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Abstract
It	has	been	confirmed	in	many	food	webs	that	the	interactions	between	species	are	
divided	 into	 “compartments,”	 that	 is,	 subgroups	of	highly	 interacting	 taxa	with	 few	
weak	interactions	between	the	subgroups.	Many	of	the	current	methods	for	detecting	
compartments	 in	 food	webs	 are	borrowed	 from	network	 theory,	which	do	 little	 to	
improve	 our	 understanding	 of	 the	 mechanisms	 underpinning	 them.	 Therefore,	 a	
method	based	on	ecological	context	is	needed.	Here,	we	develop	a	new	method	for	
detecting	compartments	in	food	webs	based	on	the	reliance	of	each	node	on	energy	
derived	from	basal	resources	(i.e.,	producers	or	decomposers).	Additional	Monte	Carlo	
simulations	 were	 conducted	 to	 test	 the	 significance	 of	 the	 compartmentalization.	
Further,	we	applied	a	food	web	dynamics	model	to	test	whether	the	effects	of	permu-
tation	would	be	retained	within	a	single	compartment.	The	proposed	method	identi-
fied	 significant	 compartments	 in	 23	 of	 the	 28	 empirical	 food	 webs	 that	 were	
investigated.	We	further	demonstrated	that	the	effects	of	node	removal	were	signifi-
cantly	higher	within	compartments	 than	between	compartments.	Our	methods	and	
results	emphasize	the	importance	of	energy	channels	in	forming	food	web	structures,	
which	sheds	light	on	the	mechanisms	of	self-	organization	within	food	webs.

K E Y W O R D S

compartmentalization,	energy	channel,	food	web,	removal	effects

1  | INTRODUCTION

The	structure	of	food	webs	is	believed	to	affect	community	stability	
or	species	persistence	(Dunne,	2006;	May,	1973);	however,	 it	 is	still	
a	central	challenge	to	understand	how	food	web	structure	influences	
ecosystem	functions	(Thompson	et	al.,	2012).	Many	food	webs	have	
been	 showed	 to	 consist	 of	 compartments,	 which	 are	 subgroups	 of	
taxa,	with	many	 strong	 interactions	 occurring	within	 the	 subgroups	
and	 few	 weak	 interactions	 between	 the	 subgroups	 (Cohen,	 1978;	
Girvan	&	Newman,	2002;	Krause,	Frank,	Mason,	Ulanowicz,	&	Taylor,	
2003;	Pimm	&	Lawton,	1980;	Rezende,	Albert,	Fortuna,	&	Bascompte,	

2009;	Yodzis,	 1982),	 although	 the	mechanisms	of	 the	 compartmen-
talization	 remain	 underexplored.	 The	 idea	 of	 compartmentalization	
can	be	traced	back	to	Herbert	Simon’s	(1962)	parable	of	watchmak-
ers,	where	he	showed	that	partitioning	assembly	is	more	efficient	and	
argued	 that	 complex	 systems	 in	 nature	 could	 benefit	 from	 their	 hi-
erarchical	structure.	For	example,	food	webs	are	comprised	of	many	
energy	flows.	The	coupling	of	these	flows	has	been	shown	to	promote	
food	web	 stability	 (Rooney,	McCann,	Gellner,	&	Moore,	 2006;	Teng	
&	McCann,	2004).	 In	subsequent	years,	ecologists	have	used	a	wide	
variety	of	methods	and	definitions	to	search	for	compartments	in	food	
webs	(Allen	&	Starr,	1982;	Allesina,	Bodini,	&	Bondavalli,	2005;	Borrett,	
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Fath,	&	Patten,	2007;	May,	1972;	Pimm,	1979;	Pollierer,	Langel,	Scheu,	
&	Maraun,	2009;	Raffaelli	&	Hall,	1992),	many	of	which	are	borrowed	
from	network	theory.

In	network	theory,	several	methods	have	been	developed	in	recent	
decades	to	detect	community	(i.e.,	compartment)	structure	in	complex	
networks	 (Guimerà,	 Sales-	Pardo,	 &	Amaral,	 2007;	Newman,	 2004a;	
Thébault,	 2013).	The	basic	methodological	 idea	 is	 to	 find	 a	division	
of	the	network	that	maximizes	modularity,	which	is	a	numerical	index	
of	 how	 good	 a	 particular	 division	 is	 (Newman,	 2004a).	 Modularity	
measures	the	fraction	of	within-	community	links	minus	the	expected	
value	of	 the	 same	quantity	 in	 a	 network	with	 the	 same	 community	
divisions	 but	 random	 connections	 between	 the	 nodes	 (Newman	 &	
Girvan,	2004).	Using	the	methods,	compartments	have	been	detected	
in	different	 kinds	of	networks,	 such	as	 social	 networks	 (Newman	&	
Girvan,	 2004),	 the	 Internet	 (Simonsen,	Maslov,	 Sneppen,	&	 Eriksen,	
2003),	 and	 biochemical	 networks	 (Ravasz,	 Somera,	Mongru,	 Oltvai,	
&	Barabási,	 2002).	 Ecologists	 have	 tried	 to	 apply	 these	methods	 to	
ecological	 networks	 (Krause	 et	al.,	 2003;	 Leger,	 Daudin,	 &	 Vacher,	
2015;	Stouffer	&	Bascompte,	2011);	however,	food	webs	have	at	least	
two	special	characteristics:	 (1)	The	distribution	of	the	link	weights	is	
largely	uneven	(O’Gorman,	Jacob,	Jonsson,	&	Emmerson,	2010);	and	
(2)	 food	web	 links	 have	 explicit	 directions	 from	 low	 to	high	 trophic	
levels.	These	characteristics	provide	a	cautionary	note	when	interpret-
ing	 results	 using	methods	 designed	 for	 undirected	 and	 unweighted	
networks	(Zhao	et	al.,	2016).	Moreover,	the	methods	borrowed	from	
network	theory	do	little	to	improve	our	understanding	of	the	under-
lying	mechanisms	of	compartmentalization	in	food	webs.	Therefore,	a	
method	based	on	ecological	context	is	urgently	needed.

An	energy	channel	is	a	collection	of	energy	or	material	fluxes	that	
start	with	a	basal	resource	and	end	with	a	top	predator	(Moore	&	de	
Ruiter,	2012),	which	plays	an	important	role	in	maintaining	both	food	
web	structure	and	functioning.	Different	energy	channels	within	the	
same	food	web	may	exhibit	different	traits,	for	example	turnover	rate	
(Rooney	et	al.,	2006).	For	example,	in	marine	food	webs,	phytoplank-
ton	 energy	 channels	were	 shown	 to	 have	 consistently	 higher	 turn-
over	rates	than	detrital	energy	channels	(Rooney,	McCann,	&	Moore,	
2008).	The	coupling	of	fast	(e.g.,	phytoplankton)	and	slow	(e.g.,	detri-
tal)	channels	is	believed	to	contribute	to	food	web	stability	(Rooney	
&	McCann,	2012;	Rooney	et	al.,	2006,	2008).	Based	on	taxonomical	
aggregation,	 two	 compartments	 were	 defined:	 the	 detritus-	based	
“brown”	 subweb	 and	 the	 producer-	based	 “green”	 subweb	 (Butler,	
Gotelli,	 &	 Ellison,	 2008;	 Zou,	 Thébault,	 Lacroix,	 &	 Barot,	 2016).	
However,	this	separation	is	oversimplistic,	and	the	compartmentaliza-
tion	based	on	energy	channels	is	not	fully	explored.	Here,	we	propose	
a	new	method	for	detecting	compartments,	where	we	consider	one	
or	 several	 energy	 channels	 as	 a	 compartment.	Our	 first	 task	 in	 this	
study	was	to	test	whether	empirical	food	webs	could	be	significantly	
compartmentalized	using	our	method;	that	is,	whether	the	modularity	
of	the	compartmentalization	was	significantly	higher	than	what	was	
likely	to	occur	by	chance.

Theoretically,	 compartmentalization	 is	 believed	 to	 greatly	 in-
crease	 the	 stability	 and	 persistence	 of	 food	 webs	 (Krause	 et	al.,	
2003;	 Pimm,	 1979;	 Stouffer	 &	 Bascompte,	 2011).	 One	 possible	

mechanism	is	that	the	impacts	of	a	disturbance	can	be	buffered	by	
being	 retained	within	 a	 single	 compartment	 and	 rarely	 spread	 to	
other	compartments	(Krause	et	al.,	2003),	although	this	hypothesis	
has	not	 been	 tested	well.	 In	 the	 study	by	Krause	 et	al.	 (2003),	 an	
assumption	was	made	to	mimic	the	effects	of	species	 loss:	After	a	
taxon	was	removed,	all	 interactions	with	this	taxon	were	removed,	
and	the	predators	on	this	taxon	had	their	interaction	strengths	as-
sociated	with	this	taxon	redistributed	proportionally	to	their	 inter-
actions	with	other	prey.	This	assumption	 is	simple	 (as	admitted	by	
Krause	 et	al.).	 It	 cannot	 track	 the	 biomass	 change	 after	 taxon	 re-
moval,	as	well	as	the	change	in	interaction	strength	associated	with	
the	biomass	change.	Moreover,	they	compared	the	removal	effects	
of	 only	 two	 taxa,	 which	 may	 underrepresent	 the	 overall	 pattern.	
Our	second	task	was	to	test	the	hypothesis	that	compartmentaliza-
tion	could	increase	food	web	stability	using	a	dynamical	approach.	
Finally,	we	compared	our	algorithm	based	on	energy	channels	with	
some	other	commonly	used	compartment	detection	algorithms.

2  | MATERIALS AND METHODS

2.1 | Quantitative food webs

We	analyzed	28	of	the	50	aquatic	food	webs	from	a	recently	pub-
lished	database	(see	Table	1;	Salas	&	Borrett,	2011;	Borrett,	2013),	
which	is	archived	in	the	“enaR”	package	(Borrett	&	Lau,	2014)	in	R.	
Twenty	food	webs	were	excluded	because	they	contained	less	than	
twenty	taxa	and	thus	were	deemed	too	small.	The	other	two	food	
webs	were	 excluded	 because	 they	 did	 not	 include	microbial	 pro-
cesses.	The	data	for	each	food	web	include	a	list	of	taxa,	the	carbon	
biomass	of	 each	 taxon	 (g	C	m−2),	 the	 carbon	per	 unit	 time	of	 im-
port,	export,	and	respiration	of	each	taxon	(g	C	m−2	day−1),	and	the	
carbon	flux	between	a	pair	of	taxa	(g	C	m−2	day−1).	Our	focal	food	
webs	 exhibit	 a	wide	 range	of	 taxon	 richness	 (S = 23–124).	Nodes	
represent	 species,	 trophic	 guilds,	 functional	 groups,	 or	 nonliving	
components	of	 the	system	 in	which	matter	 is	stored.	The	ecosys-
tems	were	 considered	 to	 be	 in	 steady	 state,	 as	 in	 previous	 stud-
ies	(Borrett,	2013;	Borrett	&	Salas,	2010;	Ulanowicz,	2004),	which	
means	that	the	flows	of	energy	entering	and	leaving	a	given	node	
are	 equal.	 Due	 to	 the	 errors	 and	 approximations	 associated	with	
some	 measures,	 however,	 some	 food	 webs	 were	 initially	 unbal-
anced,	that	is,	energy	entering	a	taxon	did	not	necessarily	balance	
the	output	exactly.	These	food	webs	were	balanced	using	the	AVG2	
algorithm	using	established	procedures	in	Matlab	7.12.0	(Allesina	&	
Bondavalli,	2003).

2.2 | Measure of modularity

The	classic	definition	of	modularity	proposed	by	Newman	(2004a,b)	
was	extended	by	Arenas,	Duch,	Fernández,	and	Gómez	(2007)	to	the	
scenario	of	weighted	directed	networks	as	follows:

(1)
Q=

1

2W

∑

i

∑

j

(

wij−
wout
i

win
j

2W

)

δ
(

ci,cj
)



     |  311ZHAO et Al.

where wij	 is	the	strength	of	the	link	(i.e.,	the	carbon	flux)	from	 i to j,	
and	wj

in	and	wi
out	are	the	input	and	output	strengths	of	nodes	i	and	j,	

respectively:

The	total	strength	of	the	link	is:

The	Kronecker	delta	function	δ	(ci,	cj)	takes	the	value	of	1	if	ci = cj 
and	otherwise	0,	where	ci	is	the	community	to	which	node	i	is	assigned.	

(2)wout
i

=
∑

j

wij

(3)
win
j
=
∑

i

wij

(4)2W=
∑

i

wout
i

=
∑

j

win
j
=
∑

i

∑

j

wij

TABLE  1 Compartment	analysis	of	28	empirical	food	webs.	For	each	food	web,	S	is	the	number	of	taxa;	SC	is	the	number	of	detected	
compartments;	Q	is	the	empirical	modularity;	p	is	the	probability	that	the	modularity	of	a	simulated	food	web	in	Monte	Carlo	simulations	is	
higher	than	Q;	and	the	last	two	columns	indicate	the	mean	and	standard	error	(SEM)	of	modularity	in	Monte	Carlo	simulations.	Significant	Q 
values	are	marked	in	bold,	where	the	significance	level	was	α	=	0.05/28	=	0.0018	after	Bonferroni	correction

Index Name S Sc Q p

Monte Carlo

Mean SEM

1 Chesapeake	Bay 36 3 0.39 <.001 −0.0052 0.0045

2 Cypress	(dry) 68 3 0.13 .006 0.0004 0.0005

3 Cypress	(wet) 68 3 0.15 .009 −0.0002 0.0005

4 Florida	Bay	(dry) 124 4 0.10 <.001 0.0081 0.0034

5 Florida	Bay	(wet) 124 4 0.10 <.001 0.0008 0.0035

6 Georges	Bank 31 2 0.10 <.001 −0.0020 0.0033

7 Graminoids	(dry) 66 3 0.05 <.001 0.0019 0.0023

8 Graminoids	(wet) 66 3 0.03 <.001 0.0008 0.0017

9 Gulf	of	Maine 31 2 0.10 .001 −0.0006 0.0033

10 Lake	Oneida	(pre-	ZM) 74 2 0.08 <.001 −0.0008 0.0004

11 Lake	Oneida	(post-	ZM) 76 3 0.08 .018 −0.0007 0.0020

12 Mangroves	(dry) 94 3 0.02 <.001 −0.0009 0.0005

13 Mangroves	(wet) 94 3 0.03 <.001 0.0001 0.0005

14 Middle	Atlantic	Bight 32 2 0.10 .001 −0.0013 0.0029

15 Narragansett	Bay 32 2 0.10 .019 −0.0026 0.0025

16 Neuse	Estuary	(early	summer	
1997)

24 3 0.27 <.001 0.0100 0.0059

17 Neuse	Estuary	(late	summer	
1997)

27 3 0.29 <.001 −0.0009 0.0069

18 Neuse	Estuary	(early	summer	
1998)

24 3 0.33 <.001 −0.0063 0.0060

19 Neuse	Estuary	(late	summer	
1998)

25 3 0.24 <.001 −0.0057 0.0063

20 Northern	Benguela	Upwelling 23 2 0.08 .004 0.0054 0.0044

21 Southern	New	England	Bight 33 2 0.11 <.001 −0.0028 0.0034

22 St.	Marks	Seagrass,	site	1	
(January)

43 4 0.20 <.001 0.0018 0.0021

23 St.	Marks	Seagrass,	site	1	
(February)

45 4 0.16 <.001 −0.0003 0.0024

24 St.	Marks	Seagrass,	site	2	
(January)

40 3 0.19 <.001 −0.0004 0.0020

25 St.	Marks	Seagrass,	site	2	
(February)

46 3 0.17 <.001 −0.0015 0.0022

26 St.	Marks	Seagrass,	site	3	
(January)

32 4 0.21 .001 −0.0011 0.0024

27 St.	Marks	Seagrass,	site	4	
(February)

46 3 0.20 <.001 −0.0028 0.0033

28 Sylt-	Romo	Bight 59 5 0.20 <.001 0.0026 0.0033
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Nonzero	 values	 of	 Q	 indicate	 deviations	 from	 randomness,	 and	 a	
higher	value	of	Q	indicates	the	food	web	is	more	compartmentalized.

2.3 | Compartment identification

Four	steps	were	applied	in	our	method	to	detect	the	compartments	of	
a	food	web.	First,	a	food	web	with	S	taxa	can	be	represented	by	an	S-	
by-	S	 flow	 matrix	 F = [Fij];	 the	 value	 of	 the	 element	 Fij	 means	 the	
amount	of	carbon	passing	from	taxon	 i	 to	 taxon	 j	per	unit	area	and	
time.	Based	on	the	flow	matrix	(Figure	1a),	we	calculated	the	reliance	
of	each	node	on	energy	derived	from	producers	or	decomposers,	that	
is,	 the	 proportion	 of	 carbon	 derived	 from	 basal	 nodes,	 %BRC 
(Figure	1b),	using	a	method	proposed	by	Rooney	et	al.	(2008):

where n	is	the	number	of	resources	consumed	by	the	consumer,	PC	is	
the	proportion	of	the	consumer	diet	accounted	for	by	a	resource,	and	

%BRR	is	the	proportion	of	carbon	derived	from	the	basal	resource	in	
the	resource	being	consumed.

Second,	 the	nodes	with	 the	same	dominant	energy	origins	were	
put	into	the	same	subgroup.	For	example,	in	the	Chesapeake	Bay	eco-
system,	five	subgroups	were	formed	(Figure	1c).	Here,	each	subgroup	
corresponds	to	one	of	the	five	basal	nodes,	and	the	nodes	in	a	given	
subgroup	obtained	most	of	their	energy	from	the	same	basal	node.

Third,	we	 tested	whether	 the	 subgroups	 could	 be	 optimized	 by	
merging	them	into	one	compartment.	Here,	we	calculated	the	differ-
ence	in	modularity	ΔQ = Qafter–Qbefore,	where	Qbefore	and	Qafter	equate	
to	 the	modularity	 before	 and	 after	 merging,	 respectively.	 By	 trying	
different	 combinations	of	 subgroup	pairs,	we	created	a	matrix,	with	
the	element	ΔQij	 indicating	 the	difference	 in	modularity	after	merg-
ing	subgroup	i	and	subgroup	j	minus	modularity	before	merging	them	
(Figure	1d).

Fourth,	if	ΔQ	>	0,	the	merging	was	accepted	as	it	could	increase	Q 
and	otherwise,	the	merging	was	rejected	(Figure	1e).	Repeat	steps	3	
and	4	until	all	values	of	ΔQ ≤	0.	With	this	four-	step	method,	we	were	

(5)%BRC=

n
∑

1

PC×%BRR

F IGURE  1  Illustration	of	the	method	used	to	detect	compartments	in	a	food	web.	Panels	(a),	(c),	and	(e)	show	how	a	simplified	feeding	matrix	
changes	at	different	stages	of	the	compartmentalization	procedure;	the	rows	correspond	to	resources,	while	the	columns	equate	to	consumers.	
The	first	step	of	the	procedure	is	to	calculate	the	proportion	of	energy	gained	from	different	basal	resources	by	each	node	in	the	food	web,	
as	shown	in	panel	(b),	where	the	colors	correspond	to	the	five	different	basal	resources.	All	nodes	with	the	same	dominant	energy	component	
are	placed	in	the	same	subgroup,	which	is	G1–G5	in	this	example,	as	shown	in	panel	(c).	The	next	step	is	to	calculate	ΔQ	values	for	possible	
merging	of	subgroups,	as	shown	in	panel	(d).	Finally,	two	subgroups	are	merged	into	one	compartment	if	ΔQ	>	0,	as	shown	in	panel	(e).	Three	
compartments	(A,	B,	and	C)	were	detected	in	this	simplified	example	from	Chesapeake	Bay
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ΔQ G1 G2 G3 G4 G5

G1 0 0.044 –0.090 –0.001 –0.007
G2 0.044 0 –0.117 –0.001 –0.038
G3 –0.090 –0.117 0 0.005 –0.254
G4 –0.001 –0.001 0.005 0 –0.002
G5 –0.007 –0.038 –0.254 –0.002 0
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able	to	detect	the	number	of	compartments	and	nodes	within	them	for	
all	the	28	food	webs	that	we	investigated.

2.4 | Monte Carlo simulations

To	 test	whether	 the	 concentration	 of	 interactions	within	 identified	
compartments	was	greater	than	what	was	likely	to	occur	by	chance,	
we	 determined	 the	 statistical	 significance	 of	 the	 modularity	 using	
Monte	Carlo	simulations.	For	each	simulation,	we	randomly	reassigned	
interactions,	constraining	the	sum	of	each	column	in	the	carbon-	flow	
matrix	to	be	equal	to	that	of	the	original	food	web	(where	rows	rep-
resented	prey	and	columns	represented	predators),	as	in	Krause	et	al.	
(2003).	The	detailed	approach	is	as	follows:	 (1)	for	column	 i	 (i.e.,	for	
predator	 i),	we	first	calculated	the	sum	of	the	interaction	weight	Wi; 
(2)	to	determine	the	prey	of	predator	i	in	the	new	food	web,	we	chose	
ni	prey	randomly	from	a	pool	of	S−1	species	where	ni	is	the	number	of	
prey	for	predator	i	in	the	original	food	web,	and	S−1	is	the	number	of	
species	excluding	predator	i;	(3)	we	generated	ni	random	numbers,	x1,	
x2,	…,	xni,	each	of	which	varied	from	0	to	1;	and	(4)	the	weight	of	in-
teractions	between	the	jth	prey	and	predator	i	should	be	Wixj∕

∑ni

1
xt.  

This	ensured	that	the	simulated	food	webs	had	the	same	number	of	
predators,	 the	 same	 number	 and	 weight	 of	 interactions	 associated	
with	a	predator,	and	the	same	number	and	weight	of	realized	inter-
actions	as	the	original	food	web.	We	then	calculated	the	modularity	
of	the	simulated	food	web	on	the	compartments	obtained	from	the	
method	we	proposed.	This	process	was	repeated	1,000	times	to	ob-
tain	a	sampling	distribution	of	modularity	against	which	we	compared	
the	empirical	modularity.

2.5 | Food web dynamics

To	 test	 the	 hypothesis	 that	 compartmentalization	would	 retain	 the	
impacts	of	a	disturbance	within	a	single	compartment	and	with	 less	
spread	to	other	compartments,	we	simulated	the	effects	of	randomly	
removing	one	node,	by	employing	a	food	web	dynamics	model	(Zhang,	
Zhao,	Tian,	&	Huang,	2016;	Zhao	et	al.,	2016).	This	model	was	con-
structed	based	on	energy	budgets	indexing	the	carbon	fluxes	entering	
and	leaving	each	taxon.	The	taxa	in	each	of	the	studied	ecosystems	
can	be	divided	into	four	categories:	producers,	consumers,	decompos-
ers,	and	detritus.

The	change	in	biomass	of	producers	can	be	described	as:

Here,	“pro”	are	producer	taxa,	“herbi”	are	herbivorous	taxa,	r	is	the	
maximum	specific	or	intrinsic	growth	rate,	K	is	the	carrying	capacity,	d 
is	the	specific	death	rate,	and	Φij	is	the	functional	response	when	taxon	
j	consumes	taxon	i,	which	was	set	to	follow	a	nonlinear	form	as	follows	
(Hudson	&	Reuman,	2013):

Here,	yj	is	the	maximum	consumption	rate	of	taxon	j,	ωij	is	the	pref-
erence	of	taxon	j	for	taxon	i,	Hj	is	the	half-	saturation	density,	qj	is	the	
predator	interference	coefficient,	and	h	is	the	hill	exponent	that	regu-
lates	the	shape	of	the	curve	from	Holling	type	II	(h = 1)	to	Holling	type	
III	(h = 2).

The	 change	 in	 biomass	 of	 consumers	 (including	 herbivores	 and	
predators)	can	be	depicted	as:

where,	“res”	are	resource	taxon,	“pred”	are	predatory	taxon,	a	 is	 the	
assimilation	efficiency,	and	x	is	the	respiration	rate.

The	change	in	biomass	of	decomposers	can	be	depicted	as:

where	“det”	are	detrital	taxa.
In	some	food	webs,	detritus	has	been	divided	into	separate	taxa.	

The	change	in	biomass	of	each	detrital	taxa	can	be	described	as:

Here,	 “con”	are	consumer	 taxa,	 “dec”	are	decomposer	 taxa,	pji	 is	
the	proportion	of	converted	detritus	i	to	the	total	amount	of	detritus	
converted	from	taxon	j,	e = (1–a)	is	the	egestion	rate,	and	cji	is	the	con-
version	coefficient	 from	detrital	 taxon	 j	 to	detrital	 taxon	 i.	Here,	we	
consider	that	the	amount	of	feces,	that	is,	the	unassimilated	fraction	
of	prey	killed,	is	proportional	to	the	amount	of	predation	(Moore	&	de	
Ruiter,	2012;	Moore,	De	Ruiter,	&	Hunt,	1993;	de	Ruiter,	Neutel,	&	
Moore,	1995).

The	 setting	 and	 calculation	 of	 the	 parameters	 from	 carbon	 flux	
data	can	be	found	in	Appendix	S1	and	Table	S1.	We	used	the	Adaptive	
Runge–Kutta	method	to	perform	1,000	numerical	simulations	for	each	
food	web.	 In	 each	 simulation,	 the	empirical	 biomass	data	were	em-
ployed	to	give	the	initial	biomass	values.	First,	1,000	days	were	sim-
ulated	to	allow	transient	dynamics	caused	by	 initial	effects	 to	settle	
down	 (Hudson	 &	 Reuman,	 2013).	 The	 average	 biomass	 density	 for	
each	node	during	the	next	1,000	simulated	days	was	recorded	as	Bi

+. 
We	then	randomly	removed	a	node	and	simulated	another	1,000	days,	
recording	the	average	biomass	density	for	each	node	during	this	pe-
riod	as	Bi

−.

2.6 | Removal effects

The	removal	effect	(RE) value of the	loss	of	node	k	on	node	i	was	meas-
ured	according	to	Brose,	Berlow,	and	Martinez	(2005)	as:

where Bk	 is	 the	biomass	density	of	 the	node	 to	be	 removed	before	
its	removal,	while	Bi

+	and	Bi
−	are	the	biomass	densities	of	 i	with	and	

without	 k,	 respectively.	 Adding	 one	 to	 the	 biomass	 densities	 pre-
vents	very	low	Bk	from	generating	artificially	large	values	of	RE	(Brose	

(6)
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et	al.,	2005).	The	within-	compartment	RE	is	the	average	RE	value	for	
all	 the	nodes	within	 the	same	compartment	as	k,	and	the	between-	
compartment	RE	is	the	average	RE	value	for	all	the	nodes	in	different	
compartments	to	k.

2.7 | Comparison with other algorithms

To	test	the	performance	of	our	algorithm	based	on	energy	channels,	
we	 compared	 the	modularity	 values	 that	were	 generated	with	 two	
other	 commonly	 used	 algorithms.	 The	 Girvan–Newman	 algorithm	
(Newman	&	Girvan,	2004)	first	estimates	the	edge	betweenness	score	
as	the	number	of	shortest	paths	through	an	edge.	This	algorithm	then	
gradually	removes	the	edge	with	the	highest	edge	betweenness	score	
to	produce	a	dendrogram	of	 removals.	This	dendrogram	 is	 then	cut	
at	the	point	which	gives	the	highest	value	of	modularity.	The	second	
algorithm	finds	densely	connected	subgraphs	by	performing	random	
walks	 (Pons	&	Latapy,	2005),	where	each	walk	 tends	 to	 stay	 inside	
communities	instead	of	jumping	to	other	communities.

2.8 | Statistical analyses

To	compare	the	two	categories	of	RE	values	(within-	compartment,	and	
between-	compartment),	we	employed	paired	t	test.	To	compare	the	
performance	of	 the	 three	compartmentalization	algorithms,	we	em-
ployed	a	linear	mixed	effects	model	(LME)	with	a	maximum-	likelihood	
estimator	(function	“lme”	with	“method = ML”	within	the	“nlme”	pack-
age	in	R).	Food	web	identity	was	included	in	the	model	as	a	random	
factor	 to	 correct	 for	 differences	 between	 study	 systems.	 Post	 hoc	
comparisons	were	applied	using	the	Tukey	HSD	test	at	α = 0.05 level 
of	significance	(function	“glht”	within	the	“multcomp”	package	in	R).

3  | RESULTS

First,	we	showed	a	detailed	example	of	one	food	web:	the	Chesapeake	
Bay.	 This	 ecosystem	 contained	 31	 consumer	 and	 decomposer	 taxa	
and	five	basal	taxa:	phytoplankton,	benthic	diatoms,	dissolved	organic	
nutrient,	suspended	particulate	nutrient,	and	sediment	particulate	nu-
trient	 (Figure	2).	Among	all	 the	31	consumer	 and	decomposer	 taxa,	
the	 energy	of	 13	 taxa	was	mainly	 supplied	 by	 sediment	 particulate	
nutrient,	while	suspended	particulate	nutrient	was	the	major	supplier	
for	another	12	taxa	(Figure	1b),	phytoplankton	was	the	major	supplier	
for	 four	 taxa,	 dissolved	organic	 nutrient	was	 the	major	 supplier	 for	
two	taxa,	and	benthic	diatoms	were	not	a	major	supplier	for	any	taxa.	
Three	 compartments	were	detected,	 one	of	which	was	mainly	 sus-
tained	by	suspended	particulate	nutrient	and	phytoplankton;	another	
compartment	was	mainly	sustained	by	sediment	particulate	nutrient	
but	also	contained	benthic	diatoms,	while	the	final	compartment	con-
tained	 just	 three	 taxa:	 free	 bacteria,	 heterotrophic	microflagellates,	
and	dissolved	organic	nutrient.

The	 compartments	 of	 all	 28	 food	 webs	 (Appendix	 S2)	 showed	
three	 types	 of	 compartmentalization.	 In	 the	 first	 type,	 pelagic	 taxa	
(supported	 by	 phytoplankton)	 and	 benthic	 taxa	 (supported	 by	

sediment	bacteria	or	benthic	algae)	were	separated.	Sometimes,	 the	
taxa	 supported	 by	 sediment	 bacteria	were	 also	 separated	 from	 the	
taxa	 supported	 by	 benthic	 algae.	 Fifteen	 ecosystems	 showed	 this	
type	 of	 compartmentalization,	 including	 Chesapeake	 Bay,	 Georges	
Bank,	Gulf	of	Maine,	Lake	Oneida	 (pre-	ZM),	Lake	Oneida	 (post-	ZM),	
Mangroves	(dry),	Mangroves	(wet),	Middle	Atlantic	Bight,	Narragansett	
Bay,	Neuse	Estuary	(early	summer	1997),	Neuse	Estuary	(late	summer	
1997),	Neuse	Estuary	(early	summer	1998),	Neuse	Estuary	(late	sum-
mer	1998),	Northern	Benguela	Upwelling,	and	Southern	New	England	
Bight.	The	second	type	consisted	of	three	compartments,	containing	
taxa	supported	by	macrophytes,	phytoplankton,	or	sediment	bacteria.	
Eleven	ecosystems	showed	this	type	of	compartmentalization,	includ-
ing	Florida	Bay	(dry),	Florida	Bay	(wet),	Graminoids	(dry),	Graminoids	
(wet),	St.	Marks	Seagrass,	site	1	(January),	St.	Marks	Seagrass,	site	1	
(February),	St.	Marks	Seagrass,	site	2	(January),	St.	Marks	Seagrass,	site	
2	(February),	St.	Marks	Seagrass,	site	3	(January),	St.	Marks	Seagrass,	
site	4	(February),	and	Sylt-	Romo	Bight.	The	third	type	of	compartmen-
talization	separated	aquatic	from	terrestrial	communities,	correspond-
ing	to	just	two	ecosystems:	Cypress	(dry)	and	Cypress	(wet).

We	detected	between	two	and	five	compartments	in	each	of	the	
28	food	webs.	Over	80%	of	them	yielded	modularity	that	was	signifi-
cantly	greater	than	would	be	expected	by	chance	alone	(Table	1).	The	
modularity	Q	varied	from	0.02	to	0.39,	while	the	modularity	values	in	
Monte	Carlo	simulations	varied	from	−0.006	to	0.010.

In	 the	 node	 deletion	 experiment	 (Figure	3),	 the	 within-	
compartment	RE	exhibited	higher	value	(0.030	±	0.004;	mean	±	SEM)	
than	between-	compartment	RE	(0.015	±	0.003),	and	the	difference	is	
significant	(paired	t	test:	t27	=	3.727,	p < .001).

Our	 algorithm	 based	 on	 energy	 channels	 generated	 the	 highest	
modularity	 (0.150	±	0.017;	 mean	±	SEM)	 across	 the	 28	 food	 webs,	
compared	with	algorithms	of	edge	betweenness	(0.119	±	0.020)	and	
random	walk	 (0.137	±	0.019).	 Different	 algorithm	 generated	 signifi-
cantly	 different	 modularity	 (LME:	 F2,54	=	3.584,	 p = .035;	 Figure	4).	
Here,	our	algorithm	generated	significantly	higher	modularity	than	the	
algorithm	of	edge	betweenness	 (Tukey	test:	z = 2.667,	p = .023),	but	
not	the	algorithm	of	random	walk	(Tukey	test:	z = 1.128,	p = .778).

4  | DISCUSSION

Most	food	webs	in	our	study	were	found	to	be	strongly	compartmen-
talized,	 in	 agreement	with	 previous	 research	 (Guimera	 et	al.,	 2010;	
Krause	et	al.,	2003;	Rezende	et	al.,	2009).	The	compartmentalization	
of	food	webs	has	been	claimed	to	arise	from	subhabitats	within	the	
environment	(Krause	et	al.,	2003)	or	because	of	phylogenetic	patterns	
within	the	community	(Cattin,	Bersier,	Banašek-	Richter,	Baltensperger,	
&	Gabriel,	2004;	Rezende	et	al.,	2009).	Here,	we	demonstrated	that	
energy	 channels	 could	 be	 another	 origin	 of	 compartmentalization.	
Being	compartmentalized	is	to	a	community’s	advantage	as	compart-
ments	act	to	buffer	the	effects	of	perturbation.

Energy	 channels	 derived	 from	 producers	 and	 detritus	 (namely	
“green”	 and	 “brown”	 food	 webs)	 have	 been	 investigated	 in	 recent	
studies	 (Butler	et	al.,	2008;	Rooney	&	McCann,	2012;	Rooney	et	al.,	



     |  315ZHAO et Al.

2006,	2008).	Most	of	 these	 studies	 focused	on	 the	 coupling	of	 the	
two	channels,	which	was	believed	to	increase	the	stability	of	ecosys-
tems.	In	these	studies,	phytoplankton	and	detritus	were	chosen	as	the	
origin	of	energy,	and	each	 food	web	was	divided	 into	 two	subwebs	
based	on	 their	 energy	origin;	 however,	 this	might	be	an	oversimpli-
fication.	Based	on	our	results,	different	types	of	detritus	may	sustain	
very	 different	 compartments.	 For	 example,	 suspended	 detritus	 and	
sediment	detritus	sustained	different	compartments	in	most	of	our	28	
ecosystems.	On	the	other	hand,	phytoplankton	may	sustain	the	same	
compartment	with	 some	 types	 of	 detritus	 (e.g.,	 suspended	 detritus	

or	dissolved	organic	carbon).	Using	a	more	elaborate	partition	of	en-
ergy	channels	may	provide	new	insights	into	studying	the	coupling	of	
channels.

Across	all	28	food	webs	in	our	study,	the	number	of	compartments	
varied	 from	 two	 to	 five.	This	 is	highly	 consistent	with	prior	 studies,	
where	 these	 numbers	 varied	 from	 one	 to	 six	 across	 17	 food	webs	
(three	of	them	overlap	with	ours;	Krause	et	al.,	2003)	or	from	two	to	
three	across	nine	food	webs	(one	of	them	overlap	with	ours;	Gauzens,	
Thébault,	 Lacroix,	 &	 Legendre,	 2015).	However,	 such	 small	 number	
did	not	provide	support	for	the	original	argument	of	complex	system	

F IGURE  2 Graphical	display	of	the	compartments	in	the	Chesapeake	Bay	ecosystem.	Each	of	the	numbered	node	indicates	a	taxon,	with	
names	corresponding	to	the	numbers	listed	in	the	table.	Links	between	the	36	taxa	are	weighted	by	carbon	flux,	while	the	various	colors	
indicate	different	compartments

a

b

c

ID Name ID Name ID Name
1 Phytoplankton 12 Mya Arenaria 23 Menhaden
2 Bacteria In Suspended Poc 13 Oysters 24 Shad
3 Bacteria In Sediment Poc 14 Other Polychaetes 25 Croaker
4 Benthic Diatoms 15 Nereis 26 Hogchoker
5 Free Bacteria 16 Macoma Spp. 27 Spot
6 Heterotrophic Microflagel 17 Meiofauna 28 White Perch
7 Ciliates 18 Crustacean Deposit Feeder 29 Ca�ish
8 Zooplankton 19 Blue Crab 30 Bluefish
9 Ctenophores 20 Fish Larvae 31 Weakfish

10 Sea Ne�le 21 Alewife & Blue Herring 32 Summer Flounder
11 Other Suspension Feeders 22 Bay Anchovy 33 Striped Bass
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assembly,	suggested	by	Simon	(1962).	We	attribute	the	small	number	
of	compartments	to	three	reasons.	First,	the	level	of	taxonomical	ag-
gregation	should	have	an	influence,	especially	for	basal	taxa.	For	ex-
ample,	 suspended	detritus	 and	 sediment	detritus	were	 separated	 in	
most	food	webs	and	in	food	webs	where	they	were	not	separated,	and	
detritus	was	considered	as	a	single	node;	that	is,	there	would	likely	be	
an	 extra	 compartment	 if	 detritus	was	 separated	 into	 different	 taxa.	
Second,	 there	 are	 different	 definitions	 for	 grouping	 species	 within	

food	webs,	 such	 as	 trophic	 groups	 (i.e.,	 groups	 of	 species	 that	 are	
functionally	similar)	and	trophic	modules	or	motifs	(i.e.,	the	basic	build-
ing	blocks	of	food	webs,	usually	but	not	necessarily	containing	three	
nodes).	Generally	food	webs	contain	a	large	number	of	trophic	groups	
(Gauzens	et	al.,	2015)	or	trophic	modules	(Bascompte,	2009;	Kondoh,	
2008).	Third,	the	scale	of	the	systems	is	different.	Generally	food	webs	
have	smaller	sizes	(e.g.,	23–124	taxa	in	our	study)	than	other	networks.	
The	statement	raised	by	Simon	(1962)	refers	to	systems	that	are	much	
larger	with	many	different	parts,	and	therefore,	it	is	not	surprising	that	
the	number	of	compartments	found	here	is	relatively	small.	In	addition,	
food	webs	are	treated	as	a	weighted	and	directed	graph,	which	means	
the	compartments	are	restricted	by	the	underlying	tree	structure	due	
to	the	direction	of	energy	flow.	This	might	also	contribute	to	the	small	
number	of	compartments	found.

Our	algorithm	based	on	energy	channels	generated	either	similar	
or	higher	values	of	modularity	when	compared	with	commonly	used	
community	detection	algorithms	in	complex	network	studies,	that	is,	
algorithms	based	on	edge	betweenness	(Newman	&	Girvan,	2004)	and	
random	walk	(Pons	&	Latapy,	2005).	This	shows	the	high	feasibility	of	
our	 algorithm	and	 the	high	 compartmentalization	of	 different	 chan-
nels,	especially	considering	that	the	other	two	algorithms	use	optimi-
zation	to	maximize	the	value	of	modularity.

Based	 on	 our	 results,	 several	 pairs	 of	 energy	 channels	 could	 be	
regarded	as	the	compartments	of	a	food	web,	including	pelagic	versus	
benthic	channels,	macrophyte-	derived	versus	phytoplankton-	derived	
channels,	 bacteria-	derived	 versus	 algae-	derived	 channels,	 and	 ter-
restrial	 (i.e.,	 leaf/wood-	derived)	versus	 aquatic	 channels.	This	 is	 not	
in	conflict	with	the	argument	that	compartments	arise	from	subhab-
itats	(Krause	et	al.,	2003;	Pimm,	1991).	Each	habitat	requires	a	set	of	
adaptations	from	its	component	species,	which	may	preclude	a	large	
number	of	interactions	between	species	in	different	habitats	and	en-
courage	more	within-	habitat	 interactions	 (Pimm,	1991),	 that	 is,	 cre-
ating	habitat-	based	compartments.	Meanwhile,	different	habitats	can	
sustain	different	energy	channels,	for	example,	pelagic	versus	benthic	
and	 terrestrial	versus	 aquatic.	Moreover,	 there	 can	 still	 be	 different	
compartments	within	the	same	subhabitat,	for	example,	benthic	bac-
teria	and	benthic	phytoplankton,	and	sometimes	different	subhabitats	
may	share	the	same	energy	channel,	depending	on	the	scale	of	sub-
habitats.	This	suggests	that	energy	channels	and	subhabitats	may	both	
contribute	 to	 the	 compartmentalization	 of	 food	webs.	 Besides,	 our	
results	appear	to	emphasize	the	physical	separation	between	benthic	
and	pelagic	habitats.	This	implies	the	limitation	of	our	datasets:	All	the	
28	food	webs	we	studied	are	aquatic	or	at	least	contain	aquatic	part.	
This	to	some	extent	limits	the	application	of	our	conclusions,	although	
it	would	be	 interesting	 to	apply	our	algorithm	to	terrestrial	or	other	
food	webs	and	compare	the	results	with	our	conclusions	in	this	study.

Basal	resources	 (producers	and	detritus)	often	exhibit	quite	vari-
able	traits,	such	as	habitat	type	and	body	size,	which	can	attract	very	
different	types	of	primary	consumers	(Rooney	&	McCann,	2012).	This	
characteristic	supports	diverse	energy	channels,	which	are	in	turn	cou-
pled	by	mobile	predators	at	higher	trophic	levels.	The	partition	of	food	
webs	in	our	study	suggests	that	this	coupling	is	not	so	strong	and	that	
the	 channels	 can	 be	 highly	 independent	 of	 one	 another.	Therefore,	

F IGURE  4 Modularity	of	the	28	food	webs	after	
compartmentalization	according	to	three	different	algorithms:	energy	
channel,	edge	betweenness,	and	random	walk.	Significant	differences	
between	pairs	of	categories	are	indicated	by	stars	on	lines	connecting	
the	pairs	(*p < .05;	NS,	not	significant),	detected	using	LME	and	Tukey	
post	hoc	tests

F IGURE  3 Removal	effects	(RE:	mean	±	SEM)	of	the	28	food	
webs.	Two	categories	of	RE	are	displayed:	within-	compartment	RE 
and	between-	compartment	RE.	Significant	difference	between	the	
categories	is	indicated	by	stars	(***p < .001),	detected	using	paired	t 
test
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potential	perturbations	should	be	constrained	within	a	single	compart-
ment,	as	suggested	in	previous	studies	(Krause	et	al.,	2003;	Stouffer	&	
Bascompte,	2011).	This	may	be	a	vital	stabilizing	characteristic	of	nat-
ural	ecosystems	in	the	face	of	accelerating	biodiversity	loss	(Barnosky	
et	al.,	2011).
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