that a network where nodes are people while the edges represent their social contacts may

efficiently model the virus’s spreading. It is known that tailored interventions (e.g., vaccination) on central
nodes may efficiently stop the propagation, thereby eliminating the ‘‘bridge edges.” We then introduce
such a model and consider both synthetic and real datasets. We present the benefits of a topology-
aware versus an age-based vaccination strategy to mitigate the spreading of the virus. The code is avail-
able at https://github.com/mazzalab/playgrounds.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Each successful outbreak containment strategy relies on three
main pillars: detection (e.g., diagnostics tests), prevention (e.g.,
vaccines, containment), and cure (e.g., the existence of effective
drugs). While the latter measure is effective when an outbreak
has happened, appropriate detection and prevention strategies
that may be used at every stage of an epidemic, from the detection
to the resolution, are required. In particular, the development of
effective diagnostic tests is technically challenging, which are help-
ful for detecting infected people but are applicable for spreading
containment. It is thus evident that appropriate strategies for con-
tainment to ensure that future outbreaks can be more effectively
contained are needed.

Containment strategies fall into two main categories, often
interlaced: (i) social and sanitary containments, which are based
on the limitation of contacts among people but require many social
efforts (e.g. lockdown, change of behaviour, use of protective
devices such as face masks); (ii) vaccination strategies, which
tackle the spreading without imposing social limitations. For
instance, for the SARS-CoV-2 pandemic [1], after initial contain-
ment measures, and the trial of different therapies, many research
efforts led to the development of different vaccines [2–5]. How-
ever, considering the spread of COVID-19 and the production rates,
there is a need for developing ad hoc prioritization strategies [6]
that are also effective for subsequent pandemics. Similarly, even
in the presence of sufficient vaccines, it is important to consider
the speed of spreading, which may be higher than the immuniza-
tion rate, thus affecting the vaccination strategy. Unfortunately,
this was clear only in the COVID-19 third wave. The availability
of a vaccine prioritization strategy is then a crucial challenge in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.05.040&domain=pdf
https://github.com/mazzalab/playgrounds
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.05.040
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:f.petrizzelli@css-mendel.it
mailto:hguzzi@unicz.it
mailto:t.mazza@css-mendel.it
https://doi.org/10.1016/j.csbj.2022.05.040
http://www.elsevier.com/locate/csbj


F. Petrizzelli, Pietro Hiram Guzzi and T. Mazza Computational and Structural Biotechnology Journal 20 (2022) 2664–2671
fighting COVID-19 and future pandemics. There is evidence that
the production rate of vaccines may remain insufficient and that
viruses may have different impacts and transmission rates in other
social groups as demonstrated for SARS-CoV-2 [7–10].

Considering that COVID-19 showed a higher fatality rate in
older people [11,12], and that healthcare workers showed a higher
risk, many governments gave priority to such classes. As demon-
strated by Goldstein et al. in [12], this strategy enabled to save both
the most lives and most years of life. Common sense suggests that
a good prioritization scheme should choose the best trade-off
between saving the maximum number of lives and the most future
life. The mathematical model developed by the authors demon-
strated that giving priority to older adults may maximize both
effects. Thus, this strategy is feasible. Older people’s prioritization
was chosen as the main criterion in many countries such as Italy
and the US. These countries also gave priority to healthcare profes-
sionals, teachers, and caregivers. Despite the effectiveness of this
approach, it has been clear that a vaccine allocation strategy
requires the incorporation of a model of transmission and the epi-
demiological characteristics of the disease among social groups
[13–15]. For instance, Jentsch et al. [16] discussed the problem of
the optimization of the strategy vaccination. They demonstrated
that an approach based only on age is not optimal compared to a
contact-based plans.

Consequently, some recent papers discussed the development
and use of complex modeling strategies based on the integration
of ordinary differential equations and network theory [17–19].
Such models enable the use of a large set of theoretical results
related to the analysis of the influence of nodes connecting the
characteristics of spreading processes and the network’s topology.
It has been shown that the network evidences the presence of
some nodes that have a relevant influence on spreading processes.
Moreover, influent nodes have some topological characteristics
related to centrality [20]. Chakrabarti et al., showed that there is
a simple and effective mathematical relationship between the
spreading and the magnitude of eigenvalues of the adjacency
matrix [17]. In particular, the reduction of such magnitude may
reduce its spreading.

The analysis of these approaches suggests, to the best of our
knowledge, two primary considerations: (i) the optimization strat-
egy depends on the desired goals, (ii) the integration of the charac-
teristics of the modeling improves the performance, (iii) a dynamic
strategy may outperform a static one. Despite this, we retain that
modeling the spreading using a classical SEIR (Susceptible-Expos
ed-Infective-Recovered) model may not be the best choice since
some parameters are considered at a global scale, while the
spreading involves single contacts. In parallel, some previous stud-
ies, such as [21–27], have demonstrated that the use of a model
coming from graph theory may be helpful to describe the spread-
ing. Moreover, many works discussed the relevance of central
nodes concerning diffusion processes in networks [28,18]. These
studies identify betweenness and eigenvalue centrality as represen-
tative measures of the influence of nodes [20]. In this way, compre-
hensive graphs may be derived using nodes, i.e., people, and edges,
i.e., their contacts. Therefore, there is a need to introduce novel
methods and supporting tools for the implementation of an opti-
mal vaccination strategy.

Consequently, we propose a mixed framework for simulating
the disease spreading on networks. As a first iteration, it was
designed to model the number of (i) susceptible individuals, (ii)
infected individuals, and (iii) recovered individuals. This so-called
SIR model was tested on networks of increasing sizes, random
and natural topology configurations, thereby mimicking the social
contacts at most, and were subjected to vaccination in different
instants of the infection to test the efficacy and timeliness of the
implemented vaccination strategy. The way vaccination was mim-
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icked deserves, in fact, particular attention. We propose removing,
i.e., vaccine, the nodes with the highest topological centrality met-
rics within the network while controlling the consequent epidemic
spreading reduction by a linear algebra formulation.

The application of this framework supports our initial hypothe-
sis that any strategy of optimization that is unaware of the virus
spreading topology without a severe lockdown may fail in virus
circulation mitigation. This may favor the insurgence of novel virus
variants during the vaccination that are not covered by existing
vaccines [29].

2. Related work

2.1. Epidemics control on networks

Frameworks based on graph theory and network science are
currently largely used for modeling and studying diffusion pro-
cesses in several scenarios: ideas in social networks, objects in
transport networks, and virus spreading. The COVID-19 outbreak
has given researchers both an unprecedented source of data and
a real application scenario. In [30], authors used a multiplex net-
work and an SIR system [31] to model heterogeneous contacts
among humans. They considered three kinds of contacts: a House-
hold layer, a Work layer, and a Social layer. The SIR process mim-
icked the epidemic spreading. The framework’s objective was to
compare partition strategies that model lockdown to evaluate
the control of the epidemic outbreak and minimize the economic
cost associated with the partial lockdown.

Similar to multiplex networks, temporal networks coupled to
the SIR model have been used to model the infection spreading
[32–34]. In [35], a temporal network implemented as a multiplex
network with time-varying edges was used to model an epidemic.
The authors also found a condition discriminating controlled/un-
controlled epidemics on the basis of the parameters of the SIR
model and on the matrix, which describes the evolution of the SIR.

The spreading of information (or, more generally, the spreading
itself) and the best conditions for spreading and the emergence of
super-spreaders have been largely investigated in network science
[36,37]. These studies discussed the challenge of detecting and
suppressing the spreading of dangerous viruses, pathogens, and
misinformation or gossip. In [38], authors investigated the impact
of the community structure of the network on percolation, simu-
lating the spreading of an epidemic modeled through an SIR model.
The authors concluded that spreading within communities is crit-
ically related to the network density [39,40]. At the same time, the
inter-community edges are the most critical factor in spreading an
epidemic, regardless of community size and shape. In particular, in
[41] a study of epidemic spreading using the adjacency matrix of a
graph has been proposed. In this work, given a contact matrix
(without any constraint on the structure of the matrix) and an epi-
demic modeled using an SIR model, which in turn was described by
two parameters b, i.e., the rate of novel infected, and d, i.e., the rate
of recovered, it has been demonstrated that an upper bound to the
epidemic exists and it is given by the Eq. 1:

b
d
6 1

kmax
ð1Þ

where kmax is the largest eigenvalue of the adjacency matrix. Conse-
quently, given the following property:

degavg 6 kmaxdegmax ð2Þ

where degavg and degmax are the average and the maximum node
degrees in a network, reducing kmax would lead to a maximal net-
work disconnection and, then, to the highest reduction in viral dif-
fusion probability.
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3. Results

3.1. Experiment on synthetic networks

Test graphs were generated randomly according to several well-
known topology characteristics, as summarised in Table 1: Erd}os
Rényi, Random, Duplication Divergence, and Barabási-Albert. For
each corresponding adjacency matrix, we calculated the largest
eigenvalue.

These were calculated for the same graphs but deprived of
either k random nodes or k top-scored nodes according to the fol-
lowing topological metrics: degree, betweenness, or eigenvalue cen-
trality. We then reported the kmax reduction values obtained with
both node elimination strategies and whether their differences
were significant using a Student’s t-test. The normality of each dis-
tribution was tested using the Shapiro–Wilk test. Table 2 summa-
rizes these results. The decrease obtained when removing the
topologically central nodes was higher in all cases (Fig. 2). There-
fore, the impact on the ratio 1=k was significantly higher.

3.2. Experiments on real networks

We considered the daily dynamic contact networks collected
during the Infectious SocioPatterns event that took place at the
Science Gallery in Dublin, Ireland, in 2009. The network consists
of 77,602 contact events involving 242 individuals. We confirmed
that eliminating the k most central nodes caused a superior reduc-
tion of kmax than removing k random nodes. This held irrespective
of the considered centrality metrics (Table 3).The significance of
the difference has been verified using the Student’s t-test after that
normality of the distribution was tested using the Shapiro–Wilk
test.

3.3. Speeding-up herd immunity

Herd immunity is the Holy Grail of all the people who are fight-
ing against COVID-19. Herd immunity is a type of indirect protec-
Table 1
Network Statistics.

Graph Model Nodes Edges

Erd}os Rényi 1000 199869 � 84
Gn;p; p ¼ 0:4 1000 199950 � 150
Duplication Divergence 1000 2592
Barabási-Albert 1000 47500

Main statistics for the generated graphs. "Nodes" are the number of nodes for each grap
were averaged for the generated graphs.

Table 2
Largest eigenvalues (expressed as mean and standard deviation), calculated for each gra
randomly deprived of k nodes (Random), and the graph deprived of the k most central node
EC for eigenvalue centrality and CC for closeness centrality. A p-value lower than 0.05 mean
after deleting the Top-K central nodes.

Graph Model CM Original

Erd}os Rényi DC 400 � 0.51
Erd}os Rényi BC 400 � 0.51
Erd}os Rényi EC 400 � 0.51
Gn;p Random Graph DC 400.18 � 0.66
Gn;p Random Graph BC 400.18 � 0.66
Gn;p Random Graph EC 400.18 � 0.66
Duplication Divergence DC 15.2 � 1.81
Duplication Divergence BC 15.2 � 1.81
Duplication Divergence EC 15.2 � 1.81
Barabási-Albert DC 129.38 � 1.9
Barabási-Albert BC 129.38 � 1.81
Barabási-Albert EC 129.38 � 1.9
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tion from an infectious disease that may occur when a significant
fraction of the population has become immune to infection. Indi-
viduals become immune by recovering from an earlier infection
or through vaccination.

For COVID-19, herd immunity was deeply investigated [42–44],
focusing on effects that may hamper herd immunity, e.g., the num-
ber of infected people, time, and insurgence of variants that may
disrupt the herd immunity equilibrium. Generally, all agreed that
herd immunity can be reached when 60%-70% of people become
immune.

When this study was conducted, the critical threshold was set
to 70% (see, for instance https://www.mayoclinic.org/diseases-
conditions/coronavirus/in-depth/herd-immunity-and-coron-
avirus/art-20486808). Unfortunately, recent studies have shown
that reinfection is possible [45], after some times, so our analysis
remains still valid considering the time in which people are
immune.

Thus, supposing that people become immune only because of
vaccination, we eliminated nh ¼ 70% of nodes from our networks
and calculated the largest eigenvalues, kH . We also calculated the
number of central nodes nhs that should be removed to obtain
the same largest eigenvalues. We retain that the difference
nhs 6 nh results in a lower time for reaching herd immunity, con-
firming the strength of the approach. As proof of concept, we also
calculated the nhs considering increasing values of nh equals 75%,
80%, and 85%. Results confirm that our approach requires the inter-
vention of a lower number of nodes in all considered cases. Table 4
summarizes these results.

4. Discussion

The theoretical model we developed suggests that at least one
rationale exists that can allow us to optimize the vaccination strat-
egy against SARS-CoV-2. Before this study, several other indepen-
dent studies have used mathematical modeling to explore new
prioritization strategies. These models, as introduced before, vary
widely in terms of considered populations, the model used, inter-
Avg Density Avg Clustering Coefficient

0.400 � 0.06 0.400 � 0.007
0.399 � 0.001 0.405 � 0.001
� 30 0.005 � 0.00002 0.002 � 0.00001
0.095 � 0.001 0.17 � 0.002

h. "Edges" are the average number of edges. "Density" and "Clustering Coefficients"

ph model and centrality measure (CM), of the original graph (Original), the graph
s within the graph (Top-K). DC stands for degree centrality, BC for betweenees centrality,
s that the decrease in the distribution of the largest eigenvalue is significantly higher

Top-K Random p-value

351.2 � 0.65 368 � 0.7 60.01
354.2 � 0.65 365 � 0.7 60.01
351.4 � 0.21 367� 0.92 60.01
354.59 � 0.61 365.44 � 0,62 60.01
357.79 � 0.61 368.44 � 0,62 60.01
351.23 � 0.21 371.44 � 0.62 60.01
4.64 � 0.52 15.08 � 1.79 60.01
5.67 � 0.51 14.88 � 1.19 60.01
8.53 � 1.4 17.14 � 1.14 60.01
67.43 � 3.45 115.85 � 1.79 60.01
65.79 � 0.51 120.98 � 1.19 60.01
68.53 � 1.4 117.14 � 1.14 60.01

https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/herd-immunity-and-coronavirus/art-20486808
https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/herd-immunity-and-coronavirus/art-20486808
https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/herd-immunity-and-coronavirus/art-20486808


Fig. 2. We initially built a test network. Next, we identified the k most central nodes. We built two networks: one in which we removed the top-k central nodes and a second
one in which we removed k randomly selected node. We compared the spectra of the adjacency matrices of these two networks with respect to the spectrum of the input
network. We noted that the largest eigenvalues of the adjacency matrix exhibited a greater decrease when considering the removal of central nodes.

Table 3
Largest eigenvalues (expressed as mean and standard deviation), calculated for each graph model and centrality measure (CM), of the original graph (Original), the graph
randomly deprived of k nodes (Random), and the graph deprived of the k most central nodes within the graph (Top-K).

Graph CM Original Top-K Random p-value

Infectious Graphs Dublin DC 23.0 � 0.21 14.35 � 0.0 23.36 � 0.7 60.01
Infectious Graph Dublin BC 23.0 � 0.21 16.76 � 0.0 23.36 � 0.7 60.01
Infectious Graph Dublin EC 23.0 � 0.21 16.88 � 0.0 23.36 � 0.7 60.01

Fig. 1. The rationale of the paper. The spreading of the SARS-CoV-2 may be modeled using a network whose nodes are people while edges are the contacts among them. The
spreading may be summarized in an SIR model using two main parameters b, and d, representing the rate of novel infected people and the recovery rate. The network may be
represented using the adjacency matrix of the resulting graph. Spreading may be contained when the following condition holds b

d 61
k, where k is the largest eigenvalue of the

adjacency matrix. We hypothesize that an individual’s vaccination is equivalent to deleting a node (or equivalently to deleting the edge of the contacts).
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ventions, and assumptions [46,47]. However, they all agreed that
optimizing the vaccination strategy may positively impact the out-
comes. We proposed designing an optimization strategy based on a
topology model to accomplish this aim. It was based on the
assumption that the contact network was trackable in time among
people and then that the most ‘‘social” people were the first targets
of a national vaccination campaign.
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Our analysis was based on a simple graph-based model (SIR)
built on the assumption that the perfect mixing strategy is too
large since contacts among people generate a social network repre-
sentable through models different from the perfect mixing. Con-
tacts do not have geographical constraints and neglect any social
aspect that may affect the network topology, in fact, locally. More-
over, we also assumed that vaccination could block both disease



Table 4
The number of people, nhs , who should be vaccinated following the optimized strategy
to reach herd immunity

Graph Model CM nhs nh

Erd}os Rényi DC 41.1% 70%
Erd}os Rényi BC 42.5% 70%
Erd}os Rényi EC 43.1% 70%
Erd}os Rényi DC 44.1% 75%
Erd}os Rényi BC 44.5% 75%
Erd}os Rényi EC 47.1% 75%
Erd}os Rényi DC 46.1% 80%
Erd}os Rényi BC 46.7% 80%
Erd}os Rényi EC 49.1% 80%
Erd}os Rényi DC 49.1% 85%
Erd}os Rényi BC 51.5% 85%
Erd}os Rényi EC 52.1% 85%
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and transmission, even though some evidence seems to indicate
that vaccines may have different efficacy in blocking transmission
[48].

We are also aware that our model would benefit from the avail-
ability of contact tracing data. Nevertheless, such data poses many
ethical issues beyond this paper’s scope, and many countries pro-
tect these data with strict privacy-preserving laws. Therefore,
high-resolution mobility data are not currently available to the sci-
entific community. From a computer science perspective, there is
evidence of the introduction of technologies able to infer informa-
tion about contacts that combine data gathered from phones in a
privacy-preserving way [49–51]. If this was the case, note that
our model would incredibly improve its performance by just
enriching the edges of weights.

Our work showed how the implemented optimization strategy
could provide good results for all centrality metrics and our net-
work structure being studied. These results were significantly bet-
ter than those obtained using the same methods and models but
applying a random vaccination plan (an example in Fig. 3). More-
over, we showed how the largest eigenvalue could be effectively
associated with topological metrics other than the node degree
centrality. This leaves room for the possibility of improving vacci-
nation performance further using slightly more complex, still intu-
itive, topological metrics, like Borgatti’s group centrality or the
keyplayer matrics [52,53], as implemented in Pyntacle [54].

Herd immunity was considered achievable with at least 70% of
the vaccinated people. In this simplified setting, we further showed
how a vaccination strategy driven by a topological screening might
help reach it in a shorter time.
Fig. 3. Impact of different vaccination strategies on the spreading of the infection usi
Divergence generative model (B). At the simulated time t ¼ 2, both a random vaccination
100 random nodes and the 100 top-degree nodes, respectively. As a control, the spreading
removing the top-degree nodes from the graph results in a rapid decrease in infection
Divergence Model network. At t ¼ 14, we can observe the rapid decrease of the three li
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5. Methods

We considered four different models of random networks:
Erd}os-Rényi, Duplication Divergence, Geometric-Random, and
Barabási-Albert. We generated 100 randomized networks with
the same degree distribution and shuffled edges for each network
model. Main network statistics are reported in Table 1. For each
node of the network, we calculated the degree, betweenness, close-
ness, and eigenvector centrality values, and, finally, the eigenvalues
of the adjacency matrix. We removed the top 100 nodes having the
highest value for each of these metrics and repeated the eigenval-
ues’ calculation. We also calculated the eigenvalues of the graph’s
adjacency matrix obtained by removing 100 nodes selected at ran-
dom to build a null model (Fig. 1).

5.1. Data

Gn;p model. We generated a stochastic random graph, also
known as binomial graph, using the fast generator provided by
the Python NetworkX library [55]. We set the number of nodes
equal to 1000 and a probability p ¼ 0:4 of having an edge connect-
ing two nodes. Erd}os-Rényi model. We generated an Erd}os-Rényi
graph having 1000 nodes and a probability p ¼ 0:4 of establishing
an edge between two nodes [56].

Duplication Divergence model. We generated a random graph
having the duplication divergence structure described by Ispolatov
et al. in [57]. The library created a graph of 1000 nodes by duplicat-
ing the initial nodes and retaining edges incident to the original
nodes with retention probability of p ¼ 0:4.

Barabási-Albert model. We generated a Barabási-Albert graph, a
random graph built according to the Barabási-Albert preferential
attachment model [58]. A graph was grown by attaching new
nodes, each with 50 edges, which were preferentially attached to
existing high degree nodes.

Random Geometric model. We generated a random geometric
graph, where 1000 nodes were placed uniformly at random in
the unit cube. Two nodes were joined by an edge if their distance
was at most radius [59].

5.2. Real networks

The dataset of real networks considered in this study was
downloaded from the Network Repository [60]. It contained the
daily dynamic contact networks collected during the Infectious
SocioPatterns event that took held at the Science Gallery in Dublin,
Ireland, in 2009 during the artscience exhibition INFECTIOUS: STAY
ng two different network models, the Erd}os-Rényi graph (A) and the Duplication
(green) and a degree-based vaccination (orange) strategies were applied, removing
of the infection without any vaccination was simulated (in blue). We observed how

s compared to both control and random vaccination, especially in the Duplication
nes, with a large part of the infected population starting to recover.
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AWAY. Each file in the downloadable package contains a tab-
separated list representing the active contacts during 20-s inter-
vals of one day of data collection.

5.3. Network centrality measures

As discussed before, a graph or network of n nodes can be rep-
resented as an adjacency matrix (A 2 Rn�n), where each entry in
the matrix Aij – 0 indicates the existence of an edge between
nodes i and j. In contrast, Aij ¼ 0 suggests the absence of an edge
between the two nodes. A particular case of graphs, called edge-
weighted graphs, is characterized by an adjacency matrix whose
values are real-valued. The following discussion is focused on undi-
rected, non-weighted graphs and may be easily extended to both
ordered and edge-weighted graphs.

In the case of an unweighted network, a geodesic (or shortest
path) from node wi to node wj is the path that involves the mini-
mum number of edges. Consequently, we may define the distance
between nodes wi and wj, where qgðwi;wjÞ is the number of edges
involved in a geodesic between wi and wj. Starting from the com-
putation of distance, a set of centrality measures has been intro-
duced. Such measures aim to evidence the relevance, or
importance, of a node in a network by analyzing its local topology
properties.

5.3.1. Degree centrality
The degree centrality of a node v i is the number of its adjacent

nodes.

Cdegðv iÞ ¼ degðv iÞ:
Sometimes, the degree centrality is normalized by the maxi-

mum degree possible of a node:

CdegnormðwiÞ ¼ degðv iÞ diðgÞ
n� 1

:

The degree centrality gives some information related to the
immediate relevance of a node v i, but it misses some aspects of
the entire structure of the network as well as the node’s position.

5.3.2. Closeness centralities
The closeness centrality considers the distance among the

nodes. Formally, the closeness centrality of a node v i is the recip-
rocal of the average shortest path distance to v i overall n� 1 reach-
able nodes, i.e.

Cclosenessðv iÞ ¼ n� 1
Xj¼n�1;j–i

j¼1

dðv i; v jÞ
:

where dðv i;v jÞ is the shortest distance among the considered pair.

5.3.3. Betweenness centrality
While closeness centrality indicates how close a node is to the

others, betweenness centrality [61] evaluates how much a node
stands between each other. For each node pair, v i and v j, in a net-
work, it scores a node based on the number of shortest paths pass-
ing through it and all other geodesics connecting v i and v j not
passing through it. Formally, the betweenness centrality of a node
ðv iÞ is calculated as:

Cbetweennesðv iÞ ¼
X

i–j–k

rj;kðiÞ
rj;k

:

where, rj;k is the total number of shortest paths from node v j to
node vk and rj;kðiÞ is the number of those paths that pass through i.
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5.3.4. Eigenvector centrality
Eigenvector centrality [62] scores all nodes of a network on the

assumption that connections to high-scoring nodes contribute
more to the score of the node rather than connections to low-
scoring nodes.

Given the adjacency matrix A of a graph, the eigenvector cen-
trality of a node v can be defined as:

xv ¼ 1
k

X

w2NeighðvÞ
xw ¼ 1

k

X

w2G
Av;wxw

Let xi be the eigenvector centrality of ith node v i, then

X ¼ ðx1; x2; � � � xnÞT is the solution of the equation AX ¼ kX, where
k is the greatest eigenvalue ofA to ensure that all values xi are pos-
itive [63] by the Perron-Frobenius theorem. The v th component of
the related eigenvector will give the relative centrality score of the
vertex v in the network.

5.4. Statistics

To assess the significance of the differences obtained using the
two implemented vaccination policies, i.e., random, and based on
the k top-central nodes, we resorted to the Student’s t-test for
paired values. A p-value was considered significant if it was lower
than 0.05.

5.5. Simulation framework implementation

As anticipated, in this work, we relied on the classical SIR model
to spread disease. It is one of the simplest models for the epidemic
spreading simulation, where each individual can be in a suscepti-
ble (S), infectious (I), or recovered (R) state. Once a susceptible
individual comes into contact with an infected one, it gains a prob-
ability of becoming infectious. Each person can infect a susceptible
neighbor and recover after a variable or fixed time span. Further-
more, recovered do not play any further role in the simulation
and include both immune and deceased individuals.

To simulate the spreading of the SARS-CoV-2 virus, we imple-
mented this model using the Python library Epidemics on Networks
(EoN) [64]. We simulated each of the above-described networks
ten times and then averaged the results. At the beginning of these
runs, the entire population was in the S state, with an infected
group composed of 5 individuals. Then, we set a constant transmis-
sion rate (s ¼ 0:4) with a fixed recovery time of 14 days to simulate
the spreading.

To test our different vaccination approaches, we stopped the
simulations at different simulated times and thus removed a con-
stant fraction of S nodes based on topological considerations. As a
control, we ran simulations with a random vaccination strategy,
which drew 100 nodes randomly at a specific time t, and others
without any vaccination strategy implemented. Finally, we
restarted the simulations and evaluated the spreading of the infec-
tion by measuring the number of infected individuals over time.
6. Conclusion

Before COVID-19, pandemics were only an argument of study
and organization, under the hypothesis that the probability of
occurring was very low. Unfortunately, COVID-19 has shown that
some worst scenarios may happen. Therefore, the scientific com-
munity should develop novel tools to support decision-makers in
controlling and stop the virus from spreading. Current tools
include sanitary measurements (e.g., vaccination, wearing masks),
social rules (e.g., social distancing), and an extensive vaccination
campaign.
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The effectiveness of vaccination depends on the number and
timeliness of administrations and thus demands strict prioritiza-
tion criteria. Prioritization requires appropriate simulation models
based on the joint use of network theory and mathematical mod-
eling of spreading. We have shown that a network where nodes
are people while the edges represent their social contacts may effi-
ciently model the virus’s spreading. We presented some experi-
mental evidence and a supporting tool that showed that
spreading may be efficiently stopped by disconnecting such a net-
work, i.e., by vaccinating the most central or relevant nodes,
thereby eliminating the ‘‘bridge edges.”

This strategy has some limitations that mainly concern the real-
ism of the resulting social model. The network described in this
work hypothesizes that the contact number of an individual is con-
stant over time. This may be roughly valid for some professional
roles, such as the teachers, but not for others, such as the super-
markets’ staff. Moreover, more than one viral variant may coexist,
each exhibiting a different infection rate and effect on people’s sur-
vival, thereby causing distorted spreading simulation results. Net-
works often present low-resolution contact data, which are
difficult to obtain for evident and reasonable privacy-related
considerations.
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[19] Gu S, Jiang M, Guzzi PH, Milenković T. Modeling multi-scale data via a network
of networks. Bioinformatics 2022;38(9):2544–53.

[20] Lawyer G. Understanding the influence of all nodes in a network. Scientific Rep
2015;5(1):1–9.

[21] Alguliyev R, Aliguliyev R, Yusifov F. Graph modelling for tracking the covid-19
pandemic spread. Infect Disease Model 2021;6:112–22.

[22] P. Bryant, A. Elofsson, Modelling the dispersion of sars-cov-2 on a dynamic
network graph, medRxiv (2020)..

[23] Karaivanov A. A social network model of covid-19. Plos one 2020;15(10):
e0240878.
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