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Abstract

Due to advances in high-performance computing technologies, computer graphics tech-

niques—especially those related to mesh simplification—have been noticeably improved.

These techniques, which have a strong impact on many applications, such as geometric

modeling and visualization, have been well studied for more than two decades. Recent

advances in GPUs have led to significant improvements in terms of speed and interactivity.

In this paper, we present a mesh simplification algorithm that benefits from the parallel

framework provided by recent GPUs. We customize the halfedge data structure for adaption

with the dynamic memory restrictions of CUDA. The proposed algorithm is fully parallelized

by employing a lock-free skip priority queue and a set of disjoint regions of the mesh. The

proposed technique accelerates the simplification process while preserving the topological

properties of the mesh. Some results and comparisons are provided to verify the efficiency

of the proposed algorithm.

Introduction

With the recent improvements in high-performance computing (HPC) technologies, notable

progress has been made in many fields, particularly in the computer graphics domain. Tasks

in the computer graphics domain depend on piecewise linear surfaces, and with the increas-

ingly strict requirements for quality, models with surfaces that contain hundreds of thousands

or millions of polygons can be encountered. Triangles are commonly employed polygons for

these surfaces, and the triangular mesh is one of the preferred boundary representations. In

general, these meshes have a finite number of triangles and a certain surface resolution. There-

fore, to overcome discretization issues, these meshes frequently contain a large number of

triangles. Modern scanners and computer-aided designs can be utilized to obtain complex

meshes. However, isosurface extraction techniques generate uniform and high-density meshes.

These meshes are employed in many applications, such as surface rendering and visualization

[1] and virtual reality [2].

Because of the restrictions of graphical devices, meshes are not easy to render and manipu-

late [3, 4]. Moreover, there is a tradeoff between the accuracy of a mesh and the processing
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time. Therefore, in addition to improving the capabilities of hardware, efficient decimation

algorithms are urgently needed [5, 6]. The principal objective of decimation techniques is to

minimize the number of triangles in the graphical pipeline such that the visual difference is

minimized; these techniques comprise a preprocessing phase. Mesh simplification has been

intensively explored for many decades [7, 8]; however, recent improvements in the computa-

tional power of HPC graphics processing units (GPUs) has shifted research to new and prom-

ising areas [9–13].

Contribution

In this paper, we present a parallel algorithm for mesh decimation. The proposed algorithm

relies on recent GPU advances and the efficient parallel computing platform offered by CUDA

[14]. We have accelerated surface simplification by parallelizing elementary operations (i.e.,

edge contraction). Our proposed algorithm is summarized in (Fig 1), which shows the four

basic steps of the algorithm.

1. A customized halfedge structure is developed to maintain the geometric and topological

information in the GPU. Storing the data structure entirely in the device eliminates the

memory overhead required to access the mesh during simplification.

2. A lock-free skip list is used as a customized priority queue to manipulate the list of candi-

date halfedges. These halfedges are ordered according to their contraction cost [15]. The

Fig 1. Overview of the proposed simplification process. (a) Stanford bunny, and (b) identification of disjoint parts;

(c), (d) simplified versions of the mesh. The percentage here reflects the number of vertices with respect to the number

of vertices of the original model.

https://doi.org/10.1371/journal.pone.0255832.g001
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use of this kind of synchronized queue avoids problems related to the race condition of the

concurrent threads manipulating the mesh.

3. A set of independent regions of the given mesh is constructed to enable the edge contrac-

tion operations along these regions to run in parallel. In fact, our partition scheme creates a

balanced set of partitions even if the input meshes vary in terms of density. Therefore, by

updating the topological information of the local neighborhoods after a set of parallel half-

edge contraction operations on independent areas, the topological consistency of the sim-

plified mesh is maintained.

4. A set of edge contraction operations is performed in parallel until the global stopping con-

dition (usually a target number of vertices) is reached.

The proposed algorithm has the following advantages:

• It can remove many edges in parallel at a reduced time cost compared to other serial and

parallel algorithms.

• It selects global minimum candidates for simplification, thereby guaranteeing the best geo-

metric quality.

The remainder of this article is structured as follows: “Related work” presents a brief review

of related research. “The proposed algorithm” starts with an overview of the proposed simplifi-

cation algorithm, followed by a description of the data structure and quadric error metric

(QEM) calculation in “Data structure” and “Halfedge contraction cost”, respectively. The

extended search list is discussed in “Customized priority queue”, while the spatial partitioning

of the mesh is given in “Disjoint partitioning”. We present our results in “Result and compari-

sons” and conclude the paper in “Conclusion”.

Related work

Various mesh simplification techniques have been proposed [5, 7, 16–20], and the HPC archi-

tectures of recent GPUs have inspired parallel techniques [9, 12, 13] that can be applied to

effectively simplify meshes. In the following two subsections, we summarize the key research

on serial and parallel methods.

Serial approaches

Serial approaches use iterative methods to simplify input meshes. These iterative methods are

classified into two main groups: vertex clustering and edge contraction. The key differences

between the two groups are as follows:

1. the selection of the candidate element to delete from the mesh;

2. the repositioning of the new or remaining elements after deletion.

The vertex clustering technique, which was first introduced by [21], voxelizes the mesh into

n3 voxels, where n is the dimension of the grid. Each nonempty voxel is replaced with a candi-

date vertex that represents the contained vertices [22]. Vertex clustering techniques are very

fast and have high decimation rates. However, these techniques produce low-quality simplified

meshes [7], as voxelization does not preserve the salient features of the surface.

In contrast, edge contraction techniques are based on the iterative application of a combi-

natorial operation that is referred to as edge contraction. This operation merges the two end-

points of a given edge into a new vertex by deleting one vertex and two (or one) triangles at a
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time. [7] introduced a simplification algorithm named QSlim that associates a geometric error

with each edge contraction operation. Low-cost edge contraction enables the production of

high-quality simplified meshes [23]. Simplification techniques using the QEM are a compro-

mise between two types of methods that are very fast but have poor quality and are very slow

but have high quality. Thus, both speed and quality are considered [24]. [25] described the ver-

tex clustering operation as a set of successive edge contraction operations of certain vertices. A

similar approach was proposed by [26]; their decimation algorithm is based on triangle col-

lapse operations. However, these operations require many instances to be manipulated during

an application.

Parallel approaches

Due to recent GPU advances, several techniques have aimed to transform serial approaches

into parallel frameworks [10, 12, 13, 27]. However, early approaches focused on concurrency

rather than quality [9].

Concerning the vertex clustering techniques, [9] implemented classic vertex clustering on

GPUs using geometry shaders. They developed a fast and parallel octree vertex clustering

method. However, the proposed approach suffers from the same quality problems faced by all

clustering techniques. The quality of the mesh is based mainly on the cell dimension utilized

during voxelization. [10, 28] distributed the simplification process between a central process-

ing unit (CPU) and a GPU. Swapping the execution between a CPU and a GPU causes high

memory overhead since data must be frequently transferred between these components.

Regarding edge contraction techniques, [29] adopted a progressive mesh data structure

[17] to be executed on a GPU, and [30] proposed an iterative parallel GPU-based edge contrac-

tion simplification technique. However, the identification of independent parts is not straight-

forward. In addition, postprocessing sorting and topological updates are applied after each

group of steps, which increases the processing time. Moreover, [13] implemented a full-side

iterative GPU simplification for triangular meshes that was faster than classic CPU iterative

techniques. Similarly, [12] introduced an iterative algorithm that was faster than the method of

[13]. However, the iterative nature of the two algorithms slows the simplification process. In

addition, the update of the QEM at each vertex after removal is not applicable. [31] proposed a

probabilistic selection scheme for edge contraction. They reduced the amount of required

memory by choosing to not use a global cost list for the ordered edges. However, the selection

of edges with the global minimum is not guaranteed, which affects the overall mesh quality.

The proposed algorithm

Our proposed algorithm mainly benefits from recent advances in CUDA [14]. The algorithm

can be summarized as a set of parallel simplification CUDA kernels that work on independent

areas of the mesh. The simplification process is summarized in the following four steps:

1. Adapt a halfedge data structure to maintain the input mesh entirely in the GPU memory.

2. Calculate the edge contraction cost, the QEM, for each halfedge.

3. Build a customized priority queue via a skip list of these costs to choose the candidate pair

of vertices to be contracted.

4. Construct the set of disjoint parts of the mesh using k-d tree space partitioning.

5. Apply the decimation process.

In the following subsections, we describe each step and their implementation issues.

PLOS ONE High-performance simplification

PLOS ONE | https://doi.org/10.1371/journal.pone.0255832 August 5, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0255832


Data structure

This subsection describes the proposed customization of the halfedge data structure. CUDA

does not currently support dynamic memory management for memory spaces that are allo-

cated in the global memory shared between the host and device sides. However, vertices, half-

edges and triangles are dynamically created and deleted during simplification. To overcome

this issue, we have customized the halfedge data structure [32] for adaption to CUDA memory

management restrictions.

Our customized halfedge data structure is based on three main substructures: cuVertex,

cuHalfedge and cuTriangle, as shown in (Fig 2). The input mesh is passed to the pipeline as

two vectors; from the vertices and triangles, we build an array of halfedges. Each cuVertex pro-

vides the following information:

• the geometric coordinates of the vertex (12 bytes);

• a handle for one of its incident halfedges (4 bytes);

• a handle for the container partition (see the “Disjoint partitioning” section) (4 bytes);

• its QEM (see the “Halfedge contraction cost” section) (44 bytes).

Similarly, each cuHalfedge provides the following information:

• a handle for its incident cuVertex (4 bytes);

• a handle for its incident cuTriangle (4 bytes);

• a handle for its opposite cuHalfedge (if it exists) (4 bytes);

Fig 2. The halfedge data structure. (a) A triangular mesh, (b) the vertex is identified by one of its incident halfedges,

(c) the triangle is identified by its three incident halfedges, and (d) the design of the data structure reflecting the

relationship between the three components.

https://doi.org/10.1371/journal.pone.0255832.g002
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• a handle for the next cuHalfedge in the incident triangle (4 bytes);

• its contraction cost (4 bytes).

Each cuTriangle provides a handle for one of its three incident halfedges (4 bytes). The

whole structure should reside in the GPU memory and be allocated from the CPU host side.

Moreover, if we have more than one GPU, then the data structure should be accessible for all

the GPUs’ kernels in addition to creating the CPU. The only solution is the use of CUDA’s

page migration engine, i.e., “cudaMallocManaged()”, which supports the unified memory

principle, as shown in (Fig 3). The unified memory provides a single address space that is

reachable from any CPU or GPU in the system. The unified memory may cause memory over-

head when migrating page tables from one physical memory to another physical memory. To

overcome this issue, we transfer all required data to the GPU memory before launching the

processing kernels using the CUDA application programming interface (API), “cudaMemPre-

fetchAsync()”. In our experiments, we use a single GPU; however, the application on multiple

GPUs is straightforward.

Now, we will describe how to build the vertex, halfedge and triangle relationships. (Algo-

rithm 1) describes how to build the cuHalfedge data structure from lists of vertices and trian-

gles. The first loop fills in the triangle and vertex for every halfedge. The first loop also assigns

the halfedge attribute for the associated triangles and vertices. The second and third loops

build the opposite relationships between related halfedges.

For the contraction operation, a pair of vertices is tested before contraction to ensure that it

does not violate the manifold properties of the mesh. Edge contraction is applied as depicted

in (Fig 4). The vertex h.opposite().vertex() is deleted, and h.vertex() becomes the new vertex.

Once the halfedge is contracted, the incident triangles and their halfedges are deleted, and the

Fig 3. The unified memory.

https://doi.org/10.1371/journal.pone.0255832.g003

Fig 4. The edge contraction operation. (a) The two candidate vertices, and (b) the mesh after contracting the

corresponding edge. The colored halfedges (red) and their incident triangles are marked as deleted.

https://doi.org/10.1371/journal.pone.0255832.g004
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opposite relationships between the other halfedges around the new vertex are updated. On the

other hand, since the data are allocated in the GPU global memory from the CPU host side,

the memory occupied by the mentioned arrays cannot be dynamically freed or resized during

simplification. To overcome this issue, we associate a flag with each vertex, halfedge and

triangle to indicate whether the entry has been previously deleted from the data structure. To

accelerate memory access, the deleted items are moved to the end of their container arrays as

described in (Algorithm 2). The contraction steps are summarized in (Algorithm 3).

Algorithm 1: Build the data structure.
input: T, V
Output: H
for i = 0 � � � #T do in parellel
H[3i + k] � triangle = i; // (k = 0 � � � 2)
H[3i + k] � next = H[3 i + (k + 1)%3]; //(k = 0 � � � 2)
H[3i + k] � vertex = T[i][k]; //(k = 0 � � � 2)
T[i][k] � halfedge = H[3i + k]; //(k = 0 � � � 2)
T[i] � halfedge = H[3i];

end
// Build the opposite relationships
for i = 0 � � � #H do
// Build a list of incident halfedges for each vertex
Htmp[H[i] � vertex] � append(H[i]);

end
for i = 0 � � � #V do in parallel
for j = 0 � � � Htmp[i].size do
for k = 0 � � � Htmp[i].size and k 6¼ j do
h1 = Htmp[i][j];
h2 = Htmp[i][k];
if h2 � next � vertex 2 h1 � triangle then
h1 � opposite = h2 � next;
h2 � next � opposite = h1;

end
end

end
end

Algorithm 2: The functions deleteVertex, deleteHalfedge and deleteTriangle replace the

corresponding item by the last vertex, halfedge and triangle in the list, respectively.
Function deleteVertex(cuVertex v)
tmp  last vertex;
v  tmp;
h  v � halfedge;
repeat
h � vertex  v;
h  h � next � opposite;

until h 6¼ v � halfedge;
mark tmp as deleted;

end
Function deleteHalfedge(cuHalfedge h)
tmp  last halfedge;
h  tmp;
h � next � next � next  h;
h � opposite � opposite  h;
mark tmp as deleted;

end
Function deleteTriangle(cuTriangle t)
tmp  last triangle;
t  tmp;
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t � halfedge � triangle  t;
t � halfedge � next � triangle  t;
t � halfedge � next � next � triangle  t;
mark tmp as deleted;

end
Algorithm 3: The steps of the halfedge contraction.

Function contractHalfedge(cuHalfedge h)
deleteVertex(h � opposite � vertex);
deleteTriangle(h � face);
deleteTriangle(h � opposite � face);
/� update the incident property of halfedges around the remaining

vertex: h�vertex �/
tmp  h � opposite;
repeat
tmp � vertex  h � vertex;
tmp  tmp � next � opposite;

until tmp  h � opposite;
/� update the opposite property between the remaining halfedges �/
h1  h � next � opposite;
h2  h � next � next � opposite;
h3  h � opposite � next � opposite;
h4  h � opposite � next � next � opposite;
h1 � opposite  h2;
h2 � opposite  h1;
h3 � opposite  h4;
h4 � opposite  h3;
deleteHalfedge(h);
deleteHalfedge(h � next);
deleteHalfedge(h � next � next);
deleteHalfedge(h � opposite);
deleteHalfedge(h � opposite � next);
deleteHalfedge(h � opposite � next � next);

end

Halfedge contraction cost

In this section, we describe how to evaluate the QEM associated with each vertex. A plane is

identified by the equation n � p + d = 0, where:

• n = (nx, ny, nz) is the unit normal, i.e., a direction perpendicular to the plane such that

n2
x þ n2

y þ n2
z ¼ 1, and

• d is an offset scalar representing the signed distance from the origin to the plane.

For any point that does not lie on the plane, the expression n � p + d represents the signed

distance from the given point p to the plane. The squared distance can be evaluated by

DðpÞ ¼ ðnxxþ nyyþ nzz þ dÞ2 ð1Þ

This equation can be rewritten in matrix form as follows:

DðpÞ ¼ ðptðnntÞpþ 2ðdnÞtpþ d2Þ ð2Þ

The quadric of the plane, n � p + d = 0, is defined as Q = (q1, q2, q3), where:

• q1 = nnt is a 3 × 3 symmetric matrix,

• q2 = dn is a vector, and
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• q3 = d2 is a scalar.

Therefore, given any quadric, the squared distance is evaluated by

QðpÞ ¼ ptq1pþ 2qt
2
pþ q3 ð3Þ

Each vertex of the mesh is associated with a set of planes that correspond to the incident trian-

gles. The sum of the squared distances is given by the following equation:

QðvÞ ¼
X

i

QiðvÞ ð4Þ

The linearity of the Q operator makes the sum of a set of quadrics equal to the sum of the cor-

responding components of the triples ðqi
1
; qi

2
; qi

3
Þ, i.e.,

QðvÞ ¼
X

i

QiðvÞ ¼
X

i

qi
1
;
X

i

qi
2
;
X

i

qi
3

 !

ðvÞ ð5Þ

The triangle plane may be shared with at least three vertices. Therefore, to remove compu-

tational redundancy, a set of CUDA kernels is executed to calculate the plane equation and

then the quadrics of the triangles of the mesh. Similarly, a set of CUDA kernels is executed to

sum the corresponding quadric for each vertex. Hence, the contraction cost of a halfedge h is

determined by the following steps:

1. Determine the vertex vi = h.vertex().

2. Determine the vertex vj = h.opposite().vertex().

3. Determine the position of the new vertex v.

4. Evaluate the new quadric Q = Qi + Qj, which is the quadric of the new vertex v.

5. Obtain the edge contraction cost Q(v).

The position of the new vertex v should be chosen such that Q(v) is minimized. This mini-

mization is expressed asrQ(v) = 2q1 v + 2q2 = 0, which yields v0 ¼ � q� 1
1

q2; its minimization

error is expressed as follows:

Qðv0Þ ¼ v0tq1v0 þ 2qt
2
v0 þ q3

¼ ð� q� 1
1

q2Þ
tq1ð� q� 1

1
q2Þ þ 2qt

2
ð� q� 1

1
q2Þ þ q3

¼ � qt
2
q� 1

1
q2 þ q3

ð6Þ

which is a special case of the standard positive definite quadratic minimization that can be

solved by using the Cholesky factorization [33, 34]. During simplification, the halfedges with

minimum costs are selected for contraction.

Customized priority queue

In this section, we describe how to maintain the costs of the set of halfedges in a customized

priority queue. Concurrent access to the priority queue during simplification hinders the use

of classic data structures for priority queues.

Classically, the implementation of queues using arrays rather than linked lists is recom-

mended. However, lists are better than arrays for the insertion and removal operations. The

main drawback of using a sorted linked list is the sequential access of its elements, O(n), with

O(lg n) for sorted arrays. To overcome this problem, we employ lock-free skip lists to implement
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our priority queue [35]. Additionally, this skip-list priority queue prevents the synchronization

drawbacks that can occur due to race conditions. Moreover, the speed of the search, insertion

and removal operations is increased to O(lg n) due to the multilayer structure.

A skip list is a nondeterministic framework based on linked lists, which consists of a multi-

level linked list. The 0-level contains all elements of the list. The subsequent levels contain

fewer elements. Each level is a subset of the preceding level and a superset of the next level. In

(Fig 5), the original list is the set of halfedges, hij
, sorted by their quadric costs kij

. The insertion

of any halfedge into the skip list starts at level 0, while element removal starts from the top

level.

We will now describe how the concurrent insertion and removal of halfedges can be per-

formed safely by using the CUDA atomic function atomicCAS() [14]. The atomicCAS() func-

tion has the following form: int atomicCAS(int �address, int compare, int val). The function

loads the value old located at address, evaluates the expression (old == compare? val: old) and

saves the results at the location address. Thus, atomicCAS() ensures that the value at address is

not changed using other threads. If the value is changed, then the function can easily detect

this change.

The two main primitives that we employ are the insert operation and delete operation. To

insert a pair (hi, ki)—the halfedge and its quadric cost—into the list, we navigate the list until

we obtain the smallest entry (hj, kj) such that kj > ki. A new entry is created with a value of

(hi, ki), and address((hi, ki)).next is set to address((hj, kj)). Next, atomicCAS() is applied to set

address((hj, kj)).previous.next to address((hi, ki)). Furthermore, to remove the pair (hi, ki) from

the list, atomicCAS() is applied to set address((hi, ki)).previous.next to address((hi, ki)).next. The

node that contains (hi, ki) is not deleted due to CUDA restrictions but is instead added to a

deleted list for further usage. During simplification, the halfedge nodes, for which the costs

must be updated, are simply deleted, and the new values are inserted. (Algorithm 4) shows

how the Find function determines the appropriate position of the halfedge with respect to its

cost in the skip list for further insertion or deletion.

Algorithm 4: The Find function determines the appropriate position of key in the skip

list.
Function Find(key)
tmp  top-first element in the skip list;
// step down
while tmp.below 6¼ null do
tmp  tmp.below;

Fig 5. A skip list consisting of 4 linked lists. The original list of pairs (vertices, keys) is at level 0 and sorted in

ascending order. Each level contains a sublist from the preceding level.

https://doi.org/10.1371/journal.pone.0255832.g005
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// step forward
while key � tmp.next.cost do
tmp  tmp.next;

end
end
return tmp;

end

Disjoint partitioning

Once the priority queue is constructed for the given triangular mesh, we must construct a set

of independent areas on which we will parallelize the simplification process. In this section, we

describe the major steps for constructing a set of disjoint partitions of the mesh using the k-d

tree.

Algorithm 5: Space partitioning of M using the k-d tree.
root  AABBðMÞ;
SplitList  root;
repeat // parallel
tmp  Pop(SplitList);
if C(tmp) then
(leftchild, rightchild)  Split(tmp);
SplitList.append(leftchild);
SplitList.append(rightchild);

end
until SplitList is empty;

The partitioning procedure is summarized in (Algorithm 5). The algorithm starts by deter-

mining the axis-aligned bounding box of the mesh M. The initial bounding box is the root of

the k-d tree. Starting from this root, the following steps are applied for the candidate node:

1. Evaluate the splitting condition, C(Pi), which in our case is a fixed number of contained

points, i.e.,

CðPiÞ ¼

( true jPij � z

false otherwise
ð7Þ

where z is the desired number of points in each cell Pi. This splitting condition generates a

balanced number of partitions, even if the input mesh is not uniformly sampled.

2. If C(Pi) is satisfied, then Pi is appended to the split queue, SplitList.

3. If C(Pi) is not satisfied, then Pi is a leaf node and is removed from the SplitList queue.

Simplification process

In the previous sections, we showed how to build the priority queue and identify the indepen-

dent regions. Now, the simplification process is ready for execution in parallel. Since the con-

traction operator changes the topological properties of the mesh, we allow a single halfedge

contraction for each independent region of the mesh at a time, which guarantees the consis-

tency of the neighborhood properties among the vertices of the mesh.

Without loss of generality, our stopping criterion is that the mesh must be simplified to a

certain number of vertices. Note that each contraction process reduces the total number of ver-

tices by 1. The simplification process starts by creating the set of threads T. T picks the top half-

edges from the customized priority queue, i.e., the halfedges with the minimum cost. For each
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independent region Pi, we create the thread Ti. Ti picks a halfedge h from the top of the priority

queue. If h =2 Pi, then the halfedge is skipped, and Ti picks the next candidate halfedge. How-

ever, if only one of the two endpoints belongs to Pi, then the halfedge is selected, and the neigh-

bor partition is blocked. Thus, the halfedge that crosses two adjacent partitions is contracted

by the first partition thread, and the other partition thread waits until this halfedge is con-

tracted, which avoids any overlap of the topological update of the conflicting areas.

However, a thread does not execute the contraction operation unless the halfedges of the

smaller costs are picked from the queue for contraction or the total number of picked and

skipped halfedges does not reach the target number of vertices. This condition gives a higher

priority to contraction of halfedges with less cost to minimize the global geometric error. The

simplification process is summarized in (Algorithm 6).

Algorithm 6: Major steps of the proposed algorithm.
Calculate the QEM for the set of halfedges // parallel
Build the customized priority queue // parallel
Construct the independent partitions {Pi} // parallel
skipped  0; // shared
removed  0; //shared
for each Pi do // parallel
pick a halfedge h;
while h =2 Pi do
if h \ Pi 6¼ � then
find Pj such that h \ Pj 6¼ �;
wait(Pj, h is contracted);

end
skipped  skipped + 1;
pick another h;

end
wait(Pi, removed + skipped < target);
contract h;
if removed = target then
exit;

end
end

As mentioned, the proposed simplification process guarantees decimation of the edges with

the lowest costs. Therefore, the set of edges to be contracted will be identical to that of QSlim.

The only difference is that these edges will be contracted in a different order, which will not

affect the quality measure since the error metric is a linear operator.

Results and comparisons

We implement the algorithms presented in this paper by using NVIDIA’s CUDA framework

[14] on an Intel Core i7–8565U CPU @(1.80 GHz,1.99 GHz) with a GeForce MX130 4GB

GPU on Windows 10. Recent architectures of CUDA, especially 5.0, enable direct memory

access between the host and the kernel codes. In all algorithms described in this paper, state-

ments that are said to be run in “parallel” are executed as parallel GPU device kernels. Other-

wise, they are implemented in serial mode. Considering some CUDA driver limitations, we do

not allow device threads to run for more than 8 s. CUDA assumes that device kernels have a

short execution time. In cases in which a device kernel reaches its execution time limit, we

stop the kernel and regenerate another set to complete the job.

The geometric models underlying the results presented in this paper can be found in [36],

see “S1 Text”. (Table 1) presents the numbers of points and triangular faces of the meshes

utilized in our experiments. We simplified the input models to a target number of vertices.
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(Fig 6) shows the simplification of the Dragon into levels of detail of 1%, 5% and 50%. The sim-

plification process creates a smooth surface for each simplified version.

To prove the effectiveness of the proposed approach, we compare our results with those of

the QSlim serial algorithm [7] implemented by MeshLab v2016.12 [37] and the MCS GPU

algorithm [31]. In addition, we use the geometric deviation, as shown in (Fig 7), as the quality

measure [38]. The geometric deviation evaluates the geometric differences between two

meshes, in our case, the input and simplified meshes. This is formally defined as follows [39]:

max
p2M1

fdðp;M2Þg ð8Þ

where M1 is the input mesh, M2 is the simplified mesh and d is the Euclidean distance. The

timing and quality measures of [31] are extracted from the associated paper. (Table 2) shows

the times and geometric qualities for the simplification process applied to some of the models

of (Table 1) with respect to the mentioned vertex targets. (Table 2) shows that the rate of deci-

mation of vertices per second decreases for large meshes; this phenomenon is attributed to the

size of the customized priority queue. The construction and search of small priority queues are

faster than those of dense priority queues.

Additionally, we compare our results with the timing and quality of the GPU-based algo-

rithm [12]. As mentioned in “Related work”, [12] applied an iterative approach. In each itera-

tion, a set of parallel edge contraction operations is performed until a target number of vertices

Table 1. The set of meshes used in our experiments.

Model #Points #Faces

Bunny 37000 73996

Gargoyle 863210 1,726,416

Dragon 3609455 7,218,906

Lucy 14,027,872 28,055,742

https://doi.org/10.1371/journal.pone.0255832.t001

Fig 6. The simplification of the Dragon into different levels of detail. (a) The original dataset, (b) 50% of vertices,

(c) 5% of vertices, and (d) 1% of vertices.

https://doi.org/10.1371/journal.pone.0255832.g006
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is reached. The higher the number of vertices decimated in each iteration is, the lower the qual-

ity of the mesh. To improve the mesh quality, the number of decimated vertices should be

decreased in each iteration, which will cause a dramatic increase in time. (Table 3) shows the

timing and mesh quality of our algorithm and those of [12] at targets of 25%, 10% and 5%

using 18 iterations, 29 iterations and 37 iterations, respectively. The timing and quality evalua-

tions are extracted from the related paper.

Conclusion

In this paper, we introduce an approach for triangular surface simplification using recent GPU

advances. Our approach follows the edge contraction framework, which presents a high-

Fig 7. The geometric deviation of a simplified version of the Gargoyle model at 10% of its original number of

vertices.

https://doi.org/10.1371/journal.pone.0255832.g007

Table 2. The time expended in seconds and the quality measures of the simplification of the input meshes in comparison with those of QSlim [7] and MCS [31].

Models Target QSlim [7] MCS [31] ours

time quality time quality time quality

Gargoyle 589,860 22.86 0.01966 1.30 0.03542 1.05 0.01967

Dragon 2,466,461 109.02 0.0815 6.39 0.0836 4.29 0.0816

Lucy 9,585,712 469.089 0.0186 28.03 0.032 22.05 0.0187

https://doi.org/10.1371/journal.pone.0255832.t002

Table 3. Comparison of the timing in seconds and the quality of the simplification of the Gargoyle model using

[12] and our proposed algorithm.

Target [12] Ours

time quality time quality

25% 3.9 0.01524 0.73 0.00253

10% 5.1 0.03357 0.95 0.01366

5% 5.6 0.05961 1.05 0.01967

https://doi.org/10.1371/journal.pone.0255832.t003

PLOS ONE High-performance simplification

PLOS ONE | https://doi.org/10.1371/journal.pone.0255832 August 5, 2021 14 / 17

https://doi.org/10.1371/journal.pone.0255832.g007
https://doi.org/10.1371/journal.pone.0255832.t002
https://doi.org/10.1371/journal.pone.0255832.t003
https://doi.org/10.1371/journal.pone.0255832


quality surface simplification. We build a customized priority queue based on a skip list for the

set of candidate halfedges. This skip list enables simultaneous update of the customized prior-

ity queue. The proposed approach identifies a set of independent regions on the surface, on

which we apply parallelism. The applied parallelism significantly reduces the time required

for the overall process. Compared to competing serial and parallel algorithms, the proposed

approach is both simple and efficient.
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(PDF)
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