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Two-step complete polarization 
logic Bell-state analysis
Yu-Bo Sheng1,2 & Lan Zhou2,3

The Bell state plays a significant role in the fundamental tests of quantum mechanics, such as 
the nonlocality of the quantum world. The Bell-state analysis is of vice importance in quantum 
communication. Existing Bell-state analysis protocols usually focus on the Bell-state encoding in 
the physical qubit directly. In this paper, we will describe an alternative approach to realize the 
near complete logic Bell-state analysis for the polarized concatenated Greenberger-Horne-Zeilinger 
(C-GHZ) state with two logic qubits. We show that the logic Bell-state can be distinguished in 
two steps with the help of the parity-check measurement (PCM) constructed by the cross-Kerr 
nonlinearity. This approach can be also used to distinguish arbitrary C-GHZ state with N logic qubits. 
As both the recent theoretical and experiment work showed that the C-GHZ state has its robust 
feature in practical noisy environment, this protocol may be useful in future long-distance quantum 
communication based on the logic-qubit entanglement.

Bell-state analysis (BSA) is of vice importance in quantum communication. Quantum teleportation1, 
quantum key distribution2, and quantum secure direct communication3,4 all need the BSA. Especially, in 
long-distance quantum communication, in order to resist the environmental noise, they should exploit 
the entanglement swapping instead of distributing the photon directly to extend the length of the entan-
glement, which is called the quantum repeaters5. The key element of the quantum repeaters is still the 
BSA.

Usually, in an optical system, there are three different approaches to realize the BSA. The first approach 
requires the linear optical elements6–8. However, one cannot perform the complete BSA with only linear 
optics, for the optimal success probability is only 50%6,7. The second approach still requires the linear 
optical elements but resorts to the hyperentanglement9–12. For example, Walborn et al. described a feasi-
ble and interesting hyperentanglement-assisted BSA protocol9. In their protocol, the hyperentangled state 
is prepared in both polarization and momentum degrees of freedom. With the help of momentum-entangled 
Bell state, they can completely distinguish four polarized Bell states. Their protocol can also distinguish 
four momentum-entangled Bell states, with the help of polarization Bell state. In 2008, the group of Kwiat 
beat the channel capacity limit for linear photonic superdense coding12. They can completely distinguish 
four polarized Bell states with orbital-angular momentum entanglement. In essence, this approach works 
in a large Hilbert space in two degrees of freedom. The third approach works in a nonlinear optical 
system13–16. For instance, with the help of the cross-Kerr nonlinearity, they can perform the near com-
plete parity-check measurement (PCM)13,17. The PCM can distinguish the even parity states H H  and 
V V  from the odd parity states H V  and V H  near deterministically. Here H  is the horizonal 
polarized photon and V  is the vertical polarized photon, respectively. The complete polarization BSA 
can be well performed in two steps. The first step is to distinguish φ±  from ψ± . The second step is to 
distinguish φ+  from φ− , and ψ+  from ψ− , respectively. Here φ±  and ψ±  are four polarized Bell 
states of the form
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On the other hand, it is known that the decoherence is one of the main obstacles in long-distance quan-
tum communication. In the past decades, people developed serval approaches to resist the decoherence. 
They presented the quantum repeaters5 and nonlinear photon amplification18–20 to resist the photon loss 
during the entanglement distribution. They also proposed the entanglement purification21–30 and con-
centration31–35 to improve the quality of the degraded entanglement. In current quantum communication 
protocols, they usually encode the quantum qubit in the physical qubit directly. In 2011, Fröwis and Dür 
developed a class of quantum entanglement, which encodes many physical qubits in a logic qubit36. Such 
logic-qubit entanglement has the similar feature as the Greenberger-Horne-Zeiglinger (GHZ) state, but 
is more robust than the normal GHZ state in a noisy environment. In 2012, Munro et al. developed a 
new approach of quantum communication based on logic qubits37. The logic-qubit entanglement, which 
is also called the concatenated GHZ (C-GHZ) state can be described as38–42
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Here N is the number of logic qubit and M is the number of the physical qubit in each logic qubit. 
±GHZM  are the M-photon polarized GHZ states as

= ( ± ).
( )
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In 2014, Lu et al. realized the first experiment of C-GHZ state with N =  2 and M =  3 in a linear optical 
system42. By observing the dynamics of distillability of the C-GHZ evolving under a collective noisy 
environment, they showed that the C-GHZ state can tolerate more noise than the GHZ state.

As the logic-qubit entangled state is more robust than the entanglement encoded in the physical qubit 
directly, it is possible to perform the quantum communication based on logic-qubit entanglement. Due 
to the importance of BSA in quantum communication, it is interesting to discuss the BSA encoded in 
logic qubit. One line of the research for logic Bell-state analysis (LBSA) in based on linear optics. For 
example, recently, Lee et al. described the LBSA for another type of logic qubit. Their protocol is based 
on the linear optics and does not require photon-number-resolving measurements, which is feasible 
in current experimental condition43. Another line of research exploits the cross-Kerr nonlinearity. For 
example, we will describe an approach to realize the near complete LBSA based on logic-qubit entan-
glement. We also show that this approach can be used to perform the arbitrary C-GHZ state analysis 
(Supplementary Materials). Such LBSA will provide us some interesting application in future quantum 
information processing, such as the quantum teleportation and entanglement swapping for an arbitrary 
logic qubit. In this way, we can set up the long-distance quantum entanglement channel based on the 
logic-qubit entanglement.

Results
In this section, we will start to explain our LBSA. A logic Bell state can be regarded as the special state of 
the C-GHZ state with N =  M =  2. A logic Bell state contains two logic qubits. Each logic qubit is encoded 
in a polarized Bell state. The four logic Bell states can be described as
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From Fig. 1, the two photons in logic qubit A are in the spatial modes a1 and a2, respectively. The two 
photons in logic qubit B are in the spatial modes b1 and b2, respectively. We first let four photons pass 
through the half wave plates (HWPs), which will make → ( + )H H V1

2
 and → (V H1

2
 

− )V . The HWPs act as the role of Hadamard operation. The four HWPs will transform the states in 
Eq. (4) to
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After passing through the HWPs, the state Φ+ AB
 can be described as
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In the first step, we let the four photons in spatial modes a1 and b1, a2 and b2 pass through the two PCM 
gates, respectively. The PCM gate is detailed in the Method Section. Briefly speaking, in each PCM gate, 
the two photons combined with the coherent state α  will couple with the cross-Kerr material. The PCM 
gate can distinguish the even parity states H H  and V V  from the odd parity states H V  and 
V H , by measuring the phase shift of the coherent state. If the coherent state picks up no phase shift, 
we will get the even parity state. On the other hand, if the coherent state picks up 2θ phase shift, we will 
get the odd parity state. During the whole measurement, we do not measure the two photons directly. 
Such function is also described in Ref. 13. Interestingly, if the initial state is Φ± AB

, after performing the 
measurements, the results of the two PCMs are the same. If the PCM results are both even, Φ+ AB

 will 
become
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While if the PCM results are both odd, Φ+ AB
 will become

Figure 1.  A schematic drawing of our LBSA. PCM represents the parity-check measurement gate 
described in Method section.
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On the other hand, if the initial state is Φ− AB
, we can obtain the same results as Φ+ AB

. In detail, if the 
PCM results are even, Φ− AB

 will collapse to

φ φ

→ +

− − = . ( )
− −

H H H H V V V V

H V H V V H V H 9

a a b b a a b b

a a b b a a b b a b a b

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 1 2 2

while if the measurement results are both odd, Φ− AB
 will become
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If the initial state is Ψ
±

AB, after performing the PCM operations, the measurement results of the two 
PCM gates are different. If the PCM result in spatial modes a1 and b1 is even, the PCM result in spatial 
modes a2 and b2 must be odd. While if the PCM reslut in spatial modes a1 and b1 is odd, the PCM result 
in spatial modes a2 and b2 must be even. In the first case, the Ψ+ AB

 will collapse to φ ψ+ +
a b a b1 1 2 2

 and 
Ψ− AB

 will collapse to φ ψ− −
a b a b1 1 2 2

. In the second case, Ψ+ AB
 will collapse to ψ φ+ +

a b a b1 1 2 2
 and 

Ψ− AB
 will collapse to ψ φ− −

a b a b1 1 2 2
.

From above description, according to the PCM results, the four logic Bell states can be divided into 
two groups. If the PCM results are the same, they are Φ± AB

. If the PCM results are different, they are 
Ψ± AB

. The second step is to distinguish Φ± AB
 or Ψ± AB

 in each group. We take Φ± AB
 for example. 

From Eqs (7 and 9), if the initial state is Φ+ AB
, the state in a1b1 must be φ+ a b1 1

 Otherwise, if the initial 
state is Φ− AB

, the state in a1b1 must be φ− a b1 1
. Therefore, the second step only needs to distinguish the 

states φ± a b1 1
. After two photons passing through the two HWPs, state φ+ a b1 1

 will not change, while 
φ− a b1 1

 will become ψ+ a b1 1
. Finally, we let two photons pass through two polarization beam splitters 

(PBSs), respectively. The PBS can transmit H  polarized photon and reflect V  polarized photon, respec-
tively. φ+ a b1 1

 will make two photons both transmit or reflect from two PBSs, but ψ+ a b1 1
 will make one 

photon transmit from the PBS, and the other reflect from the PBS, respectively. According to the output 
modes of the two photons, we can easily distinguish φ+ a b1 1

 from ψ+ a b1 1
. If the initial states are Ψ± AB

, 
they can be distinguished in the same way. In this way, the four logic Bell states can be completely 
distinguished.

Discussion
So far, we have fully described our LBSA. This approach can be extended to perform the C-GHZ state 
analysis (see Supplementary Materials). In the LBSA, two PCM gates are required. In the first step, two 
PCM operations on the a1b1 and a2b2 spatial modes are both performed. According to the measurement 
results, we can distinguish the states Φ±  from Ψ± . If the measurement results are the same, the original 
states must be Φ± . Otherwise, the original states must be Ψ± . In the second step, we only need to 
distinguish the conventional polarized Bell state φ+  from φ− . It can be well distinguished by two PBSs. 
In this way, the four logic Bell states can be completely distinguished. In above explanation, we let the 
logic qubits are φ± . If the logic qubits are arbitrary polarized GHZ states ±GHZM , this LBSA can also 
be well performed (see Supplementary Materials).

It is known that BSA plays an important role in quantum communication. If the LBSA can be well 
performed, it may provide us an additional application in quantum communication. For example, we can 
teleportate an arbitrary logic qubit ψ A

. Suppose the logic qubit ψ A
 is

ψ γ δ= + , ( )
+ −GHZ GHZ 11A M M

with γ δ+ = 12 2 . The logic qubits B and C are the logic-qubit entanglement with

( )Φ = + .
( )

+ + + − −GHZ GHZ GHZ GHZ1
2 12M BC M B M C M B M C

The logic qubit A combined with the logic-qubit entanglement B and C can be written as
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From Eq. (13), if we can well perform the LBSA on logic qubit A and B, we can teleportate the logic qubit A 
to C. Briefly speaking, if the LBSA result is Φ+M AB

, logic qubit C has the same form of the original qubit A, 
which is defined as ψ C

. If the LBSA result is (
+ −GHZ GHZM A M B

1
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2
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qubit C is γ δ+− +GHZ GHZM C M C
. It can be transformed to ψ C

 by performing a phase flip operation on 
one of the photons. If the LBSA result is (
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1
2
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 )− 
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is γ δ−+ −GHZ GHZM C M C
, one can perform bit-flip operation on all the photons to transform it to ψ C

. 
Finally, if the LBSA result is ( )−+ + − −GHZ GHZ GHZ GHZM A M B M A M B

1
2

, one can also transform the state 
γ δ−− +GHZ GHZM C M C

 to ψ C
. In this way, the logic qubit teleportation can be completely performed.

We can also perform the entanglement swapping with logic-qubit entanglement. Quantum repeaters 
based on logic-qubit entanglement will provide the double protection from the environmental noise. 
Suppose that the logic-qubit entanglement A and B, and C and D are both Φ+M . The whole system can 
be described as
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From Eq. (14), if we perform the LBSA on logic qubit B and C, we can connect the entanglement between 
the logic qubit A and D.

In our protocol, the key element to realize the LBSA is the PCM gate, which is constructed by the 
cross-Kerr nonlinearity. As pointed out by Refs  17, 44, the error probability of the PCM gate can be 
described as αθ= ( / )P erfc 2 2error

1
2

2 , where α is the parameter of the coherent state α  and θ is the 
phase shift of the coherent state. Perror can be explained as follows. The parity of the measured state is 
even, but the PCM shows odd, with the probability Perror. On the other hand, the parity of measured state 
is odd, but the PCM shows even, with the same probability Perror. In LBSA, if the logic qubits are φ± , 
we can calculate the fidelity of LBSA as

= ( − ) + . ( )F P P1 15error error
2 2

Here the fidelity is denoted as the probability to perform the correct LBSA. As shown in Fig. 1, we are 
required to perform PCM twice. Suppose that the initial state are one of the states Φ± AB

. After perform-
ing the PCM operations, the initial state collapses to the state in Eq.  (7). During such precess, if both 
PCM results are even, with the right probability of (1 −  Perror)2, we will judge the right state in Eq.  (7). 
However, if both PCM results are odd, with the error probability of Perror

2 , we will judge the error state 
in Eq. (8). Actually, the collapsed state is still the state in Eq. (7). Interestingly, both states in Eq. (7) and 
8 mean that the original state are Φ± AB

. It reveals that even if both PCM results are wrong, it does not 
affect the discrimination. Certainly, if one of PCM is right and the other is wrong with the probability 
of 2Perror(1 −  Perror), which shows that the PCM results are different, it will mislead us that the original 
state is Ψ± AB

. In this way, it contributes the error discrimination.
Interestingly, in the C-GHZ state analysis, the discrimination number of the states is 2N, which is 

decided by the logic qubit number N. The physical qubit number M does not affect the discrimination 
number of the state. Using single-qubit rotation and single-qubit measurement, we can transform ±GHZM  
to φ±  by measuring M −  2 photons in each logic qubit. If we only consider that the error coming from 
the PCM, the number M does not affect the total fidelity. However, the number of logic qubit N will 
decrease the fidelity. It can be written as

= ( − ) + . ( )F P P1 16N error
N

error
N

As pointed out in Refs 13, 44, highly accurate discrimination is possible with weak cross-Kerr nonline-
arities. In an NV-diamond system, such error probability can reach Perror =  0.01. In Fig. 2, we calculated 
the fidelity FN altered with the logic qubit number N. We let Perror be 0.01, 0.05 and 0.1, respectively. From 
Fig. 2, if Perror =  0.01, we can obtain FN ∼  0.9 with N =  10. Another imperfection comes from the detec-
tion efficiency. The detection efficiency means that the single photon enters the single-photon detector, 
but the single-photon does not register it with the probability of η. Therefore, the success probability of 
registering a single photon is 1 −  η. From Fig. 1, the detection efficiency will decrease the total success 
probability. For the LBSA with N =  M =  2, the success probability is P2,2 =  (1 −  η)2. We can also obtain 
PN,2 =  (1 −  η)N with M =  2. If M >  2, we first convert the states Φ±

,k N M
 to Φ±

,k N 2
 by measuring M −  2 

photons in each logic qubit. Here k =  1, 2, …, 2N − 1. Such success probability is [(1 −  η)M − 2]N. Therefore, 
the total success probability is PN,m =  (1 −  η)(M − 2)N. It shown that if M >  2, it will greatly decrease the 
total success probability. For example, if η =  0.1, P3,2 ≈  0.73, while P3,3 ≈  0.387.

On the other hand, though the robustness of the C-GHZ state was discussed both by theory and 
experiment, there is still a controversial topic. For example, Chaves et al. did not acknowledge that the 
simpler GHZ encodings is robust against simpler dephasing noise45,46, which requires us to perform 
further investigation. Moreover, though there are many theoretical works for quantum information pro-
cessing based on cross-Kerr nonlinearity, the cross-Kerr nonlinearity is also a controversial topic47. The 
debate over the usefulness of photonic quantum information processing based on the cross-Kerr non-
linearity is that the phase shift is too small to be measured in a single photon level. It is a typical dimen-
sionless magnitude of θ ∼  10−18. Fortunately, the theoretical work showed that with electromagnetically 
induced transparencies (EIT), whispering-gallery microresonators, optical fibers, or cavity QED systems, 
nonlinearities of magnitude θ can reach θ ∼  10−2 13,44. Moreover, some recent researches also showed that 
it is possible to obtain the observable value of the Kerr phase shift48–50.

In conclusion, we have described a two-step approach to realize the near complete logic Bell-state and 
arbitrary C-GHZ state analysis. In our protocol, we exploit the cross-Kerr nonlinearity to construct the 
PCM gate. The whole task can be divided into two steps. In the first step, after performing the PCM 
operations, the four states can be divided in two groups. The first group is Φ±{ } and the second group 
is Ψ±{ }. In the second step, the states Φ±  and Ψ±  in each group can also be discriminated by PCM 
operation. Our protocol can be extended to distinguish the arbitrary C-GHZ state. It can also be divided 
into two steps. In the first step, all the 2N C-GHZ states can be divided into 2N − 1 groups, according to 
the different PCM results in both left and right sides. In each group, the two states can also be completely 
distinguished in the second step. We also discussed the potential application of this LBSA, such as tele-
portating a logic qubit and performing the logic-qubit entanglement swapping. This LBSA may provide 
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an alternative approach to perform the other quantum communication tasks, such as quantum key dis-
tribution, quantum secure direct communication, quantum state sharing, and so on.

Methods
Cross-Kerr nonlinearity provides us a powerful tool to construct the PCM gate, which has been widely 
used in quantum information processing. There are many researches based on the cross-Kerr nonlin-
earity, including the construction of the controlled-not (CNOT) gate17, performing the quantum com-
munication51, quantum computation52, and the BSA13, realizing the entanglement purification22 and 
concentration33, and so on44,53–56.

As shown in Fig. 3, the Hamiltonian of a cross-Kerr nonlinear medium can be written as χ= ħ ˆ ˆH n na b. 
The ( )ˆ ˆn na b  is the number operator for mode a(b)17. The χħ  is the coupling strength of the nonlinearity. 
It is decided by the cross-Kerr material. If we consider a two-photon state 
ϕ ε β γ δ= + + +H H H V V H V Va a a a a a a a0 1 2 1 2 1 2 1 2

. Here ε β γ δ+ + + = 12 2 2 2  
and a1(a2) is the spatial mode as shown in Fig. 3. The ϕ 0

 combined with the coherent state α  can be 
described as

( )
( )

ϕ α ε β γ δ α

ε δ α β α

γ α

= + + +

→ + +

+ . ( )

θ

θ

−

H H H V V H V V

H H V V H V e

V H e 17

a a a a a a a a

b b b b b b
i

b b
i

0

2

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2

Figure 2.  Schematic of the fidelity of the C-GHZ state analysis altered with the logic qubit number N. 
The Perror is 0.01, 0.05, and 0.1, respectively.

Figure 3.  A schematic drawing of our PCM gate. It can distinguish the even parity states H H  and 
V V  from the odd parity states H V  and V H . PBS represents the polarization beam splitters which 
can transmit the H  photon and reflect the V  photon. The similar PCM gate is also shown Ref. 17.
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The PCM gate works as follows. From Eq.  (17), if the coherent state picks up no phase shift, the state 
will become the even parity state ε δ+H H V Vb b b b1 2 1 2

. If the coherent state picks up the phase shift 
2θ, the state will collapse to the odd parity state β γ+H V V Ha a a a1 2 1 2

. Here we should require the 
± 2θ undistinguished, which can be completed by X quadrature measurement. It can be achieved by 
choosing the local oscillator phase π/2 offset from the probe phase17. The error probability can be easily 
obtained with the same principle as described in Refs 13, 17. It can be described as Perror αθ= ( / )erfc 2 21

2
2 . 

If we choose the same coherent probe beam and weak cross-Kerr nonlinearities with αθ2 >  9, we can 
obtain that Perror is less than 10−5.
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