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Comprehensive metabolomics expands precision medicine
for triple-negative breast cancer
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Metabolic reprogramming is a hallmark of cancer. However, systematic characterizations of metabolites in triple-negative breast
cancer (TNBC) are still lacking. Our study profiled the polar metabolome and lipidome in 330 TNBC samples and 149 paired normal
breast tissues to construct a large metabolomic atlas of TNBC. Combining with previously established transcriptomic and genomic
data of the same cohort, we conducted a comprehensive analysis linking TNBC metabolome to genomics. Our study classified TNBCs
into three distinct metabolomic subgroups: C1, characterized by the enrichment of ceramides and fatty acids; C2, featured with
the upregulation of metabolites related to oxidation reaction and glycosyl transfer; and C3, having the lowest level of metabolic
dysregulation. Based on this newly developed metabolomic dataset, we refined previous TNBC transcriptomic subtypes and
identified some crucial subtype-specific metabolites as potential therapeutic targets. The transcriptomic luminal androgen receptor
(LAR) subtype overlapped with metabolomic C1 subtype. Experiments on patient-derived organoid and xenograft models indicate
that targeting sphingosine-1-phosphate (S1P), an intermediate of the ceramide pathway, is a promising therapy for LAR tumors.
Moreover, the transcriptomic basal-like immune-suppressed (BLIS) subtype contained two prognostic metabolomic subgroups (C2
and C3), which could be distinguished through machine-learning methods. We show that N-acetyl-aspartyl-glutamate is a crucial
tumor-promoting metabolite and potential therapeutic target for high-risk BLIS tumors. Together, our study reveals the clinical
significance of TNBC metabolomics, which can not only optimize the transcriptomic subtyping system, but also suggest novel
therapeutic targets. This metabolomic dataset can serve as a useful public resource to promote precision treatment of TNBC.
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INTRODUCTION
Triple-negative breast cancer (TNBC) is a subset of breast cancer
defined by the lack of expression of estrogen receptor, progesterone
receptor and human epidermal growth factor receptor 2.1 Clinical
management of TNBC is a great challenge because of its high
incidence of visceral metastases and the lack of well-recognized
therapeutic targets.1 TNBC has been considered as a highly
heterogeneous disease.2–4 Our previous study presented a genomic
and transcriptomic landscape of 465 Chinese patients with TNBC and
classified TNBCs into four transcriptomic subtypes with distinct
molecular features.4 We further revealed the potential therapeutic
targets of each transcriptomic subtype and conducted an umbrella
trial (FUTURE, ClinicalTrials.gov, number: NCT03805399) on metastatic
TNBCs to evaluate the treatment efficacy regarding to these targets.5

The FUTURE trial exhibited an encouraging objective response rate
(ORR) of 29%, which was significantly higher than the ORRs of
traditional chemotherapies (5%–15%).6,7 However, the treatment
outcomes of corresponding targeted therapies did not reach our full
expectation, especially for transcriptomic basal-like immune-sup-
pressed (BLIS) and luminal androgen receptor (LAR) tumors. For

example, CDK4/6, androgen receptor and mTOR inhibitors did not
perform as well as expected in LAR tumors. Therefore, we need to
seek for a more multilayered understanding of TNBC for new target
identification.
As an important hallmark of cancer, metabolic reprogramming in

TNBC is worthy of further exploration. Previously, the mRNA
expression level of metabolic genes were usually interpreted as
the activity of corresponding metabolic pathways.8,9 Our recent
study used the transcriptomic data of metabolic genes to investigate
the metabolic features of TNBC.9 This study revealed that TNBCs
could be classified into three metabolic-gene-based subtypes with
distinct dependency on lipid metabolism and glycolysis. We further
proposed therapeutic strategies targeting classic energy metabolism
and developed combination therapies using glycolysis inhibitors
together with immune checkpoint inhibitors.9 However, metabolic
research using transcriptomic data still has limitations. First, the
regulation of metabolism is a complex process. The abundance of
metabolites might be more reliable for metabolic flux analysis than
the mRNA expression of metabolic genes. Second, some crucial
metabolites that are not in the classical energy metabolism
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pathways might be ignored, as previous transcriptomic data-based
metabolic studies mainly focused on energy metabolism. Therefore,
a more direct illustration of metabolism through analyzing the
abundance of metabolites is required.
The rapid development of high-throughput metabolomics techni-

ques, such as global untargeted metabolomics and lipidomics, has
paved the way for directly measuring the abundance of metabo-
lites.10,11 Using these methods, we have achieved a deeper under-
standing of metabolic features in breast cancer.12–14 Previous studies
demonstrated significant differences in glutamine and alanine
metabolism between ER-positive and ER-negative breast cancers.12,13

Besides, theMYC-driven accumulation of 2-hydroxyglutarate has been
shown to promote breast cancer progression.14 However, large-scale
metabolomic researches connecting metabolism to TNBC genomics
are still lacking. In this study, we profiled both the polar metabolome
and lipidome of 330 TNBC samples to reveal the metabolomic
landscape. We also integrated the metabolomics with previously
established genomic and transcriptomic data to explore the potential
metabolic targets for TNBCs, especially for transcriptomic BLIS and
LAR tumors (Fig. 1a).

RESULTS
Polar metabolite and lipid profiling of TNBC
To comprehensively profile the TNBC metabolome, we used the
sample set of our TNBC cohort containing sufficient quantities of
high-quality fresh frozen tissues for polar metabolome and

lipidome detection (Fig. 1b). Our metabolomic cohort included
330 TNBC samples and 149 paired normal breast tissues. We
annotated a total of 594 polar metabolites and 1944 lipids (Fig. 1c;
Supplementary information, Tables S1–S4). The data quality was
checked with internal standards and quality control samples
(Supplementary information, Data S1 and Fig. S1).
We previously obtained transcriptomic data for 258 out of these

330 samples, among which 171 samples have whole-exome
sequencing (WES) and somatic copy number alteration (SCNA)
data as well (Supplementary information, Fig. S2). Generally, the
newly developed TNBC metabolomic dataset is a large data
resource regarding both the number of annotated metabolites
and sample size (Fig. 1d, e).14–27

The metabolomic landscape of TNBC
Using Benjamini–Hochberg-corrected Mann–Whitney U tests, we
identified 452 metabolites (417 higher and 35 lower in tumor)
displaying significant differences in abundance between tumor and
normal samples (Fig. 2a, b). Among the dysregulated metabolites,
some polar metabolites, especially metabolites related to oxidation
reaction and glycosyl transfer (such as oxidized glutathione [GSSG]
and uridine diphosphate glucose [UDPG]), were significantly
enriched in tumors compared with normal tissues (Fig. 2a). Some
lipids, such as phosphatidylinositols, fatty acids (FAs) and ceramides,
were also enriched in TNBCs (Fig. 2b; Supplementary information,
Fig. S3a). Moreover, we conducted the Spearman’s correlation
analysis which illustrated that lipids belonging to the same subclass

Fig. 1 Overview of polar metabolome and lipidome detection in TNBC. a A sketch map showing the combined analysis using previously
obtained transcriptomic data and the metabolomics data reported in this study for TNBC precision medicine. b A schematic summarizing the
workflow for metabolite profiling. c The numbers and proportions of annotated polar metabolites and lipids in our study. Comparison of the
number of annotated metabolites (d) and the number of samples (e) between our study and previous studies. BLIS, basal-like
immunesuppressed; IM, immunomodulatory; LAR, luminal androgen receptor; MES, mesenchymal-like; MPS, metabolic-pathway-based
subtypes; FA, fatty acids; GL, glycerolipids; GP, glycerophospholipids; SP, sphingolipids; ST, sterol lipids.
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were closely correlated based on their abundances, we thus
considered lipids of the same subclass as a whole for subsequent
lipidomic analysis (Supplementary information, Fig. S3b). Further-
more, we performed KEGG metabolic pathway-based differential
abundance (DA) analysis between tumor and normal tissues to

investigate the dysregulation of metabolic pathways24 (Fig. 2c;
Supplementary information, Fig. S3c). In our research, a large
number of metabolites involved in glycerophospholipid metabolism,
amino sugar and nucleotide sugar metabolism pathways showed
high DA scores.

Y. Xiao et al.

479

Cell Research (2022) 32:477 – 490



Then, we applied the similarity network fusion (SNF)28 method
to explore the intertumoral metabolomic heterogeneity of TNBCs.
TNBCs could be clearly divided into three subgroups by this
analysis (Fig. 2d; Supplementary information, Fig. S4a and
Table S5). We further validated the robustness of the clustering
results by using different numbers of metabolites for analysis and
by choosing different clustering methods (Supplementary
information, Fig. S4b–d). The metabolomic C1 subtype was
featured with sphingolipids and FAs enrichments, while the
metabolomic C2 subgroup was characterized by upregulated
carbohydrate metabolism and oxidation reaction (Fig. 2e; Supple-
mentary information, Fig. S5a, b). The metabolomic C3 subgroup
showed mild metabolic differences compared with normal tissue
(Fig. 2f). In terms of energy metabolism, metabolomic C1 tumors
showed enriched long-chain and unsaturated FA and might be
more dependent on fatty acid metabolism; metabolomic C2
tumors were relatively more abundant with metabolites in
glutamate pathways and might rely more on glutamate metabo-
lism; metabolomic C3 tumors had smaller metabolomic difference
as compared with normal tissues (Supplementary informa-
tion, Fig. S5c). The three metabolomic subtypes exhibited no
difference in cancer cell fractions, and they had similar clinico-
pathological features except that patients in C1 were older in age
at diagnosis (Supplementary information, Fig. S5d and Table S6).
Generally, the metabolomic clustering of TNBCs revealed meta-
bolic heterogeneity and provided insight for further target
exploration.

A comprehensive analysis linking polar metabolites and lipids
to genomic features
We also explored the associations between metabolomics and
genomic features to speculate on the potential genomic drivers
contributing to the formation of metabolomic features. The
correlations between the polar metabolite abundance and the
mRNA expression of paired metabolic genes were analyzed based
on the Recon3D database.29 Generally, these pairs illustrated weak
correlations, reflecting the complexity of the metabolic network
(Fig. 3a, b; Supplementary information, Tables S7 and S8). A few
metabolites and their paired metabolic genes, such as D-mannose
and MAN1A1, had significant correlations (Supplementary
information, Fig. S6a).
Furthermore, we focused on a list of 24 known cancer-related

genes that are frequently mutated in TNBCs30,31 and applied a linear
regression model (controlling the cofounding factors) to investigate
the associations between somatic mutations and metabolite
abundance (Fig. 3c; Supplementary information, Table S9). Although
TP53 mutations, the most prominent cancer-related alterations in
TNBC, generally had weak associations with the profiled metabolites,
we found that PIK3CA mutations were positively associated with the
abundance of FA but negatively correlated with that of GSSG (Fig. 3d;
Supplementary information, Fig. S6b). Consistently, the overproduc-
tion of FA (especially arachidonic acid) driven by PIK3CAmutation has
recently been reported.32 Moreover, we also analyzed the correlation
of the mRNA expression of breast cancer-related genes28 with

metabolites (Supplementary information, Fig. S6c and Table S10). For
example, we observed the positive correlation of BUB1B mRNA
expression with S-adenosylmethionine abundance (Supplementary
information, Fig. S6d).
In terms of copy number, the associations between SCNAs and

metabolites were generally not strong, and we only identified a
few TNBC-specific SCNA peaks4 related to metabolite abundance
(Fig. 3e; Supplementary information, Table S11). For example, the
copy number of the 9p23 chromosomal region, within which
the oncogenic gene NFIB locates, was positively correlated with
the abundances of GSSG, maltotriose and guanosine diphosphate
mannose (GDP-M) but negatively correlated with the abundances
of a few FAs (Fig. 3f). Besides, we investigated the chromosomal
region 12p13.33 that includes genes encoding SLC6A12/SLC6A13,
which function as neurotransmitter transporters in the membrane.
Our study showed that the copy number of the 12p13.33
chromosomal region was positively correlated with the abun-
dances of the neurotransmitters gamma-aminobutyric acid
(GABA) and N-acetyl-aspartyl-glutamate (NAAG) (Fig. 3f). In
summary, the analysis of the associations between genomic
features and metabolites might provide hints for the driving forces
of metabolic reprogramming in TNBC.

Metabolomic subtyping refines the transcriptomic subtyping
of BLIS tumors and can be achieved by machine learning
We further explored the associations among metabolomic subtypes,
previously defined transcriptomic subtypes4 and metabolic-pathway-
based subtypes (MPSs).9 In terms of transcriptomic subtypes, the
LAR subtype almost overlapped with the metabolomic C1 subtype;
and the BLIS, immunomodulatory (IM) and mesenchymal-like (MES)
subtypes were primarily divided into metabolomic C2 and
C3 subtypes. In regard to MPSs, the MPS1 subtype was highly
consistent with the metabolomic C1 subtype, while the MPS2 and
MPS3 subtypes were interlaced with the metabolomic C2 and
C3 subtypes (Fig. 4a).
We also explored the prognostic value of metabolomic

subtypes and demonstrated that BLIS tumors contained two
prognostic metabolomic subgroups (C2 and C3). For BLIS tumors,
metabolomic C2 subtype had worse relapse-free survival (RFS)
compared with metabolomic C3 subtype (Supplementary infor-
mation, Fig. S7a, b). After adjusting for tumor size, number of
positive lymph nodes and homologous recombination defect
score categories, the metabolomic subtype still tended to be an
independent prognostic factor (Fig. 4b) for BLIS patients. We next
tried to build a simplified metabolomic subtyping system for BLIS
tumors by machine-learning methods. The bootstrap method was
utilized to develop the discovery and test cohorts. For the
discovery cohort, we developed the working model using two
machine-learning methods, the least absolute shrinkage and
selection operator (LASSO) and support vector machine (SVM).
The established model was then run in the test cohort (Fig. 4c).
The LASSO and SVM methods both had favorable predictive
efficacy in the test cohort (Fig. 4d). As the LASSO model can
directly show the included metabolites and their contributions, we

Fig. 2 The metabolomic landscape of triple-negative breast cancer. a, b volcano plots of the 594 annotated polar metabolites (a) and 1944
lipids (b) profiled. Metabolites of different categories were individually color-coded. Right part of panel b: Log2 fold changes of the
abundances of different categories of lipids in TNBC tumor tissues as compared with normal tissues. Log2 fold change value of 0 (the dashed
red line) indicates the same level of lipid abundance between the tumor and the normal. c A pathway-based analysis of metabolomic changes
between tumor and normal tissues. The DA score captures the average, gross changes for all metabolites in a pathway. A score of 1 indicates
that all measured metabolites in the pathway increase in the tumor compared to normal tissues, and a score of −1 indicates that all measured
metabolites in a pathway decrease. Pathways with no less than three measured metabolites were used for DA score calculation. d SNF
clustering of metabolomic data. e Pathway abundance (PA) scores between C1 and C2 subtypes. The PA score was calculated as the mean log2
fold change of the abundances of measured metabolites in this pathway. f Degree of overall metabolomic dysregulation among three
metabolomic subtypes. For each metabolomic subtype, the mean log2 fold change of metabolites between tumor and normal tissues was
calculated to represent the overall degree of metabolomic dysregulation.
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further demonstrated the predictive efficacy of the LASSO model
by receiver operating characteristic (ROC) curve as well as the
contributions of the six metabolites included (Fig. 4e, f;
Supplementary information, Fig. S7c). These data illustrated that
machine-learning methods successfully distinguished the two
metabolomic subtypes within BLIS tumors.

To prepare for cell line-based experiments, we also conducted
transcriptomic-based and metabolite-based subtyping for TNBC
cell lines (Supplementary information, Fig. S8a–c). MDA-MB-453
and MFM-223 cell lines were classified into the metabolomic C1
(transcriptomic LAR) subtype; HCC1806, HS-578T and LM2-4175
cell lines might be candidates for the metabolomic C2
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(transcriptomic non-LAR) subtype. Similar to the findings for TNBC
samples, cell lines of metabolomic C1 subtype were more
dependent on fatty acids while cell lines of metabolomic
C2 subtype were more dependent on glutamine as mitochondrial
fuel (Supplementary information, Fig. S8d).
In summary, metabolomic profiling refines the previously

developed transcriptomic subtypes of TNBC. Considering the
unsatisfactory treatment efficacy for LAR and BLIS patients in our
FUTURE trial,5 the integration of metabolomic subtyping with
transcriptomic subtyping should be considered for further
investigation (Fig. 4g). For LAR tumors, further exploration of
metabolic targets could be conducted based on the features of
the metabolomic C1 subtype. For BLIS patients, the simplified
machine-learning-based metabolomic subtyping system could
potentially stratify them into groups with distinct recurrence risks.

Analysis of ceramide metabolism in the LAR subtype revealed
sphingosine-1-phosphate (S1P) as a potential therapeutic
target
Transcriptomic LAR subtype almost overlapped with the metabo-
lomic C1 subtype (Fig. 4a) that was featured by enrichment of
sphingolipid metabolism-related metabolites (Fig. 2e). Therefore, we
analyzed detailed intermediates of the sphingolipid metabolism
pathway to identify crucial metabolites for LAR tumors. In
comparison with the normal tissues and the non-LAR tumors, LAR
tumors were characterized by the enrichment of ceramides (Fig. 5a).
Further pathway analysis of metabolites and mRNA expression of
related metabolic genes showed that de novo synthesis and
degradation of ceramide pathway was more active in LAR tumors,
whereas the transfer of glycosyl and phosphate groups was not
significantly upregulated compared with non-LAR tumors (Fig. 5b, c).
These results suggest the crucial role of the de novo synthesis and
degradation of ceramide pathway in LAR tumors. In particular, we
conducted the targeted detection of the crucial intermediates in this
pathway, including sphinganine, sphingosine and S1P, to validate
their enrichments in LAR tumors (Supplementary informa-
tion, Fig. S9a). Moreover, we also utilized stable isotope tracing
experiments to illustrate the active de novo synthesis and
degradation of ceramide pathway in the LAR subtype (Fig. 5d).
To investigate potential therapeutic strategies for LAR tumors, we

systematically blocked each step of de novo synthesis and
degradation of ceramide pathway in cell lines and patient-derived
organoid (PDO) models. The transcriptomic subtype of the PDO was
defined by the immunohistochemistry method (see Materials and
Methods).33 As illustrated in Fig. 5e, f and Supplementary
information, Fig. S9b, PF-543 (an inhibitor of SPHK1) and FTY-720
(also known as fingolimod, an FDA-approved multi-target drug of
the ceramide pathway34,35) were significantly more effective on LAR
tumors. Meanwhile, NCT-503 or serine deprived medium that blocks
serine obtaining, Fumonisin B1 that inhibits (dihydro)ceramide
synthases (CERS), Opaganib that inhibits sphingosine kinase 2
(SPHK2) or Siponimod and JTE-013 that block S1P-S1P receptors

(S1PRs) binding were more effective on non-LAR tumors or were
ineffective in both LAR and non-LAR tumors. These results revealed
the importance of SPHK1 and the tumor-promoting metabolite S1P
in LAR tumors. We also validated the on-target efficacy of SPHK1
inhibitors (PF-543 and SK-IN-1) by quantifying the decrease of S1P
after the utilization of SPHK1 inhibitors. The on-target efficacy was
further confirmed by the observation that the efficacy of SPHK1
inhibitors decreased upon knockdown of SPHK1 (Supplementary
information, Fig. S9c–e). Furthermore, we tested the efficacy of PF-
543 and FTY-720 using mini patient-derived xenograft (mini-PDX)
models (Fig. 5g). Consistent with the results in the PDO models,
mini-PDX models of the LAR subtype were more sensitive to the
treatment of PF-543 and FTY-720 (Fig. 5h).
In conclusion, our results suggest S1P, an important inter-

mediate of ceramide pathway, played a crucial role in LAR tumors.
PF-543 and FTY-720 might be the subtype-specific therapies for
LAR tumors.

Identification of NAAG as a crucial tumor-promoting
metabolite in BLIS tumors
We further explored important tumor-promoting metabolites for
BLIS tumors. After analyzing metabolites that were specifically
upregulated and predicted poor prognosis in BLIS tumors, we
identified NAAG as a potential candidate (Fig. 6a, b). We further
validated the identity of this metabolite by chemical standard
(Fig. 6c). Two enzymes, RIMKLA and RIMKLB, are reported to be
responsible for the production of NAAG36 (Fig. 6d). As RIMKLB was
significantly more abundant than RIMKLA at the transcriptomic
level and positively correlated with the abundance of NAAG, we
speculated that RIMKLB was the key enzyme determining the level
of NAAG in TNBC (Fig. 6e, f). We first validated the positive
correlation of mRNA expression of RIMKLB with NAAG abundance
in TNBC cell lines. HCC1806 and LM2-4175 cell lines with relatively
high RIMKLB expression and Hs-578T cell line with relatively low
RIMKLB expression were chosen for further experiments (Supple-
mentary information, Fig. S10a). When knocking down RIMKLB
with shRNA in HCC1806 and LM2-4175 cell lines, we observed a
significant decrease in NAAG abundance, accompanying with
decreases in growth rates and abilities of migration and invasion.
After we supplied 50 µM NAAG into the medium, the tumor
inhibitory effect of RIMKLB depletion was partially rescued (Fig. 6g,
h; Supplementary information, Fig. S10b, c). In addition, NAAG
promoted the migration of Hs-587T cells and 50 µM was the
optimal concentration based on our concentration gradient
experiment (Supplementary information, Fig. S10d–f). The effects
of RIMKLB and NAAG were further validated in vivo. Tumor growth
was significantly decreased with the knockdown of RIMKLB and
was partly rescued with NAAG supplementation (Fig. 6i–k;
Supplementary information, Fig. S10g, h). These data demon-
strated that NAAG is a crucial tumor-promoting metabolite in BLIS
tumors, and targeting the biosynthesis of NAAG might be a
feasible treatment strategy.

Fig. 3 Systematic evaluations linking polar metabolome and lipidome to genomic features. a, b Correlation of mRNA expression of
metabolic genes with the abundances of paired metabolites as substrates (a) or products (b). Metabolite-gene pairs were derived from the
Recon 3D dataset. Pairs with significant differences between tumor and normal tissues and significant correlations were annotated in the plot.
c Heatmap showing the associations between the abundances of metabolites and the presence of mutations within the indicated genes. The
mutations include high frequency somatic mutations (mutated in at least 6% of the cases in at least one metabolomic subtype) within cancer-
related genes and high frequency germline mutations in BRCA1 and BRCA2. T statistics were calculated by a linear regression model that
adjusted the cofounding factors. d Correlations between PIK3CA mutations and FA subclass (top panel) and GSSG levels (bottom panel). All
lipids belonging to the FA subclass (n= 10) were included. The mean abundance of the ten metabolites was regarded as the abundance of
FA subclass. All samples were ordered based on the abundance (y-axis) of FA subclass (top panel) or GSSG (bottom panel), and the ones with
PIK3CA mutations were highlighted in red and indicated by the corresponding lines displayed in x-axis. e Heatmap showing the associations
between abundances of metabolites and copy number values of TNBC SCNA peaks. T statistics were calculated by a linear regression model
that adjusted the cofounding factors. f Top panel: correlations between the copy number values of 9p23 and the abundances of GSSG,
maltotriose, GDP-M and some FAs. Bottom panel: correlations between the copy number values of 12p13.33 and the abundances of GABA
and NAAG. SCNA-related metabolites are shown as lines and samples were ordered by increasing copy number values. The abundances of the
metabolite are illustrated in colors. ***P < 0.001, **P < 0.01; *P < 0.05; ns, P ≥ 0.05.
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DISCUSSION
Metabolic reprogramming is a crucial hallmark of tumor and
provides potential therapeutic targets. In this study, we constructed

a large metabolomic dataset to systematically describe the
metabolomic landscape of TNBC. We also demonstrated that the
three TNBC metabolomic subtypes refined our previously defined

Fig. 4 Metabolomic subtyping refines the transcriptomic subtyping in BLIS tumors and can be achieved by machine-learning methods.
a Associations of metabolomic subtypes with transcriptomic subtypes, metabolic-gene-based subtypes and relapse status of TNBCs.
b Association of tumor size, number of positive lymph nodes, homologous recombination defect (HRD) categories and metabolomic subtypes
with relapse-free survival (RFS) in patients with BLIS tumors. Multivariate Cox regression model was used for analysis. The hazard ratios were
shown with 95% confidence intervals. Proportion hazard assumption was tested in advance. c Design of the analytical pipeline for
metabolomic subtyping via machine-learning methods for patients with BLIS tumors. Bootstrap method was used for the classification
of discovery and test cohorts. Two machine-learning methods (LASSO and SVM) were used for model construction. d Comparison of the
efficacies of two machine-learning methods for the test cohort. e Efficacy of the LASSO regression model in predicting metabolomic subtypes
of BLIS tumors was reflected by ROC curves with AUCs reported. f Contribution of the six metabolites to the LASSO regression model. g The
integration of transcriptomic and metabolomic subtyping system for potential clinical utilization. The simplified transcriptomic subtyping
through four immunohistochemistry markers was previously developed by our group and widely used in clinical setting in our center. LASSO,
the least absolute shrinkage and selectionator operator; SVM, Support Vector Machine; SQDG, sulfoquinovosyl diacylglycerol; LPI,
Lysophosphatidylinositol; PS, phosphatidylserine.
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TNBC transcriptomic subtypes (Fig. 4g). Furthermore, targeting the
biosynthesis of some functional metabolites, such as S1P and NAAG,
could be potentially effective for treatment of LAR and BLIS tumors,
respectively. Overall, our study illustrated the metabolomic land-
scape and might expand precision medicine for TNBC.
With this newly constructed metabolomic dataset, we paved

the TNBC metabolic research one step further. Our group

previously utilized the transcriptomic data of metabolic genes to
reveal TNBC metabolic features. The heterogeneity of energy
metabolism was illustrated with potential therapeutic options.9

In this study, we explored the metabolic features more directly
with the polar metabolome and lipidome. We revealed that
metabolomic dysfunction in TNBC was characterized by an
overall increase in the abundance of metabolites, different from
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the observations for tumors of other histological types.37 For
example, clear cell renal cell carcinoma demonstrated balanced
upregulated and downregulated metabolites (170 upregulated
and 149 downregulated).24 We also noticed that some featured
metabolites, such as UDPG and GDP-mannose that are specific
to glycosyl transfer, were significantly increased in TNBC.
Accordingly, the deregulation of glycosylation has been
reported as a feature of TNBC and significantly affected the
biological outcome.38 With paired genomic and transcriptomic
data, we systematically delineated the correlations between
genomic alterations and metabolites to suggest potential
genomic drivers of metabolism. Consistently, FA production
driven by PIK3CA mutation has recently been reported.32 Some
of the newly identified correlations between metabolomics and
genomics, such as NFIB amplification and GSSG enrichment,
need further investigation.
In our study, several observations relate to potential clinical

translation. First, we illustrated the refinement of metabolomic
subtypes to previously defined transcriptomic subtypes (Fig. 4g).
The simplified metabolomic subtyping system for BLIS tumors has
the potential for clinical application. Furthermore, metabolomics
was utilized to identify novel therapeutic targets. S1P, a well-
known tumor-promoting intermediate of the ceramide pathway,
was enriched in LAR tumors. The production and function of S1P
included four steps: the intake of serine, the transformation of
serine into ceramides, the degradation of ceramides to S1P and
S1P binding to S1PRs. Therefore, we conducted experiments on
cell lines and PDO models to block each step. The low efficacy of
targeting some steps in LAR tumors have been suggested in
previous studies.39,40 For example, blocking SPT and CERS have
been reported to be ineffective as they inhibit the formation of 1-
deoxy(dihydro)ceramides and thus promote tumor growth.39

Besides, serine restriction, especially through PHGDH inhibition,
has been proven to be more effective for basal-like rather than
non-basal-like tumors,40 which was consistent with our results.
Our study emphasized the importance of blocking the formation
of S1P with SPHK1 inhibitors in LAR tumors. Moreover, we also
identified NAAG as a crucial tumor-promoting metabolite in BLIS
tumors. NAAG was previously recognized as a neurotransmitter
that functions in the central neural system.41 Recently, NAAG was
also reported to function as a circulating biomarker and a
therapeutic target.42,43 Inhibiting NAAG transformation into
glutamate could restrain the growth of lymphoma and ovarian
serous adenocarcinoma models.43 Considering the similarity
between BLIS tumors and ovarian serous adenocarcinoma,44 our
study suggested that NAAG was a potential therapeutic target for
high-risk BLIS tumors as well.
Several limitations of our study should be considered. First, as

metabolomic detection technology is developing, the selection of

internal standards, the choosing of mass spectrometers and the
setting of cutoff values during peak identification might be
optimized in the future. We have utilized several methods, such as
calculating MS/MS matching scores,45 conducting quantitative
detection for crucial metabolites, to make our conclusions more
reliable. In addition, the therapeutic targets revealed in our study
were based on the analysis of multiomic data and functional
experiments in preclinical models. Although the functional
validation of the identified targets in PDO and PDX models
mimicked the effect on patients to some extent, the use of these
drugs in patients still needs further investigation.
In conclusion, using this large TNBC metabolomic dataset, we

described the metabolomic landscape and heterogeneity of TNBCs.
Furthermore, by combining genomic, transcriptomic and metabo-
lomic data, we identified several subtype-specific metabolomic
therapeutic targets for TNBCs, which might expand the frontiers of
our previous genomic-based precision medicine of TNBC.

MATERIALS AND METHODS
Patient cohort
Patients diagnosed with malignant breast cancer and who were willing to
participate in the present study were retrospectively selected. Detailed sample
selection was described in our previous study.4 In this study, we collected
samples in our TNBC cohort with adequate tissues for polar metabolite and
lipid detection. In all, 330 TNBC samples with 149 matched normal tissues
were available for further detection. All tissue samples included in the study
were obtained after approval of the research by the FUSCC Ethics Committee,
and each patient provided written informed consent.

Sample preparation and metabolomic detecting
Details of sample pretreatment, polar metabolome and lipidome detection,
data analysis, targeted metabolite detection and stable isotope tracing
analysis are included in the Supplementary information, Data S1.

Categorization of polar metabolite and lipid
We referred to the KEGG database to categorize polar metabolites based on
their KEGG metabolic pathways, resulting in eight categories: amino acids,
carbohydrates, lipids, nucleotides, peptides, vitamins and cofactors, xenobiotics
and others. For lipid data, we referred to the LIPID MAPS Structure Database
(LMSD) to determine the categories and main classes. Five (fatty acyls [FA],
glycerolipids [GL], glycerophospholipids [GP], sphingolipids [SP], sterol lipids
[ST]) of the eight classical lipid categories were detected in our study.

DA score
DA score captures the tendency for a pathway to have increased levels of
metabolites, relative to a control group.24 The score is calculated by first
applying a non-parametric DA test (in this study, Benjamini–Hochberg
corrected Mann–Whitney U tests) to all metabolites in a pathway. Then,
after determining which metabolites are significantly increased/decreased

Fig. 5 Analysis of ceramide metabolism in the LAR subtype revealed S1P as a potential therapeutic target. a Log2 fold change of lipid
subclasses between tumor and normal tissues and between LAR and non-LAR tumors. Log2 fold change of each lipid subclass was calculated
as the mean log2 fold change of the abundances of lipids belonging to this subclass. bMetabolomic changes in sphingolipid (SP) metabolism.
Log2 fold changes of the abundances of metabolites in tumor samples (LAR or non-LAR) as compared with normal tissues were illustrated.
c Transcriptomic changes in three SP metabolism-related pathways. ssGSEA scores of the pathways based on transcriptomics were calculated
and compared among LAR tumors, non-LAR tumors and normal tissues. d Proportions of isotope-labeled intermediates that are involved in
the de novo synthesis and degradation of the ceramide pathway in LAR and non-LAR cell lines. MDA-MB-453 and MFM-223 cell lines of LAR
subtype as well as BT-549 and LM2-4175 cell lines of non-LAR subtype were used for experiments. Each sample was detected with three
replicates. e, f Viability detection of PDOs after blocking different steps involved in de novo synthesis and degradation of ceramide pathway
(n= 5 different PDOs with three replicates for each group). The efficacy of inhibition (e) and representative images (f) were illustrated. The
concentrations of the inhibitors were as follows: NCT-503, 30 µM; PF-543, 10 µM; Opaganib, 50 µM; Siponimod, 30 µM; JTE-013, 30 µM; FTY-720,
1 µM. g Pharmacological tests of PF-543 and FTY-720 using mini-PDX models. h Drug sensitivity results for mini-PDX models of LAR and non-
LAR tumors (n= 3 different mini-PDX with three replicates for each group). Statistical comparisons in d, e and h were conducted using two-
tailed Student’s t-test. Data are presented as means ± SEM. Scale bars, 200 μm. ***P < 0.001, **P < 0.01; *P < 0.05; ns, P ≥ 0.05. Cer, ceramides; AS,
α-hydroxy fatty acid-sphingosine; AP, α-hydroxy fatty acid-phytospingosine; NS, non-hydroxyfatty acid-sphingosine; BS, β-hydroxy fatty
acidsphingosine; ADS, α-hydroxy fatty acid-dihydrosphingosine; NDS, non-hydroxy fatty acid-dihydrosphingosine; HexCer, Hexosylceramide;
OxPE, oxidized phosphatidylethanolamine; OxPC, oxidized phosphatidylcholine; SPT, serine palmitoyltransferases; CERS, (dihydro)ceramide
synthases; CDase, ceramidase; SPHK, sphingosine kinase.
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in abundance, the DA score is defined as:

DA ¼ No: of metabolites increased� No: of metabolites decreased
No: of measured metabolites in pathway

Thus, the DA score varies from −1 to 1. A score of −1 indicates that all
metabolites in a pathway decreased in abundance, while a score of 1
indicates that all metabolites increased.
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The DA score can also be divided into two parts, i.e., the upregulated
and the downregulated DA scores. The definitions are as follows:

Upregulated DA ¼ No: of metabolites increased
No: of measured metabolites in pathway

Downregulated DA ¼ No: of metabolites decreased
No: of measured metabolites in pathway

Metabolomic clustering
Both metabolite and lipid data were pre-processed before clustering based
on SNF.28 Only metabolites/lipids with significant tumor-normal differ-
ences (false discovery rate (FDR) < 0.01; | log2 fold change| > 1) were
retained. These metabolites/lipids were further filtered with standard
deviation (SD). Metabolites with the top 200 SDs and lipids with the top
400 SDs were kept for downstream SNF clustering. Three was identified as
the optimal number of clusters using function “estimateNumberOfClus-
tersGivenGraph” in R package “SNFtools” (both Eigen-gap best and
rotation cost best). The clustering results were further checked using a
similarity matrix and visualized using a network.

Metabolomic and transcriptomic matching at the individual
reaction level
Recon3D (an updated and expanded human metabolic network recon-
struction) was used to identify pairs of genes/metabolites.29 The Recon3D
dataset offered a large quantity of biochemical reactions with information
on substrates, products, related catalyzing genes and the reversibility of
the reactions. We first focused on the polar metabolites and the matching
metabolic genes. The genes, whose products catalyze the reactions, were
mapped to the corresponding substrates and products. Some uncommon
reactions were also included. Detailed matching information was provided
in Supplementary information, Table S7. A similar matching method was
also mentioned in a published metabolomic study.24 As lipids usually
consist of different lengths of fatty acyl chains and different glycosyl and
phosphate groups, the biochemical reactions of lipid metabolism are
complex. Several isozymes catalyzing similar biochemical reactions exist,
but with distinct specificity to different lengths of fatty acyl chains or
different glycosyl and phosphate groups. Therefore, it is difficult to
precisely match lipids with their specific and paired metabolic genes.

Analysis of the associations between somatic mutations and
polar metabolomics and lipidomics
We applied a linear regression model to evaluate the associations between
somatic mutations and polar metabolomics and lipidomics of TNBC
according to a previous study.26 Metabolomic subtypes, tumor size,
number of positive lymph nodes, age and BMI were adjusted to diminish
the cofounding effect. Only one metabolite was included in the regression
model at one time, in which the covariates were metabolomic subtyping
information, tumor size, number of positive lymph nodes, age and BMI.
The detailed formula of the model was as follows:

logit π Y ¼ 1ð Þð Þ ¼ β0þ β1´ one metaboliteð Þ þ β2 ´ metabolomic subtypeð Þþ
β3´ tumor sizeð Þ þ β4 ´ number of positive lymph nodesð Þ þ β5 ´ ageð Þþ

β6 ´ BMIð Þ

logit(π(Y= 1)): the mutation status of one gene; 0 or 1.
Known cancer-related genes30,31 that were mutated in at least 6% of the

cases of at least one metabolic subtype were included. Lipidomic data

were summarized based on the 47 subclasses, and the mean log2
abundance of lipids belonging to the same subclass was calculated as the
abundance of this lipid subclass. Each mutation variable was converted to
binary indicator (1/0) in our analysis. The calculated T-statistics and
associated P-values were reported to evaluate the associations. The
mutation features were scored by associations with each metabolite and
can be compared based on statistical significances.

Analysis of the associations between SCNAs and polar
metabolomics and lipidomics
The correlation between SCNAs and metabolite abundance was calculated
with a linear regression model. Metabolomic subtypes, tumor size, number
of positive lymph nodes, age and BMI were adjusted to diminish the
cofounding effect. Lipidomic data were also summarized as described in
the mutation-metabolite correlation section. T-statistics and associated
P values were calculated for SCNA peak and metabolite pairs. SCNA peak-
metabolite pairs included 97 GISTIC peaks and metabolites. GISTIC peaks
were obtained from the file “all_lesions.conf_95.txt” resulting from
GISTIC2.0 as previously described.4

Analysis of the association between mRNA expression of
cancer-related genes and polar metabolomics and lipidomics
The correlation between the mRNA expression of cancer-related genes and
metabolite abundance was calculated with a linear regression model.
Details were described in the sections for mutations and SCNAs. The list of
cancer-related genes was derived from the network of cancer gene
datasets.30 Oncogenes that were confirmed in breast cancer were included.
Then, genes with significant differences in mRNA expression between TNBC
samples and normal tissues (|log2FC| > 1, FDR < 0.01) were selected for
further analysis. In all, 27 cancer-related genes were included in the analysis.

Simplification of the metabolomic subtyping system for BLIS
tumors with machine-learning methods
The bootstrap method was used to construct the discovery and test
cohort. The metabolomic subtyping model was developed in the discovery
cohort via two different methods: 1) multivariate linear regression (R
package “glm”), 2) support vector machine (R package “e1071”). The least
absolute shrinkage and selection operator (Lasso) method was used to
select the most useful predictive features from the training cohort.46

Tuning parameter (λ) selection in the LASSO model used 5-fold cross-
validation. The ability to predict TNBC subtypes was assessed by the area
under the curve (AUC) of the ROC curve in the test cohort via the R
package “pROC”.47 Comparisons of AUCs were determined using the R
package “pROC”. The contribution of each predictor (metabolite) in the
LASSO model is defined by:

Contribution ¼ jcoefficienti jPjcoefficienti j

i: the metabolite included in the linear model

Human TNBC cell lines
All human TNBC cell lines were purchased from American Type Culture
Collection. Each cell line identity was verified by short tandem repeat
profiling. Cells were grown in complete growth medium as previously
described.48 Only cells that were thawed within 6 months were used for
the current study. To ensure the maintenance of phenotypes, cell
morphology and doubling times were also regularly recorded.

Fig. 6 Identification of NAAG as a crucial tumor-promoting metabolite in BLIS tumors. a Screening criteria of metabolites potentially
promoting tumor progression in BLIS tumors. b RFS of patients with different NAAG abundances of BLIS tumors. The P value was calculated by
the log rank test. c Confirmation of NAAG by comparison with standard compound. Measured MS/MS spectral fragmentation profiles (top, in
red) matched those of chemical standards (bottom, in gray). d Illustration of the NAAG metabolism pathway. e, f mRNA expression of RIMKLA
and RIMKLB (e) and their relationship with NAAG abundance in BLIS tumors (f). g Quantification of cell proliferation after knocking down RIMKLB
with shRNA and the complement of NAAG. h Right panel: quantification of cells migrating across transwell filters and invading through
matrigel-coated transwells after knocking down RIMKLB with shRNA and the complement of NAAG. Left panel: representative images of three
replicates. Ten random fields were counted per insert at 20×. i Experimental design. j, k Effect of RIMKLB knockdown and NAAG complement on
tumor growth (j) and tumor weight (k) (n= 6 for each group). Statistical comparisons in g–k were conducted using two-tailed Student’s t-test.
Data are presented as means ± SEM. Scale bars, 200 μm. ***P < 0.001, **P < 0.01; *P < 0.05; ns, P ≥ 0.05. NAA, N-acetyl-aspartic acid.
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Identification of the transcriptomic subtypes, metabolic-gene-
based subtypes and metabolomic subtypes for TNBC cell lines
Transcriptomic subtyping and metabolic-gene-based subtyping were
based on the RNA-seq data of our cohort. Metabolic-gene-based
metabolic pathway scores were first calculated with the ssGSEA method
(R package “GSVA”). Then, the TNBC cell lines were included in the t-sne
analysis (R package “Rtsne”) for transcriptomic subtyping and metabolic-
gene-based subtyping. Metabolomic subtyping was based on the
metabolomic data of the CCLE dataset (https://portals.broadinstitute.
org/ccle).26 The subtyping method was similar to that of metabolic-
gene-based subtyping.

shRNAs and transfection
HEK293T cells were transfected with shRNA vector and packaging plasmid
mix using Neofect DNA transfection reagents (Tengyi Biotech, #TF201201).
The supernatant containing virus was collected 48 h after transfection
with a 0.45-μm filter. Targeted cells were infected with shRNA lentivirus
with 8 µg/mL polybrene (Sigma, #H9268) and then selected with 2 µg/mL
of puromycin (Sangon Biotech, #A610593-0025) for one week. The shRNA
primers are as follows:
sh#1 F:CCGGCTGAAGTTCTGGAGTTCCCAACTCGAGTTGGGAACTCCAGAAC

TTCAGTTTTTG;
sh#1 R:AATTCAAAAACTGAAGTTCTGGAGTTCCCAACTCGAGTTGGGAACTC

CAGAACTTCAG
sh#2 F:CCGGGAAGAGATAGAGCATGACATACTCGAGTATGTCATGCTCTATC

TCTTCTTTTTG;
sh#2 R:AATTCAAAAAGAAGAGATAGAGCATGACATACTCGAGTATGTCATG

CTCTATCTCTTC
The efficiency of silencing was assessed by immunoblotting. For

immunoblotting analysis, cells were lysed in modified RIPA buffer (50
mM Tris-HCl, pH 7.4, 1% Nonidet P-40, 0.25% sodium deoxycholate, 150
mM NaCl, and 1mM EDTA). Protein concentrations were determined using
BCA protein assay reagent (Yeasen, #20201ES90). Cell extracts were
subjected to SDS-PAGE, transferred to PVDF membranes (Millipore,
#IPVH00010), and incubated with the indicated primary antibodies
(RIMKLB: Proteintech, 26111-1-AP; vinculin:Sigma, V9131).

Small interfering RNA (siRNA)
For SPHK1 siRNA transduction, LM2-4175 and MDA-MB-453 cells were
transfected with SPHK1 siRNA and negative control siRNA using
Lipofectamine™ 3000 Reagent (Lipo3000, Invitrogen, California, USA) 48 h
before the drug treatment. The details of the siRNA are as follows:

siRNA 5′→3′ sequence

siSPHK1#1 sense strand GCA GGC AUA UCG AGU AUG ATT

antisense strand UCA UAC UCC AUA UGC CUG CTT

siSPHK1#2 sense strand CCA UGA ACC UGC UGU CUC UTT

antisense strand AGA GAC AGC AGG UUC AUG GTT

siSPHK1#NC sense strand UUC UCC GAA CGU GUC ACG UTT

antisense strand ACG UGA CAC GUU CGG AGA ATT

The siRNA and negative control siRNA constructs were synthesized by
Guangzhou Ruibo Biotechnology Co., Ltd. (Guangzhou, China). The knock-
down efficiency was verified through quantitative PCR (qPCR) by using
specific primers (F: 5′–GCTCTGGTGGTCATGTCTGG–3′, R: 5′–CACAGCAATA
GCGTGCAGT–3′).

Cell proliferation assay
Cell proliferation assays were performed as previously described.49 The
DNA content of the cells was determined using a Fluorescent DNA
Quantitation kit (Bio-Rad Laboratories, Hercules, CA). For each analysis,
three replicate wells were used, and at least three independent
experiments were performed.

Cell migration and invasion assays
Cell migration was measured in a Boyden chamber using Transwell filters
obtained from Corning (Cambridge, MA). Cells (3–10 × 105) in 0.2 mL
serum-free medium were placed in the upper chamber, and the lower

chamber was loaded with 0.8 mL medium containing 10% FBS. Cells that
migrated to the lower surface of filters were stained with Wright Giemsa
solution, and five fields of each well were counted after 24 h of
incubation at 37 °C with 5% CO2. Three wells were examined for each
condition and cell type, and the experiments were repeated in triplicate.
Cell invasion assays were performed using a Chemicon cell invasion kit
(Chemicon International, Temecula, CA) in accordance with the
manufacturer’s protocol. Cells (3–10 × 105/mL) were seeded onto 24-
well cell culture chamber using inserts with an 8 lM pore size
polycarbonate membrane over a thin layer of extracellular matrix.
Following incubation of the plates for 48 h at 37 °C, cells that had
invaded through the ECM layer and migrated to the lower surface of the
membrane were stained and counted under the microscope in at least
10 different fields and photographed.

Fuel dependency assay of cell lines
The mitochondrial fuel dependency of each cell line was measured using a
Seahorse XF Mito Fuel Flex Test Kit (Seahorse Biosciences, #103260-100)
following the manufacturer’s protocols. Briefly, cells were plated in
Seahorse XF96 well plates at proper intensity (~3 × 104 cells/well) and
incubated overnight. On the next day, the culture medium was replaced
with XF24 DMEM containing 10mM glucose, 2 mM glutamine and 1mM
pyruvate. The mitochondrial oxygen consumption rate (OCR) was
measured at basal levels as well as with drugs inhibiting the utilization
of the substrate. The final concentrations of the various inhibitors used
were as follows: mitochondrial pyruvate carrier inhibitor (UK5099), 2 mM;
Glutaminease I inhibitor (BPTES), 3 mM; carnitine palmitoyltransferases 1 A
inhibitor (Etomoxir), 4 mM. The dependency for use of one of the three
substrates was assessed by OCR changes with the addition of one inhibitor
and the OCR changes after the addition of all three inhibitors. The
dependency of each fuel was calculated using the following formulas:

Dependency %ð Þ ¼ OCRthe first injection � OCRthe second injection

OCRthe first injection � OCRthe last injection
´ 100

Isotopic labeling
For serine tracing, 1 × 107 cells were cultured for 24 h in serine/glycine-free
medium (Teknova). Then, 42 mg/L [U-13C3,15N]-serine (CNLM-474-H, Cam-
bridge Isotope Laboratory) was added to the medium and cells were
cultured for another 24 h. Then, cells were washed and collected for
analysis. Details of the isotopic labeling measurement are included in
Supplementary information, Data S1.

Compounds
PF-543 (S7177), Opaganib (S7174), Siponimod (S7179) and JTE 013 (S7182)
were purchased from Selleck. NCT-503 (HY-101966), FTY-720 (HY-12005)
and SK-IN-1 (HY-101805) were purchased from MedChemExpress. NAAG
(A5930) was purchased from Sigma.

Identification of the transcriptomic subtypes of TNBC for PDO
and PDX models
The TNBC transcriptomic subtype of each PDO or PDX was determined by
our previously defined IHC methods.33 In brief, AR, CD8, FOXC1 and DCLK1
were utilized as markers for TNBC subtyping. This IHC method has been
widely used in the clinical setting in our center. Therefore, we can directly
acquire the subtype for the TNBC patient from the pathological report.

Organoid preparation and culture
We developed a biobank for organoid storage as previously described.50,51

Fresh breast cancer tissues were placed in cold DMEM/F12 (Gibco) with
primocin (InvivoGen) and transported to the lab in an ice box for tumor cell
isolation and culture. Tissues were washed in cold PBS 2–3 times and then
minced into small fragments (1mm3 or less) using sterile scalpels. Tissues were
digested with collagenase and hyaluronidase in digestion buffer (DMEM/F12
with 5% BSA, insulin and hydrocortisone) for 12 h at 37 °C. Dissociated tissues
were spun down at 350× g for 5min and resuspended in 10mL of Tris-NH4Cl
buffer, incubated for 3min to remove red blood cells and passed through
a 100 μm cell strainer (Corning). Dissociated cell clusters were centrifuged for 5
min at 350× g and resuspended in digestion buffer and spun down again. Cell
clusters were resuspended in BME type-2 buffer (Trevigen, 3533-010-02)
and plated as a 300 μL drop within a 12mm, 0.4 μm inner Transwell chamber
(Corning). The drop was solidified by a 30-min incubation at 37 °C and 5% CO2
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with 1mL of breast cancer organoid medium (Advanced DMEM/
F12 supplemented with R-spondin-1 [500 ng/mL, Peprotech], Noggin [100
ng/mL, Peprotech], Neuregulin [5 nM, Peprotech], Estradiol [5 nM, Sigma],
HEPES [1mM, Gibco], GlutaMAX [1×, Gibco], Nicotinamide [5mM, Sigma],
N-Acetylcysteine [1.25mM, Sigma], B-27 [1×, Gibco]. A83-01 [0.5mM, Tocris],
Primocin [1×, InvivoGen], SB-202190 [500 nM, Selleck], Y27632 [5 uM, Selleck],
FGF10 [20 ng/mL, Peprotech], FGF7 [5 ng/mL, Peprotech] and EGF [5 ng/mL,
Peprotech]). For passaging, 5mL harvesting solution (Trevigen, 3700-100-01)
was used to digest the BME and incubated on ice for 1 h. Subsequently,
organoids were centrifuged at 350× g for 5min, washed in digestion buffer
and spun down. 3mL TrypLE Express (InvitroGen) was added, and organoids
were incubated at room temperature for 3min, followed by mechanical
dissociation to small cell clusters by pipetting. Organoids were passaged at a
1:2–3 dilution every 2–3 weeks. All PDOs included in the study were obtained
after approval of the research by the FUSCC Ethics Committee, and each
patient provided written informed consent.

Drug response test of TNBC organoids
For organoid drug treatment, organoids in good condition were harvested
and digested into single cells. Organoids were diluted to 40 organoids/µL
in breast cancer organoid medium containing 10% BME.51 25 µL organoid
suspension was added to cell-repellent black surface, clear bottom 384-
well plates (Greiner 781976-SIN) and cultured for another 5–6 days before
drug treatments. For glycine/serine depletion culture, organoids were
cultured for 2 weeks before testing for viability. Organoid cell viability was
evaluated by a CellTiter-Glo 3D cell viability assay (Promega, G9683)
according to the manufacturer’s instructions.

Drug response test of TNBC mini patient-derived xenograft
(mini-PDX) models
To rapidly test drug efficacy in vivo, we established mini-PDX models
according to previous papers.52,53 Tumor cells derived from PDO models
were harvested and digested into single cells. Cells were then filled into
OncoVee® capsules (LIDE Biotech, Shanghai, China). Each capsule
contained ~2000 cells. Capsules were implanted subcutaneously via a
small skin incision with 3 capsules per mouse (5-week-old female nu/nu
mouse). Mice bearing MiniPDX capsules were treated with appropriate
control or drugs (PF-543 and FTY-720). PF-543 and FTY-720 were
administered via tail vein injection, as single administrations (Daily
[qd] × 1) for 7 continuous days at doses of 5 mg/kg or 1mg/kg,
respectively. All these drugs were prepared by being dissolved in DMSO,
PEG300 and Tween-80 solutions. Vehicle controls were isometric 0.5%
HPMC and 0.2% Tween-80 solution and the vehicle treatment was
performed the same way as drug treatment. After all capsules were
removed from mice, tumor cell proliferation in each capsule was measured
using the CellTiter Glo Luminescent Cell Viability Assay kit (G7571,
Promega, Madison, WI, US). Tumor cell growth inhibition rate was
calculated using the published formula.53

In vivo mouse studies
Five- to six-week-old female NOD/SCID mice were obtained from Shanghai
Jihui Laboratory Animal Care Co. Ltd. A total of 1 × 106 LM2-4175 breast
cancer cells with or without RIMKLB knockdown were injected subcuta-
neously into the mammary fat pad region of mice. Tumor size was measured
twice or three times weekly using a caliper. Tumor volume in mm3 was
calculated using the formula: tumor volume= 0.5 × L ×W2, where L is the
longest dimension and W is the perpendicular dimension. After 14 days, each
group was divided into two groups: supplement with or without NAAG. The
mice bearing tumors were injected with NAAG daily, via intraperitoneal
injection at a dose of 50mg/kg.43 Mice were sacrificed at day 31. All animal
experiments were performed according to protocols approved by the
Research Ethical Committee of Fudan University Shanghai Cancer Center. The
protocols of all animal experiments were reviewed and approved by
Institutional Animal Care and Use Committee (FUSCC-IACUC-2021381).

Statistical analysis
Two-tailed Student’s t-test, Wilcoxon’s test and Kruskal–Wallis test were
utilized to compare continuous variables and ordered categorical variables.
Prior to the comparisons, the normality of the distributions was tested with
the Shapiro–Wilk test before comparison. Pearson’s chi-square test or
Fisher’s exact test was employed for the comparison of unordered
categorical variables. A permutation test was conducted to compare gene

mutation frequencies among clusters. Correlation matrices were created
with Pearson’s or Spearman’s correlation. RFS was defined as the time from
diagnosis to first recurrence, a diagnosis of contralateral breast cancer or
death of any cause. Patients without events were censored from the time
point of the last follow-up. Survival analysis was performed using the
Kaplan-Meier method, and the survival of the clusters was compared using
the log rank test. All the tests were two-sided, and P < 0.05 indicates
significance, unless otherwise stated. The FDR correction was utilized in
multiple tests to decrease false positive rates. All of the analyses were
performed with R software (version 3.4.2, http://www.R-project.org).

DATA AVAILABILITY
The polar metabolomic and lipidomic data of our cohort are provided in
Supplementary information, Tables S1–S4. The accession number for raw LC-MS
data, microarray data and sequence data reported in this paper is NODE: OEP000155.
All data can be viewed in The National Omics Data Encyclopedia (NODE) (http://www.
biosino.org/node) by pasting the accession (OEP000155) into the text search box or
through the URL: http://www.biosino.org/node/project/detail/OEP000155.
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