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Abstract

Background: The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout
life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may
also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move
would have important implications for SVZ neurogenesis and its potential for repair.

Methodology/Principal Findings: We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices
with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells;
mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS).
In our search for motile progenitor cells, we uncovered a population of motile bIII-tubulin+ neuroblasts that expressed low
levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects
migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow

neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether
EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth
factor alpha (TGF-a), an EGFr-selective agonist. Indeed, acute exposure to TGF-a decreased the percentage of motile cells by
approximately 40%.

Conclusions/Significance: In summary, the present study directly shows that SVZ stem and progenitor cells are static, that
EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an
additional role for EGFr signaling in the SVZ.
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Introduction

The adult subventricular zone (SVZ) is one of two largest

neurogenic areas of the adult brain [1]. The current model of the

adult SVZ delineates three neurogenic cell types: glial fibrillary

acidic protein (GFAP+) stem cells, epidermal growth factor

receptor (EGFr+) transit-amplifying progenitor cells, and double-

cortin (Dcx+) neuroblasts [2,3]. Stem cells divide slowly and

generate transit-amplifying progenitor cells which divide rapidly to

produce neuroblasts [4,5]. Using 3H-thymidine and histological

analyses, Altman showed that neuroblasts migrate in the rostral

migratory stream (RMS), a densely packed corridor of cells

moving from the SVZ to the olfactory bulbs [6]. These and many

other studies of migration were static experiments that determined

the final position of labeled cells or used cell morphology to assess

migration. There are several shortcomings with these approaches.

First, one can never be certain of the trajectory taken by a

migrating cell between its point of origin and final position. In

addition, local motility would not be detected with dye, thymidine

analogue or retroviral labeling and static histological approaches.

Indeed, two-photon time lapse studies revealed that in addition to

long-distance migration, one third of motile SVZ cells move in

local exploratory patterns [7]. Finally, migratory morphology is

not always correlated with motility, motile cells can change shape

dramatically [7]. Thus local motility of stem and progenitor cells,

or even rare long-distance motility may have been missed with

previous approaches. If pluripotential stem cells or rapidly dividing

progenitor cells migrate in the SVZ, they may also migrate to

injuries and be more reparative than SVZ neuroblasts, which are

fate-restricted.

Studies have emerged recently which suggest that transit-

amplifying progenitor cells in the SVZ may be motile. A

population of 29,39-cyclic nucleotide 39-phosphodiesterase-en-

hanced green fluorescent protein/NG2+ cells were identified as
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migratory transit-amplifying progenitor cells [8,9]. Other studies

found motile nestin-GFP+ cells that did not express Dcx,

suggesting stem cells or progenitor SVZ cells could be motile [7]

since Dcx is thought to be expressed only in SVZ neuroblasts

[10,11]. In addition, astrocytes and progenitors can be motile in a

variety of developmental systems and after injury [12,13]. Finally,

cells with SVZ progenitor cell characteristics emigrate to the

striatum after injury and growth factor infusion [14].

Epidermal growth factor receptor (EGFr) is thought to be

expressed on stem cells and transit-amplifying progenitor cells in

the SVZ, but to be absent from neuroblasts [2,15]. EGFr

stimulation serves largely to drive proliferation in the SVZ: EGF

infusion into the lateral ventricle increases proliferation [16] and

TGF-a null mice have reduced SVZ cell proliferation [17]. EGF is

also necessary for driving proliferation and self-renewal in the in

vitro neurosphere assay, confirming its central role in SVZ

proliferation [15,18,19]. Interestingly, EGF exposure reverts the

transit-amplifying population to a more stem cell-like state,

suggesting EGFr regulates the balance of SVZ cell subtypes

[15]. Other data show EGFr signaling plays a role in modulating

migration in the forebrain. Interestingly overexpression of EGFr

confers migratory properties on SVZ and other telencephalic cells

[20–22]. Infusing EGF into the lateral ventricle not only

modulates proliferation, but also results in SVZ cells migrating

from their normal route and into the adjacent striatum and septum

[15,16]. Finally, nigrostriatal denervation combined with TGF-a
infusion into the striatum induced emigration of SVZ cells [23,24].

Thus we were interested in the possibility that EGFr modulates

SVZ cell migration.

In this study we first studied transit-amplifying progenitor and

stem cell motility in the adult SVZ. We looked for GFP labeled

SVZ cell subtype motility with two photon microscopy of acute

slices and followed it with post hoc immunohistochemistry to further

examine phenotypes. We show here that stem cells and transit-

amplifying progenitor cells are stationary whereas neuroblasts are

motile. We also show that some neuroblasts retained EGFr

expression and its stimulation is negatively correlated with SVZ

cell motility.

Methods

Animal
Breeder mice were obtained from Vijay Sarthy (Northwestern

U., mGFAP-GFP), Grigori Enikolopov (Cold Spring Harbor Lab,

‘‘CSH-nestin-GFP’’), Anjen Chenn (Northwestern U., ‘‘Nestin-

GFP’’), the NIH Gensat Project (Rockefeller U., Mash1-GFP and

Dcx-GFP) [25], and Gábor Szabo (Institute of Experimental

Medicine, Gad65-GFP). Details of the mGFAP-GFP mouse line

[26], the CSH-Nestin-GFP line [27], the Nestin-GFP line and the

Dcx-GFP line [7], and the Gad65-GFP line [28] are published

elsewhere and summarized in Fig. 1B. The mice used were 1–2

months old. All animals were handled in strict accordance with

good animal practice as defined by the UK Animals (Scientific

Procedures) 1986 Act, UK Home Office and NIH guidelines. All

animal work was approved by the UK Home Office, License

#30/2496, and the University of Oxford Department of

Physiology, Anatomy and Genetics Departmental Ethical Review

Committee.

Slice Preparation and Two Photon Time Lapse Imaging
Details of our two photon (2P) imaging are as previously

described [7]. Briefly, mice were anesthetized with isoflurane

(0.25 ml/L for 1 min), immersed in ice for 5 min, decapitated and

the brain quickly removed, placed in ice-cold artificial cerebro-

spinal fluid (aCSF; 125 mM NaCl, 2.5 mM KCl, 2 mM, CaCl2,

1 mM MgCl2, 26 mM NaHCO3, 1.25 mM H2PO4, and 25 mM

glucose at pH 7.4). The brain was bisected and trimmed for

mounting. Hemispheres were mounted on a platform, submerged

in ice-cold aCSF and 300 mm sagittal slices cut on a Vibratome

(Campden Instruments Ltd.). Slices were collected sequentially in

a chamber filled with oxygenated aCSF, incubated at 35uC for

40 min, and returned to RT (about 1 hr) before imaging. For cell

imaging, each section was examined shortly under low power

epifluorescence to find the optimal slice and field. A two photon

laser (Mira 900, Coherent) was used to acquire 51 optical sections

separated by 1 mm, every 3 min. Oxygenated aCSF was

constantly perfused during the imaging at 0.5–1.0 ml/min. For

TGF-a experiments, 10 ng/ml TGF-a was dissolved in oxygen-

ated aCSF and either TGF-a, or aCSF as a control, constantly

perfused during imaging at 0.2–0.5 ml/min.

Image Processing and Quantification
Two photon images were acquired as a stack of TIFF images

using Fluoview software (Olympus) and data processed with

Volocity software (Improvision). Briefly, Fluoview files were

imported into Volocity, decompressed and processed with

autocontrast, fine median filter, and auto level functions to obtain

optimal image quality. Each stack of processed data was

compressed and exported into Quicktime (Apple). For quantifying

cell speed and motility, 3D coordinates of cells in each frame were

recorded and calculated using Volocity. If the net distance of

displacement divided by the total migration distance was less than

0.4, between 0.4 and 0.6, or more than 0.6, cells were classified as

exploratory, intermediate, or migratory, respectively. Cell speed

was plotted by dividing total migration distance/time. For

percentage migratory cell analysis in the TGF-a experiments,

the first hour of pre-treatment and the last hour of drug treatment

were quantified. Cells in the first frame of each movie were

numbered and their motility subsequently followed in 2P movies.

Only cells moving more than two cell diameters were considered

motile.

Immunohistochemistry and Confocal Microscopy
For post hoc immunohistochemistry, immediately after the last 2P

frame was taken slices were fixed with 4% paraformaldehyde for

1 hr and transferred to cryoprotectant at 4uC. Slices were washed

with PBS 3 times for 10 min, 50 mM glycine for 15 min, PBS 3

times for 10 min, PBS+ (10% Donkey Serum/0.7% Triton X-100

in PBS) for one hour, and incubated in primary antibodies [sheep

anti-EGFr (1:50, Upstate), mouse anti-Mash1 (1:200, BDscience),

rabbit anti-EGFr (1:200, Santa Cruz, sc-03), rabbit anti-Phospho-

histone 3 (1:500, Millipore), rabbit anti-caspase-3 (1:200, Cell

Signalling Technology), or goat anti-Dcx (1:100, Santa Cruz) in

PBS+] at 4uC for two days. Then, slices were washed with PBS 3

times 10 min, Cy3 donkey anti-sheep, donkey anti-rabbit or

donkey anti-mouse (all 1:500, Jackson Immunoresearch) or Cy5

donkey anti-goat (1:500, Jackson Immunoresearch) in PBS+ for

1.5 hr, PBS 3 times 10 min, DAPI (40 mg/mL DAPI stock

solution 1:1000 in PBS) for 10 min, PB 3 times 10 min, air dried

and coverslipped with Fluorsave (Calbiochem). Immunostained

slices were examined with confocal microscopy (Zeiss LSM510 or

LSM710). The 2P imaged area was found by comparing the last

frame of 2P imaging with the confocal image, and matching major

blood vessels and static GFP+ cells. Once matched GFP+ cells

were identified, they were numbered and each was examined for

motility patterns and speed in the time lapse movie and for marker

expression with post hoc immunohistochemistry.

EGFr Regulates SVZ Motility
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For standard immunohistochemistry, mice were perfused under

deep anaesthesia with 4% paraformaldehyde. 30 mm sections were

collected on a sliding microtome (Leica) and the same procedure

was used as above except primary antibody incubation was

overnight, 0.1% triton X-100 in PBS, and 1 hr secondary

incubation. Primary antibodies; goat anti-Dcx (1:200, Santa

Cruz), mouse anti-bIII-tubulin (1:500, Covance), sheep anti-EGFr

(1:50, Upstate), or rabbit anti-EGFr (1:200, Santa Cruz, sc-03), or

mouse anti-Mash1 (1:200, BDscience). For triple neuroblast

staining; rabbit anti-Tuj1 (1:2000, Covance), mouse anti-PSA-

NCAM (1:500, Chemicon), goat anti-Dcx (1:100, Santa Cruz).

Secondary antibodies; Alexa488 anti-mouse (1:500, Invitrogen),

Cy3 anti-goat or sheep, Cy5 anti-mouse (1:500, Jackson

Immunoresearch). All immunohistochemistry analysis was done

on N$3 mice.

In Vivo Dye Injection and Quantification
Cell Tracker Orange CMTMR (CTO, Molecular Probes) was

reconstituted in DMSO to a final concentration of 10 mM [29].

Briefly, each animal was deeply anesthetized with 150 mg/kg

ketamine, 10 mg/kg xylazine, i.p., placed in a stereotaxic

apparatus (Stoelting, Wood Dale, IL). A burr-hole was made for

Hamilton syringe insertion and 1 ml of CTO was injected over

1 min into the lateral ventricle (LV) (sterotactic coordinates:

Bregma, A/P: +0.26, L/M: +0.75, D/V:22.5) of 2 month old

Dcx-GFP mice. Animals were placed on a warm pad and

monitored until recovered. 3 days after injection, mice were

perfused as above. Injection into the LV was confirmed in each

mouse with CTO diffusion all the way to the contralateral LV.

Statistics
Statistical differences were determined by Student’s T-test, and

distributions represented by SEM (standard error of mean).

Results

SVZ Stem Cells Were Stationary
We previously characterized and examined motility with two

photon time lapse microscopy in a nestin-GFP mouse that

primarily labels SVZ neuroblasts (Fig. 1B), [7]. We began this

Figure 1. Subventricular zone cell types selectively labeled with GFP. A: Stem cells in the SVZ express GFAP and give rise to EGFr+ and
Mash1+ transit-amplifying progenitors. These, in turn generate migratory neuroblasts that express bIII-tubulin, Dcx, and PSA-NCAM. Note that the
expression and loss of some markers, such as EGFr is gradual. B: Model of a typical SVZ neuroblast chain (red) with cluster of transit-amplifying
progenitors (purple) and GFAP+ astrocytes (blue) surrounding it. For the sake of clarity only a few progenitors (top of chain) and GFAP+ cells (bottom
of chain) are shown. mGFAP-GFP mice only label GFAP+ cells. Nestin-GFP labels a subset of all three cell types and Dcx-GFP labels all and only
neuroblasts. The CSH-nestin-GFP line labels stem cells and transit-amplifying progenitors GFPbright and neuroblasts GFPdim. Unexpectedly, the Mash1-
GFP mouse labels not only the transit-amplifying progenitors but also neuroblasts. The Gad65-GFP mouse labels a subset of neuroblasts. Adapted
from [7].
doi:10.1371/journal.pone.0008122.g001
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study using a different nestin-GFP mouse (‘‘CSH-nestin-GFP’’), in

which GFPbright cells are neurosphere-forming SVZ stem and

progenitor cells and GFPdim cells are neuroblasts (Fig. 1B), [27].

Stem cells in the SVZ express GFAP [4,5] (Fig. 1A), and we found

that many GFPbright cells in the SVZ and the RMS colocalized with

GFAP immunostaining (Fig. 2A,B). We utilized two photon

microscopy to determine if CSH-nestin-GFPbright cells are motile

(Fig. 2C,D). GFPbright cells in the SVZ and RMS did not move

during the two hour recording period (N = 4 mice, 198 cells in the

SVZ and 586 cells in the RMS) (Fig. 2E,F; Movie S1) while GFPdim

neuroblasts were actively moving, similar to our previous results

with nestin-GFP mice [7]. We next used a mGFAP-GFP line to

further study potential stem cell motility. Every mGFAP-GFP+ cell

examined in the SVZ and RMS was stationary (N = 3 mice, 65 cells

analyzed, 1 hr time lapses) (Fig. 2G–I). These data suggest that

GFAP+ astrocyte-like stem cells are static in the adult SVZ.

Figure 2. Stem and progenitor cells are stationary in the SVZ. A–B: CSH-nestin-GFP showed bright GFP+ cells colocalized with GFAP
immunohistochemistry (blue arrows) in the SVZ (A) and the RMS (B), (coronal sections). Scale bar = 50 mm. C: Location of two photon imaging in the
SVZ and RMS of sagittal slices. LV = lateral ventricle, OB = olfactory bulb. D: Schematic of two photon imaging and a 5X image of the RMS in a CSH-
nestin-GFP mouse. E-F: Bright CSH-nestin-GFP+ cells (ex. red arrows) showed no local movement in the RMS in two photon time lapse imaging. Time
stamp is in hr:min in all figures and movies. G–I: All mGFAP-GFP+ cells in the movie were stationary during imaging. Examples of individual cells are
indicated with arrows. Scale bar = 30 mm.
doi:10.1371/journal.pone.0008122.g002
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Transit-Amplifying Progenitor Cells Were Also Non-Motile
We tested whether transit-amplifying progenitor cells are motile

by using Mash1 and Dcx as positive and negative phenotypic

markers, respectively. Mash1 is a nuclear transcription factor

allowing clear examination of colocalization with GFP in the

CSH-nestin-GFP mouse (Fig. 1A)[14,30]. We confirmed the

previous report that a subset of bright GFP+ cells correspond to

transit-amplifying cells by showing that bright GFP+ cells in the

CSH-nestin-GFP mice expressed Mash1 (Fig. 3A,B). We next

performed two photon imaging (Fig. 3C–D) followed immediately

by post hoc Mash1 and Dcx double immunohistochemistry

(Fig. 3F,G). The last frame of the two photon movie was matched

with the confocal image (compare Fig. 3D and E). After Mash1+/

GFP+ cells were identified and confirmed as being Dcx-negative

(Fig. 3E–G), motility was assessed in the two photon movies. No

Mash1+/Dcx-negative/GFPbright cells were motile (N = 4 mice, 13

cells in the SVZ and 22 cells in the RMS).

To further probe the question of possible transit-amplifying cell

motility, we examined the Mash1-GFP mouse [25]. Double

immunohistochemistry showed not all Mash1-GFP+ cells ex-

pressed endogenous Mash1 in the SVZ and RMS, but the large

majority of Mash1-GFP+ cells were arranged in chains and

expressed Dcx (Fig. 1B, Figure S1A-C). This suggests that, unlike

the endogenous gene, the transgene persists in neuroblasts and is

not a specific marker of transit-amplifying progenitor cells. Time

lapse imaging of Mash1-GFP (N = 1 mouse and 1 slice) revealed

migration patterns in the SVZ and RMS (Movie S2) that were

similar to Dcx-GFP+ cell motility [7]. Chains of cells remained

stable, individual cells moved in chains, but were difficult to

discern because of the high cell density. These results precluded

Figure 3. Mash1+ progenitor cells are not motile in the RMS. A–B: Many bright cells from CSH-nestin-GFP slices were colocalized with
Mash1 immunohistochemistry (blue arrows) in the SVZ (A) and the RMS (B). Scale bar = 50 mm. C–D: Motility of CSH-nestin-GFP positive cells was
followed with two photon imaging. Most bright cells were stationary (ex. white arrows). Blue arrow: example of a cell that was followed with
post hoc immunohistochemistry (E–G). Scale bar = 50 mm. E–G: the two photon imaged area was found with confocal microscopy. Arrows
indicate cells matched with the last frame of two photon imaging. Mash1+ (F) and Dcx-negative (G) cell shown with blue arrow. Scale
bars = 50 mm.
doi:10.1371/journal.pone.0008122.g003
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use of this Mash-1-GFP line for analysis of transit-amplifying

progenitor cell motility.

In the preceding studies we imaged a small volume of tissue

(6.361023 mm3) for a few hours, and although we sampled a large

number of cells, this was still a small percentage of the whole SVZ

population. We therefore took another approach and labeled a

large population of Mash1+ progenitors in vivo using the dye, Cell

Tracker Orange (CTO). The dye was injected into the lateral

ventricle of Dcx-GFP mice and migration from the SVZ to the

RMS checked three days later (Figure S2A,B). Dcx-GFP mice

faithfully represent endogenous Dcx expression, labeling all, and

only neuroblasts in the SVZ and RMS (Fig. 1B) [7]. Since CTO

diffused through the wall of the LV, (Figure S2A1-2), it labeled

migratory cells irrespective of their location in the SVZ. In

contrast, CTO did not passively diffuse into the RMS (Figure

S2B), ensuring that CTO labeled cells in the RMS migrated there

from the SVZ. Immunostaining revealed that 97.062.7% of

CTO+ cells in the RMS were Dcx-GFP+ and Mash1-negative,

confirming that the large majority of migratory SVZ cells are

Dcx+ neuroblasts (n = 3 mice, total 210 cells counted) (Figure

S2C). There were a few CTO+ cells that were Dcx-GFP negative

and Mash1 negative, but there were no CTO+ cells that were

Dcx-GFP-negative and Mash1+ (transit-amplifying progenitor

cells). These results are consistent with the previous result that

Mash1+ transit-amplifying progenitor cells do not migrate from

the SVZ to the RMS.

EGFr Expression on SVZ Neuroblasts
High levels of EGFr expression have been reported on SVZ

transit-amplifying progenitor cells and a few stem cells, but not on

neuroblasts [15]. While examining progenitor cell motility, during

post hoc analysis we serendipitously found a subset of neuroblasts

that exhibited weak levels of EGFr immmunofluorescence. We

examined this in thin sections and found that EGFr expression was

inversely correlated with expression levels of bIII-tubulin (Fig. 4A,

A1-A3). Whereas the majority of EGFrhigh cells were at the

periphery of the RMS, the majority of EGFrlow cells were in

longitudinal arrays in the middle of the RMS (Movie S3), which is

consistent with Altman’s original description of the location of

proliferative and migratory cells, respectively [6]. Our data

indicated that a subset of bIII-tubulin+ neuroblasts express EGFr,

so we tested them for expression of two other SVZ neuroblast

markers, Dcx and PSA-NCAM. Both Dcx and PSA-NCAM

showed a similar inverse correlation with EGFr immunohisto-

chemistry (Fig. 4B–E). Moreover, triple immunohistochemistry

(N = 3 mice) showed near-perfect overlap of the three neuroblast

markers (Fig. 4F–I). These data prompted the following studies

examining the potential role of EGFr in SVZ neuroblast motility.

EGFrlow Exhibited Slower and More Complex Motility
than EGFr-Negative Neuroblasts

We first tested if motility patterns or speeds were different in

neuroblasts that express EGFr from those that do not. We

examined migration using the nestin-GFP mouse line that we

previously studied [7], in which a relatively small number of SVZ

cells are labeled, allowing individual cell migration analysis

(Fig. 1B; Movie S4). Approximately 63% of GFP+ cells in the

SVZ are neuroblasts in this line [7]; and consistent with the

findings in the present study, we surmised that the only motile

GFP+ cells would be neuroblasts. Again, we imaged cells with two

photon time lapse microscopy and followed it with post hoc

immunohistochemistry (Fig. 5A–E, E1). 12.161.7% of all nestin-

GFP+ cells were EGFrlow and most of these, 83.3616.7%, were

motile (N = 3 mice, 93 cells analyzed, average movie length = 1 hr

45 min). As described before [7], cell movement was saltatory

(Fig. 5G; Movie S4). EGFrlow cells (ex. red arrow and trace in

Fig. 5) moved slower (N = 3 mice, 9 cells analyzed) than EGFr

negative cells (ex. blue arrow and trace in Fig. 5; 19 cells analyzed)

(Table 1, Fig. 5F,G; Movie S4, S5). EGFrlow cells also traveled

significantly shorter total and net distances than EGFr negative

cells (Table 1). In addition to relatively straight rostral movements

we recently reported that approximately one third of SVZ cells

exhibit local exploratory motility [7]. In the present study we

detected both types of movement. The cell in Fig. 5 indicated with

the blue arrow exhibited migratory motility, whereas the cell

indicated with the red arrow exhibited exploratory motility

(Fig. 5A–C, F; Movie S4, S5). The difference in relative

straightness of movement is also apparent in 3-dimensional traces

(Fig. 5F; Movie S5). The migration index is a simple indication of

motility complexity that is independent of speed (MI = net

distance/total distance). Nestin-GFP+/EGFrlow cells exhibited

significantly lower MI (Table 1). These results suggested that

EGFrlow neuroblasts exhibited slower and more tortuous move-

ments than EGFr-negative neuroblasts.

TGF-a Decreased the Percentage of Migratory
Neuroblasts

Since EGFrlow cells exhibited different patterns of motility than

EGFr negative cells, we reasoned that EGFr stimulation may

further affect SVZ neuroblast migration. To directly test this, we

perfused 10 ng/ml transforming growth factor alpha (TGF-a), an

EGFr selective agonist, during two photon time lapse imaging.

In this experiment we used a Gad65-GFP mouse in which the

majority of SVZ neuroblasts are labeled and cells are still

distinguishable from each other (Fig. 1B, 6A–D) [7]. We

confirmed that all periglomerular lineages were represented

(Figure S3). We imaged the RMS (Fig. 6E) with two photon

microscopy for 5 hours: 2 hours (pre-treatment) followed by

perfusion with either 10 ng/ml TGF-a or aCSF (control) for

3 hours (Fig. 6G; Movie S6). We analyzed the first hour of pre-

treatment and the last hour of TGF-a or aCSF treatment. We

previously showed that only a subset of neuroblasts are motile,

suggesting that regulating the percentage of motile cells may be a

robust mechanism for controlling SVZ neurogenesis [7]. After

TGF-a treatment there was a 37.5% loss in the number of motile

cells (Fig. 6I). In the pretreatment group 50.962.0% of Gad65-

GFP cells were motile (total 723 cells traced, n = 8 slices, one slice

per mouse) (Fig. 6H). Exposure to TGF-a resulted in only

29.862.1% of cells remaining motile (Fig. 6H) (P = 0.008). In

contrast, the percent of motile cells in the fifth hour compared to

the first hour was 98.5%612.9 in controls, showing very little loss

of motility. This result suggests that stimulation of EGFr decreased

the percent of motile cells in the RMS. To examine the direct

effect of TGF-a on EGFrlow neuroblasts, we performed posthoc

EGFr immunohistochemistry on Gad65-GFP slices after TGF-a
treatment (Fig. 6G). It was very difficult to identify EGFrlow

neuroblasts and trace them during the entire 5 hr time-lapse

imaging because most expressed GFP at low levels. None of the

EGFrlow/Gad65-GFP cells exhibited fast and unidirectional

movement, most were non-motile (81.8%), and even motile

EGFrlow/Gad65-GFP cells moved very slowly in the last hour of

imaging (after 2 hr TGF-a treatment) (N = 11 cells, N = 3 mice).

The cells we followed through the entire imaging (N = 3 cells)

moved slowly in pre-treatment but then stopped during most of

the TGF-a treatment. These results suggest a direct effect of EGFr

on EGFrlow neuroblasts.

We next examined patterns and speeds of motility (N = 40 cells

in 4 control slices; N = 39 cells in 4 TGF-a treated slices). The

EGFr Regulates SVZ Motility
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average speed (83.462.3 mm/hr for control, 79.564.9 mm/hr for

TGF-a), motility pattern (exploratory, intermediate, and migrato-

ry; 45611.9%, 22.568.5%, and 32.5614.4% for control,

42.5619.7%, 12.569.5%, and 38.7619.4% for TGF-a), total

distance (86.462.8 mm for control and 82.966.7 mm for TGF-a),

and net distance (43.067.2 mm for control and 42.068.0 mm for

TGF-a) were not significantly different between control slices and

the TGF-a treated group. This was not surprising because our

results showed that after TGF-a treatment most of the actively

migrating cells were EGFr negative neuroblasts.

Finally, we checked whether cell death and proliferation were

affected by the TGF-a treatment. This acute 3 hr TGF-a

treatment did not significantly change cell death as measured by

the number of caspase-3+ cells in the RMS (data not shown).

There was a trend towards increased cell proliferation as indicated

by the number of PH3+ cells in the RMS (CTL 204.9624.6 vs.

TGF-a 264.5681.4), but this was not statistically significant.

Discussion

One of the principle aims of this study was to test the hypothesis

that SVZ stem and/or progenitor cells are migratory. Using two

photon time lapse microscopy of slices from multiple GFP+ mouse

lines we did not find any evidence of motile stem or progenitor cells.

Figure 4. A subset of neuroblasts express EGFr. A: bIII-tubulin and EGFr double immunohistochemistry in a coronal section through the RMS.
Many EGFrhigh cells were bIII-tubulin-negative (white arrows). A1–A3 shows high magnification of inset in A. Note EGFrhigh cell that is bIII-tubulin-
negative (white arrow). Yellow arrow shows a cell that expressed both EGFr and bIII-tubulin. Cells that expressed the highest levels of bIII-tubulin+
(white arrowhead) had EGFr immunofluorescence similar to background levels. Scale bars = 10 mm. (Please see Movie S3). B–E: Dcx (B), EGFr (C), and
PSA-NCAM (D) triple immunohistochemistry in the RMS. Simlar colocalization of EGFr with neuroblasts is seen as in A. White arrows point to EGFrhigh

cells that are negative for Dcx and PSA-NCAM. Yellow arrows point to cells that express immunodetectable levels of all three markers. White
arrowheads point to neuroblasts that had EGFr immunofluorescence similar to background levels. F–I: Confocal microscopy shows near perfect
overlap between bIII-tubulin, Dcx, and PSA-NCAM in RMS neuroblasts (coronal section).
doi:10.1371/journal.pone.0008122.g004

EGFr Regulates SVZ Motility

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8122



Unexpectedly, we found that a marker of transit-amplifying

progenitor cells, EGFr, was also expressed by a subset of

neuroblasts. Interestingly these EGFrlow neuroblasts exhibited

slower and more complex motility than EGFr-negative neuroblasts.

Moreover, exposure to TGF-a, induced significant decreases in the

percentage of migratory neuroblasts. These results do not support

the recent evidence of progenitor migration and suggest that EGFr

signaling may serve to decrease SVZ neuroblast migration in

addition to modulating progenitor proliferation.

Stem Cells and Transit-Amplifying Progenitor Cells Are
Stationary in the SVZ

When 3H-thymidine, a mitotic label, was injected and the SVZ

examined at short survival times; most forebrain labeled cells were

in the SVZ, indicating a large proliferative population [6]. At

intermediate time points, labeled cells were found in the RMS,

and at long survival times, they had moved to the OB [6]. These

classic labeling studies, as well as histological observations,

prompted the classification of SVZ cells into distinct proliferative

and migratory subpopulations. This model was commensurate

with most migratory cells in the developing telencephalon being

postmitotic; stem and progenitor cells reside in germinal zones and

Figure 5. EGFr expression is correlated with differences in motility. A–C: Two photon time lapse imaging of nestin-GFP cells in the RMS. Blue
and red arrows indicate migratory and exploratory cells, respectively. Scale bar = 50 mm. (Please see corresponding Movie S4.). D: Confocal image
corresponding to two photon image shown in C. Scale bar = 50 mm. E: After fixation and EGFr immunohistochemistry, confocal microscopy was used
to find individual cells imaged with two photon microscopy (same cell as in A–C shown with red arrow) Scale bar = 50 mm. E1: high magnification 3-D
confocal microscopy showing EGFrlow expression (red) on cell exhibiting exploratory motility. Scale bar = 20 mm. F: 3D view of motile cell trajectory.
The blue and red trajectories indicate the migratory EGFr negative and exploratory EGFrlow cells shown in A–E. 1 unit = 42.9 mm. (Please see
corresponding Movie S5.). G: Cell movement distances between frames (3 min apart) of the EGFr-negative (blue) and EGFrlow (red) nestin-GFP+ cells
shown in A–F. EGFr negative cells were significantly faster than EGFrlow exploratory cells.
doi:10.1371/journal.pone.0008122.g005

Table 1. Motility comparison between EGFrlow cells and EGFr
negative cells.

Total
Distance (mm)

Net Distance
(mm)

Speed
(mm/hr)

Migration
index

EGFr negative
cells

137.0611.4 89.7612.4 83.066.9 0.6060.06

EGFrlow cells 95.3614.8* 41.9614.1* 59.669.2* 0.3760.08*

*P,0.05

doi:10.1371/journal.pone.0008122.t001
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upon exiting the cell cycle their progeny migrate to final locations.

However there are notable exceptions and other clues pointing to

the possibility of stem or progenitor cell migration. Neural crest

stem cells delaminate, migrate extensively, and continue to divide

to generate progeny in the periphery [31]. In the embryonic

cortex, intermediate progenitor cells (transit-amplifying cells)

migrate from the ventricular zone to the subventricular zone

[32,33]. Finally, astrocytes can migrate [34,35] and the SVZ is a

pro-migratory environment. Taken together, this suggested that

GFAP+ astrocyte-like stem cells or transit-amplifying progenitor

cells of the adult SVZ may be capable of motility. This is

important, because if stem or progenitor cells are motile in the

SVZ, they may be able to emigrate and better effectuate repair of

injured tissues than the less plastic neuroblasts.

Intriguingly, three separate lines of evidence suggested SVZ

stem and/or progenitor cells may be motile. A population of

NG2+ cells were identified in the SVZ as transit-amplifying

progenitors that migrated to the OB and the hippocampus

[8,9]. However, NG2-Cre lineage tracing experiments indicate

that NG2+ cells in the SVZ do not give rise to OB neurons [36].

Instead NG2+ cells in the SVZ are likely to be oligodendrocyte

progenitor cells which is consistent with them overlapping with

CNPase-GFP [8,36]. Oligodendrocyte progenitors occupy a

distinct caudal subdomain in the SVZ [37], and we did not

test for oligodendrocyte progenitor motility in this study. The

second line of evidence is from two-photon time lapse

microscopy studies showing that a subset of locally motile

nestin-GFP+ cells are Dcx-negative [7]. One interpretation of

these results is that in addition to neuroblasts, transit-amplifying

progenitor cells or GFAP+ cells may be motile [7]. Finally,

dopamine depletion combined with TGF-a infusion induces

migration of SVZ transit-amplifying progenitor cells into the

striatum [14] and intra-cerebroventricular infusion of EGF

enhances progenitor cell proliferation and invasion to the

striatum [38].

We found no evidence of SVZ stem or progenitor cell motility

despite extensively examining the SVZ and RMS, using several

lines of GFP+ mice, and searching for both local and long-

distance motility. Two lines of mice which label GFAP+
astrocytes and stem cells in the SVZ indicated complete lack of

motility. We confirmed that many CSH-Nestin-GFPbright cells

were GFAP+ or Mash1+, which was consistent with the antigenic

Figure 6. TGF-a decreased the percentage of motile cells. A–D: Gad65-GFP labels a subset of bIII-tubulin+ neuroblasts (arrowheads), but not
EGFrhigh progenitor cells (arrows). E: Low magnification view of Gad65-GFP sagittal section showing area analyzed. F: First frame of two photon time
lapse imaging. Each distinguishable cell was labeled (yellow numbers) and analyzed to determine cell motility. Corresponds to first frame of Movie S6
(pretreatment). G: TGF-a schedule and analyzed segments. H: Percentage of motile cells before and after TGF-a treatment. TGF-a caused significant
decreases compared to pretreatment and aCSF. **P,0.01. I: Percentage decrease after TGF-a compared to pre-treatment. *P,0.05.
doi:10.1371/journal.pone.0008122.g006
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phenotype of SVZ stem and progenitor cells. The CSH-Nestin-

GFP mouse dim neuroblasts [27] migrated, serving as an internal

control for the stationary bright GFP+ SVZ stem and progenitor

cells. Importantly we also employed post hoc immunolabeling to

confirm the progenitor phenotypes of non-motile cells. Time

lapse imaging of mGFAP-GFP SVZ cells also did not show any

motility [39]. Astrocytes can be migratory in other contexts,

therefore it is not clear why they should not move in the SVZ,

which provides an environment favorable to migration of

endogenous neuroblasts as well as transplanted cells. Similar to

short migration (2 photon experiments), we did not find any

evidence of long-distance migration of progenitor cells labeled

with CTO.

Our findings are consistent with both Altman’s descriptions of

the SVZ and the RMS [6], as well as with more recent data

showing two largely separate proliferative and migratory popula-

tions in the SVZ [4,40]. It is consistent with data showing that

label-retaining cells (stem cells) reside in the SVZ several days after
3H-thymidine labeling [4]. Similarly, adenoviral labeled radial glia

in the postnatal SVZ gave rise to sessile SVZ astrocytic stem cells

[41]. It is still possible that stem and/or progenitor cell motility

exists, but that it is just very rare and that more sampling would

uncvover it, however we imaged and analyzed 874 cells in our

search. Alternatively, their motility may be inhibited by our

imaging technique - in vivo imaging will ultimately be required to

confirm our results. Finally, we can not rule out the possibility that

stem or progenitor cells are sessile constitutively but brain injury

induces motility.

EGFrlow Neuroblasts Showed Slower Motility
EGFr is one of the most commonly used markers for SVZ

progenitors and is not thought to be expressed by SVZ neuroblasts

[15]. However this study showed low levels of EGFr expression on

some neuroblasts. Similarly, it was recently demonstrated that a

subset of CD24low FACsorted mouse neuroblasts express unde-

tectable to low levels of EGFr [3], and that rat neuroblasts express

EGFr [42]. We do not know how much of the low EGFr

expression detected on SVZ neuroblasts is inherited from their

EGFrhigh precursor cells or transcribed directly, though Cheng

and colleagues found EGFr transcripts in SVZ neuroblasts [43].

We noted an inverse correlation between EGFr and bIII-tubulin

expression, suggesting that EGFr expression is gradually lost as

neuroblasts mature. Alternatively, neuroblast heterogeneity might

explain why only a subset express EGFr. However, the three most

commonly used markers for SVZ neuroblasts, PSA-NCAM, bIII-

tubulin and Dcx were remarkably co-expressed, arguing against

heterogeneity.

Several phenotypic, morphological, and functional studies

suggest that the transition from GFAP+ stem cells to intermediate

transit-amplifying progenitors to migratory neuroblasts is gradual.

The majority of EGFr+ cells in the SVZ are thought to be transit-

amplifying progenitor cells, which reportedly have simple round

morphologies [15]. Yet, we showed that EGFrhigh cell morphology

ranges from round, to bipolar, to multipolar. Similarly, the

morphology of motile cells is on a continuum: cells with the classic

bipolar migratory morphology, multipolar cells, and round cells

[7]. SVZ cells can also switch to behavioral repertoires associated

with their progenitors. Despite the evidence for distinct prolifer-

ative and migratory populations described above, there is evidence

that migrating neuroblasts occasionally proliferate [44,45].

Remarkably, magnetic bead sorted PSA-NCAM+ SVZ neuro-

blasts become gliogenic when transplanted, suggesting they lose

their fate commitment and acquire stem cell-like characteristics

[46]. Transit-amplifying progenitors cells can revert to stem cell-

like behaviors when exposed to high levels of EGF [15]. Taken

together, we believe these data are compatible with a model of

gradual and reversible transitions in the lineage between SVZ stem

cells to neuroblasts. Our data that SVZ neuroblasts express EGFr

supports this notion.

Our findings prompted the question of what function, if any,

EGFr has on SVZ neuroblast migration. EGF is a pleiotropic

molecule and EGFr signaling mediates a multiplicity of events in

different contexts. Different levels of EGFr selectively drive

proliferation and astrogliogenesis during early stages of cerebral

cortex development [47]. EGF signaling also regulates adult SVZ

cell division in vivo and is necessary for in vitro generation of

neurospheres [18,19,48]. Interestingly we showed that among

many factors tested, EGF was uniquely increased in the region of

cerebral cortex injury to which SVZ neuroblasts migrate [49].

EGFr also drives SVZ derived oligodendrocyte genesis and repair

after demyelination [50,51]. The combined data suggest that

EGF and EGFr mediate several different normal and repara-

tive functions of the SVZ. EGF and EGFr signaling mediates

migration across several phyla and a wide variety of cells

[52–55]. They are involved in dorsally directed migration of

border cells in invertebrates [56,57]. In the mammalian

telencephalon, asymmetric cell division results in daughter cells

expressing different levels of EGFr [22]. EGFr overexpression

induced motility in non-motile telencephalic cells [9,20].

EGFrhigh cells migrate up EGF gradients in the cerebral cortex

and lateral migratory stream but not in the RMS, suggesting that

SVZ/RMS neuroblasts respond differently to EGFr signalling

[21].

In this study we found motile cells that expressed EGFr. We

believe that the nestin-GFP+/EGFrlow cells are neuroblasts since

EGFrlow cells expressed bIII-tubulin, Dcx and PSA-NCAM.

These results show directly that EGFr expression is not

incompatible with migration and expands the behavioral reper-

toire of EGFr+ cells in the SVZ. Recently, local exploratory SVZ

cell motility was seen in nestin-GFP and Gad-GFP mice [7]. Since

the former primarily, and the latter exclusively labels neuroblasts,

it suggested that neuroblasts can exhibit exploratory movement.

Here we found that EGFrlow cells are more exploratory and slower

than motile cells which do not express EGFr. Moreover, EGFrlow

cells traveled shorter net and total distances compared to EGFr

negative cells. In our previous study, Gad-GFP+ cells, which are

thought to be older neuroblasts [58], were significantly faster than

nestin-GFP+ cells [7]. Taken together, EGFrlow cells showed

motility patterns between stationary and migratory cells. One

possible explanation is that EGFrlow cells are recently born

neuroblasts that have not acquired a fully migratory phenotype.

Alternatively, EGFr may be re-expressed when cells slow down or

stop.

Pharmacological EGFr Stimulation Decreased Percentage
of Motile Cells

Previously, we showed that only a subset of SVZ neuroblasts

are migratory at any given time [7], and here we demonstrate

that exposure to the EGFr agonist TGF-a significantly decreased

the percentage of migrating cells. Changing the ratio of

migratory to non-migratory cells would greatly impact newborn

neuron migration rates to the OB. Our results are compatible

with data showing that EGF infusion decreases the number of

newborn neurons that have migrated to the OB [48]. One

potential explanation is that TGF-a acted directly on EGFrlow

neuroblasts. To support this argument, we observed EGFrlow

cells which were motile before TGF-a treatment but stopped

after the treatment. The decreased percent of migrating cells in
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this study could also be explained by increased proliferation; cells

theoretically have to stop moving before they divide. Indeed,

there was a trend towards increased proliferation, even after the

acute 3 hour TGF-a exposure. The short time course also

suggests that TGF-a acted directly on EGFrlow neuroblasts,

although we can not rule out an indirect effect via stimulation

of EGFrhigh cells and release of soluble factors from them.

Regardless of whether either scenario is correct, TGF-a
treatment decreased the percentage of motile cells. Several

studies have shown that EGF or TGF-a infusion induce SVZ

neuroblast emigration to the striatum [14–17,23,24]. Although

we did not observe cell emigration to the striatum in slices after

TGF-a, it may be that longer stimulation is needed for this effect.

TGF-a treatment did not change speed, migration distance, and

motility pattern of migrating cells.

Taken together, the data suggest that EGFr stimulation may

first slow down and then inhibit normal migration in the SVZ

and RMS, and in pathological contexts stimulate its emigration

to adjacent nuclei. It also suggests that the high levels of EGFr

on stem and progenitor cells may inhibit this motility. The

dynamics between proliferation and migration are important to

coordinate for regulating neurogenesis. Another member of

the EGFr family, ErbB4, is necessary for normal migration

during brain development [59]. SVZ neuroblasts express

ErbB4, infusion of its ligand neuregulin-1 induces and

maintains motility, and the RMS of ErbB4 conditional nulls is

severely disrupted [60,61]. Instead of promoting migration, our

data suggests stimulation of EGFr, also known as ErbB1,

decreases migration. Thus ErbB1 and ErbB4 signaling may

serve to balance each others’ effects on SVZ proliferation and

migration.

Conclusion
In conclusion, our data confirm early reports of a clear

distinction between proliferative and migratory behaviors and

argue against stem and progenitor migration. They also

indicate that one possible mechanism balancing them is EGFr

signaling.

Supporting Information

Figure S1 Mash1-GFP labels Mash1 progenitor cells and

neuroblasts. A–B: Mash1 immunohistochemistry on Mash1-

GFP mice in the SVZ (A) and the RMS (B). Note that some

immunolabeled Mash1+ cells were Mash1-GFP+ (arrows)

whereas other Mash1+ cells were not Mash1-GFP+ (arrow-

heads). C: Dcx immunohistochemistry in the RMS showed that

most Mash1-GFP+ cells were colocalized with Dcx in the RMS

(arrows).

Found at: doi:10.1371/journal.pone.0008122.s001 (2.58 MB TIF)

Figure S2 Only neuroblasts migrate from the SVZ to the RMS.

A: Schematic of CTO injection, A1: shows injection track into

lateral ventricle, A2: shows diffusion of CTO to the contralateral

lateral ventricle. B: Sagittal section showing CTO injection (red) in

the LV of a Dcx-GFP+ mouse. C: Coronal section, the majority of

CTO+ cells (red) were also Dcx-GFP+ (green, arrows) but were

not Mash1+ (blue, arrowhead). C1. Confocal orthogonal view of

the cell shown with left arrow.

Found at: doi:10.1371/journal.pone.0008122.s002 (8.76 MB TIF)

Figure S3 Gad65-GFP+ cells give rise to all three major

periglomerular cell layer subtypes. Recent studies have shown

that different parts of the SVZ generate different types of

interneurons in the OB [41,62]. We tested if Gad65-GFP+ cells

belong to specific sublineages of OB cells, and found GFP+ cells

that were tyrosine hydroxylase+ (TH)(A), calretinin+ (CalR)(B), or

calbindin+ (CalB)(C) consistent with a previous report [28]. These

results showed that we were not studying selective sublineages of

SVZ neuroblasts. Arrows show examples of co-labeled cells. Scale

bar = 50 mm.

Found at: doi:10.1371/journal.pone.0008122.s003 (2.77 MB TIF)

Movie S1 Movie from a CSH-nestin-GFP slice in the RMS,

note that bright GFP+ cells are stationary. Playing movie at high

speeds allows optimal visualization of dim cell movement.

Corresponds to Fig. 2E–F. Frame is 3536353651 (x, y, z) mm.

Found at: doi:10.1371/journal.pone.0008122.s004 (1.57 MB

MOV)

Movie S2 Movie from a Mash1-GFP+ slice at the elbow of the

RMS. Note the visible chain migration because of GFP retention

in migrating neuroblasts. Cells appear to be moving in multiple

different directions in the ventral portion.

Found at: doi:10.1371/journal.pone.0008122.s005 (2.66 MB

MOV)

Movie S3 EGFr immunohistochemistry in the vertical limb of

the RMS, DAPI counterstain. Confocal stack of 32 optical

sections, each separated by 0.37 microns. Note the prepon-

derance of EGFrhigh cells at the edge of the RMS, many of

which appear to be clustered. Within the RMS, a range of high

to weak EGFr immunofluorescence is detected in a pattern

suggesting expression by chain migrating neuroblasts. EGFr+
cells had a continuum of morphologies ranging from bipolar to

round.

Found at: doi:10.1371/journal.pone.0008122.s006 (0.49 MB

MOV)

Movie S4 Movie from a Nestin-GFP slice in the RMS. Note

individual cells move with different migratory patterns. Slice was

fixed and immunostained for EGFr, shown in Fig. 5. Frame is

2846295651 (x, y, z) mm.

Found at: doi:10.1371/journal.pone.0008122.s007 (0.72 MB

MOV)

Movie S5 3D tracing of Movie 4. Blue and red trajectories

correspond to migratory and exploratory cells shown with

blue and red arrows in Fig. 5 and Movie 4. Note the difference

between migratory (blue) and exploratory (red) motility

patterns.

Found at: doi:10.1371/journal.pone.0008122.s008 (1.03 MB

MOV)

Movie S6 Two photon time lapse imaging of a Gad65-GFP slice

before (pre-treatment) and during 10 ng/ml TGF-a treatment.

The first hour of pretreatment and the last hour of TGF-a
treatment is shown and were analyzed. One quarter of the field

imaged and analyzed is shown for greater clarity. (Time stamp

reset after pretreatment.)

Found at: doi:10.1371/journal.pone.0008122.s009 (0.57 MB

MOV)
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