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Abstract
It has been confirmed in many food webs that the interactions between species are 
divided into “compartments,” that is, subgroups of highly interacting taxa with few 
weak interactions between the subgroups. Many of the current methods for detecting 
compartments in food webs are borrowed from network theory, which do little to 
improve our understanding of the mechanisms underpinning them. Therefore, a 
method based on ecological context is needed. Here, we develop a new method for 
detecting compartments in food webs based on the reliance of each node on energy 
derived from basal resources (i.e., producers or decomposers). Additional Monte Carlo 
simulations were conducted to test the significance of the compartmentalization. 
Further, we applied a food web dynamics model to test whether the effects of permu-
tation would be retained within a single compartment. The proposed method identi-
fied significant compartments in 23 of the 28 empirical food webs that were 
investigated. We further demonstrated that the effects of node removal were signifi-
cantly higher within compartments than between compartments. Our methods and 
results emphasize the importance of energy channels in forming food web structures, 
which sheds light on the mechanisms of self-organization within food webs.
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1  | INTRODUCTION

The structure of food webs is believed to affect community stability 
or species persistence (Dunne, 2006; May, 1973); however, it is still 
a central challenge to understand how food web structure influences 
ecosystem functions (Thompson et al., 2012). Many food webs have 
been showed to consist of compartments, which are subgroups of 
taxa, with many strong interactions occurring within the subgroups 
and few weak interactions between the subgroups (Cohen, 1978; 
Girvan & Newman, 2002; Krause, Frank, Mason, Ulanowicz, & Taylor, 
2003; Pimm & Lawton, 1980; Rezende, Albert, Fortuna, & Bascompte, 

2009; Yodzis, 1982), although the mechanisms of the compartmen-
talization remain underexplored. The idea of compartmentalization 
can be traced back to Herbert Simon’s (1962) parable of watchmak-
ers, where he showed that partitioning assembly is more efficient and 
argued that complex systems in nature could benefit from their hi-
erarchical structure. For example, food webs are comprised of many 
energy flows. The coupling of these flows has been shown to promote 
food web stability (Rooney, McCann, Gellner, & Moore, 2006; Teng 
& McCann, 2004). In subsequent years, ecologists have used a wide 
variety of methods and definitions to search for compartments in food 
webs (Allen & Starr, 1982; Allesina, Bodini, & Bondavalli, 2005; Borrett, 
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Fath, & Patten, 2007; May, 1972; Pimm, 1979; Pollierer, Langel, Scheu, 
& Maraun, 2009; Raffaelli & Hall, 1992), many of which are borrowed 
from network theory.

In network theory, several methods have been developed in recent 
decades to detect community (i.e., compartment) structure in complex 
networks (Guimerà, Sales-Pardo, & Amaral, 2007; Newman, 2004a; 
Thébault, 2013). The basic methodological idea is to find a division 
of the network that maximizes modularity, which is a numerical index 
of how good a particular division is (Newman, 2004a). Modularity 
measures the fraction of within-community links minus the expected 
value of the same quantity in a network with the same community 
divisions but random connections between the nodes (Newman & 
Girvan, 2004). Using the methods, compartments have been detected 
in different kinds of networks, such as social networks (Newman & 
Girvan, 2004), the Internet (Simonsen, Maslov, Sneppen, & Eriksen, 
2003), and biochemical networks (Ravasz, Somera, Mongru, Oltvai, 
& Barabási, 2002). Ecologists have tried to apply these methods to 
ecological networks (Krause et al., 2003; Leger, Daudin, & Vacher, 
2015; Stouffer & Bascompte, 2011); however, food webs have at least 
two special characteristics: (1) The distribution of the link weights is 
largely uneven (O’Gorman, Jacob, Jonsson, & Emmerson, 2010); and 
(2) food web links have explicit directions from low to high trophic 
levels. These characteristics provide a cautionary note when interpret-
ing results using methods designed for undirected and unweighted 
networks (Zhao et al., 2016). Moreover, the methods borrowed from 
network theory do little to improve our understanding of the under-
lying mechanisms of compartmentalization in food webs. Therefore, a 
method based on ecological context is urgently needed.

An energy channel is a collection of energy or material fluxes that 
start with a basal resource and end with a top predator (Moore & de 
Ruiter, 2012), which plays an important role in maintaining both food 
web structure and functioning. Different energy channels within the 
same food web may exhibit different traits, for example turnover rate 
(Rooney et al., 2006). For example, in marine food webs, phytoplank-
ton energy channels were shown to have consistently higher turn-
over rates than detrital energy channels (Rooney, McCann, & Moore, 
2008). The coupling of fast (e.g., phytoplankton) and slow (e.g., detri-
tal) channels is believed to contribute to food web stability (Rooney 
& McCann, 2012; Rooney et al., 2006, 2008). Based on taxonomical 
aggregation, two compartments were defined: the detritus-based 
“brown” subweb and the producer-based “green” subweb (Butler, 
Gotelli, & Ellison, 2008; Zou, Thébault, Lacroix, & Barot, 2016). 
However, this separation is oversimplistic, and the compartmentaliza-
tion based on energy channels is not fully explored. Here, we propose 
a new method for detecting compartments, where we consider one 
or several energy channels as a compartment. Our first task in this 
study was to test whether empirical food webs could be significantly 
compartmentalized using our method; that is, whether the modularity 
of the compartmentalization was significantly higher than what was 
likely to occur by chance.

Theoretically, compartmentalization is believed to greatly in-
crease the stability and persistence of food webs (Krause et al., 
2003; Pimm, 1979; Stouffer & Bascompte, 2011). One possible 

mechanism is that the impacts of a disturbance can be buffered by 
being retained within a single compartment and rarely spread to 
other compartments (Krause et al., 2003), although this hypothesis 
has not been tested well. In the study by Krause et al. (2003), an 
assumption was made to mimic the effects of species loss: After a 
taxon was removed, all interactions with this taxon were removed, 
and the predators on this taxon had their interaction strengths as-
sociated with this taxon redistributed proportionally to their inter-
actions with other prey. This assumption is simple (as admitted by 
Krause et al.). It cannot track the biomass change after taxon re-
moval, as well as the change in interaction strength associated with 
the biomass change. Moreover, they compared the removal effects 
of only two taxa, which may underrepresent the overall pattern. 
Our second task was to test the hypothesis that compartmentaliza-
tion could increase food web stability using a dynamical approach. 
Finally, we compared our algorithm based on energy channels with 
some other commonly used compartment detection algorithms.

2  | MATERIALS AND METHODS

2.1 | Quantitative food webs

We analyzed 28 of the 50 aquatic food webs from a recently pub-
lished database (see Table 1; Salas & Borrett, 2011; Borrett, 2013), 
which is archived in the “enaR” package (Borrett & Lau, 2014) in R. 
Twenty food webs were excluded because they contained less than 
twenty taxa and thus were deemed too small. The other two food 
webs were excluded because they did not include microbial pro-
cesses. The data for each food web include a list of taxa, the carbon 
biomass of each taxon (g C m−2), the carbon per unit time of im-
port, export, and respiration of each taxon (g C m−2 day−1), and the 
carbon flux between a pair of taxa (g C m−2 day−1). Our focal food 
webs exhibit a wide range of taxon richness (S = 23–124). Nodes 
represent species, trophic guilds, functional groups, or nonliving 
components of the system in which matter is stored. The ecosys-
tems were considered to be in steady state, as in previous stud-
ies (Borrett, 2013; Borrett & Salas, 2010; Ulanowicz, 2004), which 
means that the flows of energy entering and leaving a given node 
are equal. Due to the errors and approximations associated with 
some measures, however, some food webs were initially unbal-
anced, that is, energy entering a taxon did not necessarily balance 
the output exactly. These food webs were balanced using the AVG2 
algorithm using established procedures in Matlab 7.12.0 (Allesina & 
Bondavalli, 2003).

2.2 | Measure of modularity

The classic definition of modularity proposed by Newman (2004a,b) 
was extended by Arenas, Duch, Fernández, and Gómez (2007) to the 
scenario of weighted directed networks as follows:
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where wij is the strength of the link (i.e., the carbon flux) from i to j, 
and wj

in and wi
out are the input and output strengths of nodes i and j, 

respectively:

The total strength of the link is:

The Kronecker delta function δ (ci, cj) takes the value of 1 if ci = cj 
and otherwise 0, where ci is the community to which node i is assigned. 
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TABLE  1 Compartment analysis of 28 empirical food webs. For each food web, S is the number of taxa; SC is the number of detected 
compartments; Q is the empirical modularity; p is the probability that the modularity of a simulated food web in Monte Carlo simulations is 
higher than Q; and the last two columns indicate the mean and standard error (SEM) of modularity in Monte Carlo simulations. Significant Q 
values are marked in bold, where the significance level was α = 0.05/28 = 0.0018 after Bonferroni correction

Index Name S Sc Q p

Monte Carlo

Mean SEM

1 Chesapeake Bay 36 3 0.39 <.001 −0.0052 0.0045

2 Cypress (dry) 68 3 0.13 .006 0.0004 0.0005

3 Cypress (wet) 68 3 0.15 .009 −0.0002 0.0005

4 Florida Bay (dry) 124 4 0.10 <.001 0.0081 0.0034

5 Florida Bay (wet) 124 4 0.10 <.001 0.0008 0.0035

6 Georges Bank 31 2 0.10 <.001 −0.0020 0.0033

7 Graminoids (dry) 66 3 0.05 <.001 0.0019 0.0023

8 Graminoids (wet) 66 3 0.03 <.001 0.0008 0.0017

9 Gulf of Maine 31 2 0.10 .001 −0.0006 0.0033

10 Lake Oneida (pre-ZM) 74 2 0.08 <.001 −0.0008 0.0004

11 Lake Oneida (post-ZM) 76 3 0.08 .018 −0.0007 0.0020

12 Mangroves (dry) 94 3 0.02 <.001 −0.0009 0.0005

13 Mangroves (wet) 94 3 0.03 <.001 0.0001 0.0005

14 Middle Atlantic Bight 32 2 0.10 .001 −0.0013 0.0029

15 Narragansett Bay 32 2 0.10 .019 −0.0026 0.0025

16 Neuse Estuary (early summer 
1997)

24 3 0.27 <.001 0.0100 0.0059

17 Neuse Estuary (late summer 
1997)

27 3 0.29 <.001 −0.0009 0.0069

18 Neuse Estuary (early summer 
1998)

24 3 0.33 <.001 −0.0063 0.0060

19 Neuse Estuary (late summer 
1998)

25 3 0.24 <.001 −0.0057 0.0063

20 Northern Benguela Upwelling 23 2 0.08 .004 0.0054 0.0044

21 Southern New England Bight 33 2 0.11 <.001 −0.0028 0.0034

22 St. Marks Seagrass, site 1 
(January)

43 4 0.20 <.001 0.0018 0.0021

23 St. Marks Seagrass, site 1 
(February)

45 4 0.16 <.001 −0.0003 0.0024

24 St. Marks Seagrass, site 2 
(January)

40 3 0.19 <.001 −0.0004 0.0020

25 St. Marks Seagrass, site 2 
(February)

46 3 0.17 <.001 −0.0015 0.0022

26 St. Marks Seagrass, site 3 
(January)

32 4 0.21 .001 −0.0011 0.0024

27 St. Marks Seagrass, site 4 
(February)

46 3 0.20 <.001 −0.0028 0.0033

28 Sylt-Romo Bight 59 5 0.20 <.001 0.0026 0.0033
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Nonzero values of Q indicate deviations from randomness, and a 
higher value of Q indicates the food web is more compartmentalized.

2.3 | Compartment identification

Four steps were applied in our method to detect the compartments of 
a food web. First, a food web with S taxa can be represented by an S-
by-S flow matrix F = [Fij]; the value of the element Fij means the 
amount of carbon passing from taxon i to taxon j per unit area and 
time. Based on the flow matrix (Figure 1a), we calculated the reliance 
of each node on energy derived from producers or decomposers, that 
is, the proportion of carbon derived from basal nodes, %BRC 
(Figure 1b), using a method proposed by Rooney et al. (2008):

where n is the number of resources consumed by the consumer, PC is 
the proportion of the consumer diet accounted for by a resource, and 

%BRR is the proportion of carbon derived from the basal resource in 
the resource being consumed.

Second, the nodes with the same dominant energy origins were 
put into the same subgroup. For example, in the Chesapeake Bay eco-
system, five subgroups were formed (Figure 1c). Here, each subgroup 
corresponds to one of the five basal nodes, and the nodes in a given 
subgroup obtained most of their energy from the same basal node.

Third, we tested whether the subgroups could be optimized by 
merging them into one compartment. Here, we calculated the differ-
ence in modularity ΔQ = Qafter–Qbefore, where Qbefore and Qafter equate 
to the modularity before and after merging, respectively. By trying 
different combinations of subgroup pairs, we created a matrix, with 
the element ΔQij indicating the difference in modularity after merg-
ing subgroup i and subgroup j minus modularity before merging them 
(Figure 1d).

Fourth, if ΔQ > 0, the merging was accepted as it could increase Q 
and otherwise, the merging was rejected (Figure 1e). Repeat steps 3 
and 4 until all values of ΔQ ≤ 0. With this four-step method, we were 

(5)%BRC=

n
∑

1

PC×%BRR

F IGURE  1  Illustration of the method used to detect compartments in a food web. Panels (a), (c), and (e) show how a simplified feeding matrix 
changes at different stages of the compartmentalization procedure; the rows correspond to resources, while the columns equate to consumers. 
The first step of the procedure is to calculate the proportion of energy gained from different basal resources by each node in the food web, 
as shown in panel (b), where the colors correspond to the five different basal resources. All nodes with the same dominant energy component 
are placed in the same subgroup, which is G1–G5 in this example, as shown in panel (c). The next step is to calculate ΔQ values for possible 
merging of subgroups, as shown in panel (d). Finally, two subgroups are merged into one compartment if ΔQ > 0, as shown in panel (e). Three 
compartments (A, B, and C) were detected in this simplified example from Chesapeake Bay
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able to detect the number of compartments and nodes within them for 
all the 28 food webs that we investigated.

2.4 | Monte Carlo simulations

To test whether the concentration of interactions within identified 
compartments was greater than what was likely to occur by chance, 
we determined the statistical significance of the modularity using 
Monte Carlo simulations. For each simulation, we randomly reassigned 
interactions, constraining the sum of each column in the carbon-flow 
matrix to be equal to that of the original food web (where rows rep-
resented prey and columns represented predators), as in Krause et al. 
(2003). The detailed approach is as follows: (1) for column i (i.e., for 
predator i), we first calculated the sum of the interaction weight Wi; 
(2) to determine the prey of predator i in the new food web, we chose 
ni prey randomly from a pool of S−1 species where ni is the number of 
prey for predator i in the original food web, and S−1 is the number of 
species excluding predator i; (3) we generated ni random numbers, x1, 
x2, …, xni, each of which varied from 0 to 1; and (4) the weight of in-
teractions between the jth prey and predator i should be Wixj∕

∑ni

1
xt.  

This ensured that the simulated food webs had the same number of 
predators, the same number and weight of interactions associated 
with a predator, and the same number and weight of realized inter-
actions as the original food web. We then calculated the modularity 
of the simulated food web on the compartments obtained from the 
method we proposed. This process was repeated 1,000 times to ob-
tain a sampling distribution of modularity against which we compared 
the empirical modularity.

2.5 | Food web dynamics

To test the hypothesis that compartmentalization would retain the 
impacts of a disturbance within a single compartment and with less 
spread to other compartments, we simulated the effects of randomly 
removing one node, by employing a food web dynamics model (Zhang, 
Zhao, Tian, & Huang, 2016; Zhao et al., 2016). This model was con-
structed based on energy budgets indexing the carbon fluxes entering 
and leaving each taxon. The taxa in each of the studied ecosystems 
can be divided into four categories: producers, consumers, decompos-
ers, and detritus.

The change in biomass of producers can be described as:

Here, “pro” are producer taxa, “herbi” are herbivorous taxa, r is the 
maximum specific or intrinsic growth rate, K is the carrying capacity, d 
is the specific death rate, and Φij is the functional response when taxon 
j consumes taxon i, which was set to follow a nonlinear form as follows 
(Hudson & Reuman, 2013):

Here, yj is the maximum consumption rate of taxon j, ωij is the pref-
erence of taxon j for taxon i, Hj is the half-saturation density, qj is the 
predator interference coefficient, and h is the hill exponent that regu-
lates the shape of the curve from Holling type II (h = 1) to Holling type 
III (h = 2).

The change in biomass of consumers (including herbivores and 
predators) can be depicted as:

where, “res” are resource taxon, “pred” are predatory taxon, a is the 
assimilation efficiency, and x is the respiration rate.

The change in biomass of decomposers can be depicted as:

where “det” are detrital taxa.
In some food webs, detritus has been divided into separate taxa. 

The change in biomass of each detrital taxa can be described as:

Here, “con” are consumer taxa, “dec” are decomposer taxa, pji is 
the proportion of converted detritus i to the total amount of detritus 
converted from taxon j, e = (1–a) is the egestion rate, and cji is the con-
version coefficient from detrital taxon j to detrital taxon i. Here, we 
consider that the amount of feces, that is, the unassimilated fraction 
of prey killed, is proportional to the amount of predation (Moore & de 
Ruiter, 2012; Moore, De Ruiter, & Hunt, 1993; de Ruiter, Neutel, & 
Moore, 1995).

The setting and calculation of the parameters from carbon flux 
data can be found in Appendix S1 and Table S1. We used the Adaptive 
Runge–Kutta method to perform 1,000 numerical simulations for each 
food web. In each simulation, the empirical biomass data were em-
ployed to give the initial biomass values. First, 1,000 days were sim-
ulated to allow transient dynamics caused by initial effects to settle 
down (Hudson & Reuman, 2013). The average biomass density for 
each node during the next 1,000 simulated days was recorded as Bi

+. 
We then randomly removed a node and simulated another 1,000 days, 
recording the average biomass density for each node during this pe-
riod as Bi

−.

2.6 | Removal effects

The removal effect (RE) value of the loss of node k on node i was meas-
ured according to Brose, Berlow, and Martinez (2005) as:

where Bk is the biomass density of the node to be removed before 
its removal, while Bi

+ and Bi
− are the biomass densities of i with and 

without k, respectively. Adding one to the biomass densities pre-
vents very low Bk from generating artificially large values of RE (Brose 
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et al., 2005). The within-compartment RE is the average RE value for 
all the nodes within the same compartment as k, and the between-
compartment RE is the average RE value for all the nodes in different 
compartments to k.

2.7 | Comparison with other algorithms

To test the performance of our algorithm based on energy channels, 
we compared the modularity values that were generated with two 
other commonly used algorithms. The Girvan–Newman algorithm 
(Newman & Girvan, 2004) first estimates the edge betweenness score 
as the number of shortest paths through an edge. This algorithm then 
gradually removes the edge with the highest edge betweenness score 
to produce a dendrogram of removals. This dendrogram is then cut 
at the point which gives the highest value of modularity. The second 
algorithm finds densely connected subgraphs by performing random 
walks (Pons & Latapy, 2005), where each walk tends to stay inside 
communities instead of jumping to other communities.

2.8 | Statistical analyses

To compare the two categories of RE values (within-compartment, and 
between-compartment), we employed paired t test. To compare the 
performance of the three compartmentalization algorithms, we em-
ployed a linear mixed effects model (LME) with a maximum-likelihood 
estimator (function “lme” with “method = ML” within the “nlme” pack-
age in R). Food web identity was included in the model as a random 
factor to correct for differences between study systems. Post hoc 
comparisons were applied using the Tukey HSD test at α = 0.05 level 
of significance (function “glht” within the “multcomp” package in R).

3  | RESULTS

First, we showed a detailed example of one food web: the Chesapeake 
Bay. This ecosystem contained 31 consumer and decomposer taxa 
and five basal taxa: phytoplankton, benthic diatoms, dissolved organic 
nutrient, suspended particulate nutrient, and sediment particulate nu-
trient (Figure 2). Among all the 31 consumer and decomposer taxa, 
the energy of 13 taxa was mainly supplied by sediment particulate 
nutrient, while suspended particulate nutrient was the major supplier 
for another 12 taxa (Figure 1b), phytoplankton was the major supplier 
for four taxa, dissolved organic nutrient was the major supplier for 
two taxa, and benthic diatoms were not a major supplier for any taxa. 
Three compartments were detected, one of which was mainly sus-
tained by suspended particulate nutrient and phytoplankton; another 
compartment was mainly sustained by sediment particulate nutrient 
but also contained benthic diatoms, while the final compartment con-
tained just three taxa: free bacteria, heterotrophic microflagellates, 
and dissolved organic nutrient.

The compartments of all 28 food webs (Appendix S2) showed 
three types of compartmentalization. In the first type, pelagic taxa 
(supported by phytoplankton) and benthic taxa (supported by 

sediment bacteria or benthic algae) were separated. Sometimes, the 
taxa supported by sediment bacteria were also separated from the 
taxa supported by benthic algae. Fifteen ecosystems showed this 
type of compartmentalization, including Chesapeake Bay, Georges 
Bank, Gulf of Maine, Lake Oneida (pre-ZM), Lake Oneida (post-ZM), 
Mangroves (dry), Mangroves (wet), Middle Atlantic Bight, Narragansett 
Bay, Neuse Estuary (early summer 1997), Neuse Estuary (late summer 
1997), Neuse Estuary (early summer 1998), Neuse Estuary (late sum-
mer 1998), Northern Benguela Upwelling, and Southern New England 
Bight. The second type consisted of three compartments, containing 
taxa supported by macrophytes, phytoplankton, or sediment bacteria. 
Eleven ecosystems showed this type of compartmentalization, includ-
ing Florida Bay (dry), Florida Bay (wet), Graminoids (dry), Graminoids 
(wet), St. Marks Seagrass, site 1 (January), St. Marks Seagrass, site 1 
(February), St. Marks Seagrass, site 2 (January), St. Marks Seagrass, site 
2 (February), St. Marks Seagrass, site 3 (January), St. Marks Seagrass, 
site 4 (February), and Sylt-Romo Bight. The third type of compartmen-
talization separated aquatic from terrestrial communities, correspond-
ing to just two ecosystems: Cypress (dry) and Cypress (wet).

We detected between two and five compartments in each of the 
28 food webs. Over 80% of them yielded modularity that was signifi-
cantly greater than would be expected by chance alone (Table 1). The 
modularity Q varied from 0.02 to 0.39, while the modularity values in 
Monte Carlo simulations varied from −0.006 to 0.010.

In the node deletion experiment (Figure 3), the within-
compartment RE exhibited higher value (0.030 ± 0.004; mean ± SEM) 
than between-compartment RE (0.015 ± 0.003), and the difference is 
significant (paired t test: t27 = 3.727, p < .001).

Our algorithm based on energy channels generated the highest 
modularity (0.150 ± 0.017; mean ± SEM) across the 28 food webs, 
compared with algorithms of edge betweenness (0.119 ± 0.020) and 
random walk (0.137 ± 0.019). Different algorithm generated signifi-
cantly different modularity (LME: F2,54 = 3.584, p = .035; Figure 4). 
Here, our algorithm generated significantly higher modularity than the 
algorithm of edge betweenness (Tukey test: z = 2.667, p = .023), but 
not the algorithm of random walk (Tukey test: z = 1.128, p = .778).

4  | DISCUSSION

Most food webs in our study were found to be strongly compartmen-
talized, in agreement with previous research (Guimera et al., 2010; 
Krause et al., 2003; Rezende et al., 2009). The compartmentalization 
of food webs has been claimed to arise from subhabitats within the 
environment (Krause et al., 2003) or because of phylogenetic patterns 
within the community (Cattin, Bersier, Banašek-Richter, Baltensperger, 
& Gabriel, 2004; Rezende et al., 2009). Here, we demonstrated that 
energy channels could be another origin of compartmentalization. 
Being compartmentalized is to a community’s advantage as compart-
ments act to buffer the effects of perturbation.

Energy channels derived from producers and detritus (namely 
“green” and “brown” food webs) have been investigated in recent 
studies (Butler et al., 2008; Rooney & McCann, 2012; Rooney et al., 
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2006, 2008). Most of these studies focused on the coupling of the 
two channels, which was believed to increase the stability of ecosys-
tems. In these studies, phytoplankton and detritus were chosen as the 
origin of energy, and each food web was divided into two subwebs 
based on their energy origin; however, this might be an oversimpli-
fication. Based on our results, different types of detritus may sustain 
very different compartments. For example, suspended detritus and 
sediment detritus sustained different compartments in most of our 28 
ecosystems. On the other hand, phytoplankton may sustain the same 
compartment with some types of detritus (e.g., suspended detritus 

or dissolved organic carbon). Using a more elaborate partition of en-
ergy channels may provide new insights into studying the coupling of 
channels.

Across all 28 food webs in our study, the number of compartments 
varied from two to five. This is highly consistent with prior studies, 
where these numbers varied from one to six across 17 food webs 
(three of them overlap with ours; Krause et al., 2003) or from two to 
three across nine food webs (one of them overlap with ours; Gauzens, 
Thébault, Lacroix, & Legendre, 2015). However, such small number 
did not provide support for the original argument of complex system 

F IGURE  2 Graphical display of the compartments in the Chesapeake Bay ecosystem. Each of the numbered node indicates a taxon, with 
names corresponding to the numbers listed in the table. Links between the 36 taxa are weighted by carbon flux, while the various colors 
indicate different compartments

a

b

c

ID Name ID Name ID Name
1 Phytoplankton 12 Mya Arenaria 23 Menhaden
2 Bacteria In Suspended Poc 13 Oysters 24 Shad
3 Bacteria In Sediment Poc 14 Other Polychaetes 25 Croaker
4 Benthic Diatoms 15 Nereis 26 Hogchoker
5 Free Bacteria 16 Macoma Spp. 27 Spot
6 Heterotrophic Microflagel 17 Meiofauna 28 White Perch
7 Ciliates 18 Crustacean Deposit Feeder 29 Ca�ish
8 Zooplankton 19 Blue Crab 30 Bluefish
9 Ctenophores 20 Fish Larvae 31 Weakfish

10 Sea Ne�le 21 Alewife & Blue Herring 32 Summer Flounder
11 Other Suspension Feeders 22 Bay Anchovy 33 Striped Bass



316  |     ZHAO et al.

assembly, suggested by Simon (1962). We attribute the small number 
of compartments to three reasons. First, the level of taxonomical ag-
gregation should have an influence, especially for basal taxa. For ex-
ample, suspended detritus and sediment detritus were separated in 
most food webs and in food webs where they were not separated, and 
detritus was considered as a single node; that is, there would likely be 
an extra compartment if detritus was separated into different taxa. 
Second, there are different definitions for grouping species within 

food webs, such as trophic groups (i.e., groups of species that are 
functionally similar) and trophic modules or motifs (i.e., the basic build-
ing blocks of food webs, usually but not necessarily containing three 
nodes). Generally food webs contain a large number of trophic groups 
(Gauzens et al., 2015) or trophic modules (Bascompte, 2009; Kondoh, 
2008). Third, the scale of the systems is different. Generally food webs 
have smaller sizes (e.g., 23–124 taxa in our study) than other networks. 
The statement raised by Simon (1962) refers to systems that are much 
larger with many different parts, and therefore, it is not surprising that 
the number of compartments found here is relatively small. In addition, 
food webs are treated as a weighted and directed graph, which means 
the compartments are restricted by the underlying tree structure due 
to the direction of energy flow. This might also contribute to the small 
number of compartments found.

Our algorithm based on energy channels generated either similar 
or higher values of modularity when compared with commonly used 
community detection algorithms in complex network studies, that is, 
algorithms based on edge betweenness (Newman & Girvan, 2004) and 
random walk (Pons & Latapy, 2005). This shows the high feasibility of 
our algorithm and the high compartmentalization of different chan-
nels, especially considering that the other two algorithms use optimi-
zation to maximize the value of modularity.

Based on our results, several pairs of energy channels could be 
regarded as the compartments of a food web, including pelagic versus 
benthic channels, macrophyte-derived versus phytoplankton-derived 
channels, bacteria-derived versus algae-derived channels, and ter-
restrial (i.e., leaf/wood-derived) versus aquatic channels. This is not 
in conflict with the argument that compartments arise from subhab-
itats (Krause et al., 2003; Pimm, 1991). Each habitat requires a set of 
adaptations from its component species, which may preclude a large 
number of interactions between species in different habitats and en-
courage more within-habitat interactions (Pimm, 1991), that is, cre-
ating habitat-based compartments. Meanwhile, different habitats can 
sustain different energy channels, for example, pelagic versus benthic 
and terrestrial versus aquatic. Moreover, there can still be different 
compartments within the same subhabitat, for example, benthic bac-
teria and benthic phytoplankton, and sometimes different subhabitats 
may share the same energy channel, depending on the scale of sub-
habitats. This suggests that energy channels and subhabitats may both 
contribute to the compartmentalization of food webs. Besides, our 
results appear to emphasize the physical separation between benthic 
and pelagic habitats. This implies the limitation of our datasets: All the 
28 food webs we studied are aquatic or at least contain aquatic part. 
This to some extent limits the application of our conclusions, although 
it would be interesting to apply our algorithm to terrestrial or other 
food webs and compare the results with our conclusions in this study.

Basal resources (producers and detritus) often exhibit quite vari-
able traits, such as habitat type and body size, which can attract very 
different types of primary consumers (Rooney & McCann, 2012). This 
characteristic supports diverse energy channels, which are in turn cou-
pled by mobile predators at higher trophic levels. The partition of food 
webs in our study suggests that this coupling is not so strong and that 
the channels can be highly independent of one another. Therefore, 

F IGURE  4 Modularity of the 28 food webs after 
compartmentalization according to three different algorithms: energy 
channel, edge betweenness, and random walk. Significant differences 
between pairs of categories are indicated by stars on lines connecting 
the pairs (*p < .05; NS, not significant), detected using LME and Tukey 
post hoc tests

F IGURE  3 Removal effects (RE: mean ± SEM) of the 28 food 
webs. Two categories of RE are displayed: within-compartment RE 
and between-compartment RE. Significant difference between the 
categories is indicated by stars (***p < .001), detected using paired t 
test
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potential perturbations should be constrained within a single compart-
ment, as suggested in previous studies (Krause et al., 2003; Stouffer & 
Bascompte, 2011). This may be a vital stabilizing characteristic of nat-
ural ecosystems in the face of accelerating biodiversity loss (Barnosky 
et al., 2011).
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