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A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the
heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines.
At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-
independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better
stability and allow larger timesteps than explicit ones.The linear diffusion equation on each edge of the system is spatially discretized
with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where
the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation,
or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are
presented.

1. Introduction

One of the long-recognized challenges in modeling cardiac
dynamics [1–4] is developing efficient and accurate algo-
rithms that can accommodate the widely varying scales in
both space and time [5]. The electrical wave fronts typically
occupy only a small fraction of the domain, are very sharp (in
space), and change very rapidly (in time) while the electrical
potential, in the region away from the wave fronts, is spatially
broad and changes more slowly. With standard numerical
methods on uniform grids, very small mesh parameters and
very small timesteps must be used to correctly resolve the
fine details of the sharp and rapidly changing wave fronts.
These discretization parameters are often chosen heuristically
and are fixed throughout the simulation, even if conditions
change. Adaptive mesh refinement (AMR) methods have
been proposed as a solution, in which coarse grids and large
timesteps are used in the area where the electrical potential
is changing slowly and fine grids and small timesteps are
applied only in the regionwhere the sharp electrical waves are

located and the action potential changes very rapidly. Using
this approach, the numbers of grid nodes and timesteps used
with the adaptive algorithm are to some extent optimized.
Theoriginal AMRalgorithmwas first proposed byBerger and
Oliger for hyperbolic equations [6] and shock hydrodynamics
[7].Themethods have been applied to cardiac simulations by
Cherry et al. [8, 9] and Trangenstein and Kim [10].

The Berger-Oliger AMR algorithm is a hierarchical and
recursive integration method for time-dependent partial
differential equations. It starts time integration on a relatively
coarse grid with a large timestep. The coarse grid is locally
refined further if the computed solution at part of the domain
is estimated to have large errors. Better solutions are obtained
by continuing time integration on the fine grid with a smaller
timestep until both coarse and fine grids reach the same time,
called synchronization of levels. The fine grid may be locally
refined further and is dynamically changing, which leads to
both space and time adaptive algorithm.

The standard implementation of Berger-Oliger’s AMR
algorithm uses block-structured grids and assumes that

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 137482, 14 pages
http://dx.doi.org/10.1155/2015/137482

http://dx.doi.org/10.1155/2015/137482


2 BioMed Research International

the underlying grids are logically rectangular and can be
mapped onto a single index space.While themethodhas been
shown to provide computation and accuracy advantages, it is
challenging to apply to domains with complex geometry.

In this paper, we present an AMR algorithm that can
be used for unstructured grids. The method is applied in
both idealized and realistic tree-like domains similar to that
found in the His-Purkinje system. The algorithm is based on
that proposed by Trangenstein and Kim [10] where operator
splitting technique is used to separate the space-independent
reactions part from the linear diffusion part during time
integration. Both the reactions and the diffusion parts are
integrated with an implicit scheme. This allows larger and
adaptive timesteps. As the AMR algorithm naturally provides
a hierarchy of multilevel grids, the linear systems resulting
from space discretization of the linear diffusion on the
adaptively refined grids are solved by a standard geomet-
ric multigrid solver. The results show that uniform coarse
discretization can lead to conduction failure or changes in
dynamics in some parts of the branching network when
compared to a uniform fine grid. The results also show that
AMR scheme with adaptive time integration (AMR-ATI) can
yield results as accurate as the uniform fine grid but with a
speedup of 15 times.

The remainder of the work is organized as follows. Sec-
tion 2 describes the partial differential equations, which
model electrical wave propagation on the Purkinje system.
Sections 3 and 4, respectively, present the time integration
and space discretization for the reaction-diffusion equations.
The adaptive mesh refinement and adaptive time integration
procedures are outlined in Sections 5 and 6. In Section 7,
some simulation results are presented with the AMR-ATI
algorithm.

2. Differential Equations

Suppose that we are given a fiber network of the Purkinje
system with 𝑁

𝑉
vertices and 𝑁

𝐸
edges. See Figure 1 for an

idealized branch of the Purkinje system. Let 𝑑
𝑖
be the number

of edges connected to vertices 𝑉
𝑖
, for each 𝑖 = 1, 2, . . . , 𝑁

𝑉
.

We call 𝑑
𝑖
the degree of the vertex 𝑉

𝑖
. A vertex 𝑉

𝑖
with 𝑑

𝑖
= 1

is called a leaf-vertex. Otherwise, it is called a nonleaf-vertex.
Denote the 𝑗th edge 𝐸

𝑗
in the fiber network by 𝐸

𝑗
= [𝑥
(𝑗)

0
,

𝑥
(𝑗)

1
]. Denote the edges that have vertex 𝑉

𝑖
as the common

endpoint by 𝐸
𝑖
1

, 𝐸
𝑖
2

, . . . , 𝐸
𝑖
𝑑𝑖

. Denote by 𝑥(𝑖1)
𝑏
𝑖1

, 𝑥
(𝑖
2
)

𝑏
𝑖2

, . . . , 𝑥
(𝑖
𝑑𝑖
)

𝑏
𝑖
𝑑𝑖

the endpoints of the adjacent edges, which overlapwith vertex
𝑉
𝑖
. The subscript 𝑏

𝑖
𝑟

is either 0 or 1 for 𝑟 = 1, 2, . . . , 𝑑
𝑖
.

On each edge 𝐸
𝑗
of the fiber network, the distribution

of the electric/action potential is determined by the con-
servation of electric currents and could be described by a
partial differential equation coupled with a set of ordinary
differential equations. Consider

𝑎

2

𝜕𝐽 (𝑡, 𝑥)

𝜕𝑥
+ 𝐶
𝑚

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝐼ion (𝑢, q) = 𝐼stim (𝑡, 𝑥)

for 𝑥(𝑗)
0
< 𝑥 < 𝑥

(𝑗)

1
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Figure 1: An idealized branch of the Purkinje system.

with

𝐽 (𝑡, 𝑥) = −
1

𝑅

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
(2)

as the flux. Here, 𝑎 (units: cm) denotes a typical radius of
the fiber; 𝐶

𝑚
(units: 𝜇F/cm2) is the membrane capacitance

constant; 𝑅 (units: kΩ⋅cm) is the electrical resistivity. The
vector q denotes a vector of dimensionless gating variables.
The functions 𝐼ion(𝑢, q) and M(𝑢, q) are typically nonlinear,
describing the membrane dynamics of the fiber. One specific
model is the Hodgkin-Huxley equations [11].

We assume the electric potential 𝑢(𝑡, 𝑥) is continuous,

𝑢 (𝑡, 𝑥
(𝑖
1
)

𝑏
𝑖1

) = 𝑢 (𝑡, 𝑥
(𝑖
2
)

𝑏
𝑖2

) = ⋅ ⋅ ⋅ = 𝑢 (𝑡, 𝑥
(𝑖
𝑑𝑖
)

𝑏
𝑖
𝑑𝑖

) , (3)

and the electric flux is conserved,
𝑑
𝑖

∑

𝑟=1

(−1)
𝑏
𝑖𝑟 𝐽 (𝑡, 𝑥

(𝑖
𝑟
)

𝑏
𝑖𝑟

) = 0, (4)

at each vertex 𝑉
𝑖
at any time 𝑡 > 0. At a leaf-vertex 𝑉

𝑖
, as we

have 𝑑
𝑖
= 1, the assumption (4) means the no-flux boundary

condition is imposed.
Combined with some appropriate initial conditions for

the potential function 𝑢(𝑡, 𝑥) and the gating variables q(𝑡, 𝑥),
the differential equations above can be uniquely solved.

3. Time Integration and Operator Splitting

We will adapt the method of lines to temporally integrate the
differential equations (1). Let 𝑡𝑛 be the discrete times, at which
the equations will be discretized. At each timestep from 𝑡

𝑛 to
𝑡
𝑛+1, we use an operator splitting technique to advance the
space-dependent part,

𝑎

2

𝜕𝐽 (𝑡, 𝑥)

𝜕𝑥
+ 𝐶
𝑚

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
= 0 for 𝑥(𝑗)

0
< 𝑥 < 𝑥

(𝑗)

1
, (5)

separately from the space-independent part,

𝐶
𝑚

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝐼ion (𝑢, q) = 𝐼stim (𝑡, 𝑥) , (6a)

𝑑q (𝑡, 𝑥)
𝑑𝑡

= M (𝑢, q) , (6b)
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in the differential equations (1). Note that the space-depend-
ent part (5) is simply a linear diffusion equation. The space-
independent part (6a) and (6b) is simply a set of ordinary
differential equations (ODEs).

With respect to time integration, both the linear diffu-
sion and the nonlinear reaction parts can be in principle inte-
grated with any standard ODE solver. In this work, we adapt
implicit time integration schemes to integrate both the linear
diffusion equation and the nonlinear ODEs or so-called reac-
tion equations. An implicit scheme allows relatively larger
timesteps than those imposed by the stability restriction
associated with an explicit scheme.

In the next section, we will focus on the space discret-
ization of the linear diffusion equation. For simplicity, we
assume the linear diffusion equation (5) is discretized in time
with the backward Euler method,

𝑎

2

𝜕𝐽 (𝑡
𝑛+1

, 𝑥)

𝜕𝑥
+ 𝐶
𝑚

𝑢 (𝑡
𝑛+1

, 𝑥) − 𝑢 (𝑡
𝑛
, 𝑥)

Δ𝑡
= 0

for 𝑥(𝑗)
0
< 𝑥 < 𝑥

(𝑗)

1
,

(7)

with

𝐽 (𝑡
𝑛+1

, 𝑥) = −
1

𝑅

𝜕𝑢 (𝑡
𝑛+1

, 𝑥)

𝜕𝑥
. (8)

Here, Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛.

4. Space Discretization with the Finite
Element Method

For conciseness, we will omit the time-dependency of the
electric potential 𝑢(𝑡𝑛+1, 𝑥) and the electric flux 𝐽(𝑡𝑛+1, 𝑥). Let

𝑢 (𝑥) ≡ 𝑢 (𝑡
𝑛+1

, 𝑥) , 𝐽 (𝑥) ≡ 𝐽 (𝑡
𝑛+1

, 𝑥) ,

𝑏 (𝑥) ≡ 𝜅𝑢 (𝑡
𝑛
, 𝑥)

(9)

with 𝜅 = 2𝐶
𝑚
/(𝑎Δ𝑡). Note that 𝑏(𝑥) is known in the timestep

from 𝑡
𝑛 to 𝑡

𝑛+1. The semidiscrete equation (7) can then be
rewritten as

−
𝑑

𝑑𝑥
[
1

𝑅
𝑢
󸀠
(𝑥)] + 𝜅𝑢 (𝑥) = 𝐽

󸀠
(𝑥) + 𝜅𝑢 (𝑥) = 𝑏 (𝑥)

for 𝑥(𝑗)
0
< 𝑥 < 𝑥

(𝑗)

1
.

(10)

In this work, we further discretize (10) with the continuous
piecewise linear finite element method.

For simplicity, in this section, we only illustrate the
discretization of the ODE (10) with the finite elementmethod
for the case of uniform mesh refinement.

Suppose the 𝑗th edge𝐸
𝑗
in the fiber network is partitioned

into a uniform grid, denoted by G
𝑗
. Assume the grid G

𝑗
has

(𝑚
𝑗
+1) nodes, denoted by {𝜉(𝑗)

𝑖
}
𝑚
𝑗

𝑖=0
with 𝜉(𝑗)

𝑖
= 𝑥
(𝑗)

0
+ 𝑖ℎ
(𝑗) and

ℎ
(𝑗)
= (𝑥
(𝑗)

1
− 𝑥
(𝑗)

0
)/𝑚
𝑗
.

Let 𝑢(𝑗)
𝑖

be the unknownpotential variable associatedwith
the grid node 𝜉(𝑗)

𝑖
and u(𝑗)

ℎ
= (𝑢
(𝑗)

0
, 𝑢
(𝑗)

1
, . . . , 𝑢

(𝑗)

𝑚
𝑗

)
𝑇 the vector of

unknown potential variables. Let

𝜑
(𝑗)

𝑖
(𝜉) =

{{{{{{{{

{{{{{{{{

{

𝜉 − 𝜉
(𝑗)

𝑖−1

ℎ(𝑗)
if 𝜉(𝑗)
𝑖−1

< 𝜉 < 𝜉
(𝑗)

𝑖

𝜉
(𝑗)

𝑖+1
− 𝜉

ℎ(𝑗)
if 𝜉(𝑗)
𝑖
< 𝜉 < 𝜉

(𝑗)

𝑖+1

0 otherwise

(11)

be the continuous piecewise linear finite element basis func-
tion associated with the grid node 𝜉(𝑗)

𝑖
for each 𝑖 = 1, . . . , 𝑚

𝑗
−

1. At the endpoints 𝜉(𝑗)
0

= 𝑥
(𝑗)

0
and 𝜉(𝑗)
𝑚
𝑗

= 𝑥
(𝑗)

1
, the associated

basis functions read

𝜑
(𝑗)

0
(𝜉) =

{{

{{

{

𝜉
(𝑗)

1
− 𝜉

ℎ(𝑗)
if 𝜉(𝑗)
0
< 𝜉 < 𝜉

(𝑗)

1

0 otherwise,

𝜑
(𝑗)

𝑚
𝑗

(𝜉) =

{{{

{{{

{

𝜉 − 𝜉
(𝑗)

𝑚
𝑗
−1

ℎ(𝑗)
if 𝜉(𝑗)
𝑚
𝑗
−1
< 𝜉 < 𝜉

(𝑗)

𝑚
𝑗

0 otherwise.

(12)

Assume the finite element solution takes the form 𝑢
(𝑗)

ℎ
(𝑥) =

∑
𝑚
𝑗

𝑖=0
𝑢
(𝑗)

𝑖
𝜑
(𝑗)

𝑖
(𝑥), which is a linear combination of the basis

functions.
We introduce the electric flux 𝐽(𝑥) = −𝑅

−1
𝑢
󸀠
(𝑥) at the

edge endpoints 𝜉(𝑗)
0

= 𝑥
(𝑗)

0
and 𝜉

(𝑗)

𝑚
𝑗

= 𝑥
(𝑗)

1
as two extra

unknowns. In terms of the basis functions {𝜑(𝑗)
𝑖
(𝑥)}
𝑚
𝑗

𝑖=0
, the

finite element equations equivalent to the second-order ODE
(10) are given by

∫

1

0

[
1

𝑅

𝑑

𝑑𝑥
𝑢
(𝑗)

ℎ
(𝑥)

𝑑

𝑑𝑥
𝜑
(𝑗)

𝑖
(𝑥) + 𝜅𝑢

(𝑗)

ℎ
(𝑥) 𝜑
(𝑗)

𝑖
(𝑥)] 𝑑𝑥

+ 𝐽 (𝑥
(𝑗)

1
) 𝜑
𝑖
(𝑥
(𝑗)

1
) − 𝐽 (𝑥

(𝑗)

0
) 𝜑
𝑖
(𝑥
(𝑗)

0
)

= ∫

1

0

𝑏 (𝑥) 𝜑
(𝑗)

𝑖
(𝑥) 𝑑𝑥

(13)

for 𝑖 = 0, 1, . . . , 𝑚
𝑗
. At individual grid nodes, they explicitly

read

∫

𝜉
(𝑗)

1

𝜉
(𝑗)

0

[
1

𝑅

𝑑

𝑑𝑥
𝑢
(𝑗)

ℎ
(𝑥)

𝑑

𝑑𝑥
𝜑
(𝑗)

0
(𝑥) + 𝜅𝑢

(𝑗)

ℎ
(𝑥) 𝜑
(𝑗)

0
(𝑥)] 𝑑𝑥

− 𝐽 (𝑥
(𝑗)

0
) 𝜑
(𝑗)

0
(𝑥
(𝑗)

0
) = ∫

𝜉
(𝑗)

1

𝜉
(𝑗)

0

𝑏 (𝑥) 𝜑
(𝑗)

0
(𝑥) 𝑑𝑥,

(14)
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∫

𝜉
(𝑗)

𝑖+1

𝜉
(𝑗)

𝑖−1

[
1

𝑅

𝑑

𝑑𝑥
𝑢
(𝑗)

ℎ
(𝑥)

𝑑

𝑑𝑥
𝜑
(𝑗)

𝑖
(𝑥) + 𝜅𝑢

(𝑗)

ℎ
(𝑥) 𝜑
(𝑗)

𝑖
(𝑥)] 𝑑𝑥

= ∫

𝜉
(𝑗)

𝑖+1

𝜉
(𝑗)

𝑖−1

𝑏 (𝑥) 𝜑
(𝑗)

𝑖
(𝑥) 𝑑𝑥 for 𝑖 = 1, 2, . . . , 𝑚

𝑗
− 1,

(15)

∫

𝜉
(𝑗)

𝑚𝑗

𝜉
(𝑗)

𝑚𝑗−1

[
1

𝑅

𝑑

𝑑𝑥
𝑢
(𝑗)

ℎ
(𝑥)

𝑑

𝑑𝑥
𝜑
(𝑗)

𝑚
𝑗

(𝑥) + 𝜅𝑢
(𝑗)

ℎ
(𝑥) 𝜑
(𝑗)

𝑚
𝑗

(𝑥)] 𝑑𝑥

+ 𝐽 (𝑥
(𝑗)

1
) 𝜑
(𝑗)

𝑚
𝑗

(𝑥
(𝑗)

1
) = ∫

𝜉
(𝑗)

𝑚𝑗

𝜉
(𝑗)

𝑚𝑗−1

𝑏 (𝑥) 𝜑
(𝑗)

𝑚
𝑗

(𝑥) 𝑑𝑥.

(16)

By further discretizing each integral in the finite element
system above with the composite trapezoidal rule, we can get
a set of linear equations in the following form:

A(𝑗)u(𝑗)
ℎ
+ J(𝑗) = ℎ(𝑗)b(𝑗), (17)

with A(𝑗) = (𝑎
(𝑗)

𝑟,𝑠
)
(𝑚
𝑗
+1)×(𝑚

𝑗
+1)

as the finite element stiffness
matrix,b(𝑗) = (𝑏𝑗

𝑟
)
𝑚
𝑗
+1
as the current vector, and J(𝑗) as the flux

vector. The stiffness matrix A(𝑗) is tridiagonal and symmetric
positive definite. In each row, at most three entries right on
the diagonal (𝑎(𝑗)

𝑟,𝑟−1
, 𝑎(𝑗)
𝑟,𝑟
, and 𝑎

(𝑗)

𝑟,𝑟+1
) are nonzero. The flux

vector J(𝑗) has the following form:

J(𝑗) = (−𝐽 (𝑥(𝑗)
0
) , 0, . . . , 0, 𝐽 (𝑥

(𝑗)

1
))
𝑇

, (18)

where most entries are zeros except the first and the last ones.
As the fluxes 𝐽(𝑥(𝑗)

0
) and 𝐽(𝑥

(𝑗)

1
) through the endpoints

of each edge 𝐸
𝑗
are unknown, the tridiagonal system (17)

involves two more unknowns than equations. So, for the
global system to be uniquely solvable, we need totally 2𝑁

𝐸

extra equations/conditions.
Fortunately, at a nonleaf-vertex 𝑉

𝑖
, which has degree 𝑑

𝑖
>

1, we have (𝑑
𝑖
−1) equations by the continuity (3) of potentials

plus one more equation by the conservation (4) of electric
fluxes. At a leaf-vertex 𝑉

𝑖
, which has 𝑑

𝑖
= 1, the electric flux

conservation (4) provides exactly one boundary condition.
Totally we have ∑𝑁𝑉

𝑖=1
𝑑
𝑖
= 2𝑁

𝐸
additional equations. The

number of equations in the final system is thus the same as
that of unknowns. Normally, the system is well-determined.

The overall system on the fiber network involves both
the potentials at the grid nodes and the electric fluxes at
the fiber vertices as unknowns. In practical computation, we
eliminate the electric fluxes to get a linear system with the
discrete potentials as the only unknowns. As a matter of fact,
noting that 𝜑(𝑗)

0
(𝑥
(𝑗)

0
) = 1 and 𝜑(𝑗)

𝑚
𝑗

(𝑥
(𝑗)

1
) = 1, from (14) and

(16), we see the electric flux 𝐽(𝑥(𝑗)
0
) can be simply written out

in terms of 𝑢(𝑗)
0

and 𝑢(𝑗)
1

and the electric flux 𝐽(𝑥(𝑗)
1
) can be

simply written out in terms of 𝑢(𝑗)
𝑚
𝑗
−1

and 𝑢(𝑗)
𝑚
𝑗

. Plugging the
explicit expressions of the electric fluxes into the conservation
condition (4), we get an equation involving the unknown

potentials only. After eliminating the electric fluxes, we
have a well-determined system, which has 𝑁

𝑉
+ ∑
𝑁
𝐸

𝑗=1
(𝑚
𝑗
−

1) equations and unknowns. It can be easily verified that
the coefficient matrix of the resulting system is a strictly
diagonally dominant and symmetric positive definite M-
matrix [12].

In the case when the edge 𝐸
𝑗
is partitioned into a locally

refined grid or a composite grid, the ODE (10) can be sim-
ilarly discretized with the continuous piecewise linear finite
element method. The coefficient matrix A(𝑗) of the resulting
system associated with each edge 𝐸

𝑗
is also a tridiagonal,

strictly diagonally dominant, and symmetric positive definite
M-matrix. The overall system of discrete equations on the
fiber network is well-determined too. The electric fluxes at
the fiber vertices can also be eliminated so that the resulting
system has the discrete potentials as the only unknowns and
the coefficient matrix is a diagonally dominant M-matrix.

In this work, the grids for the space discretization are
generated by local and adaptive mesh refinement (see Sec-
tion 5 for details). The discrete finite element equations on
the fiber network are solved with a V-cyclemultigridmethod.
Basic components of the V-cycle iteration on the fiber
network, including presmoothing, residual restriction, coarse
grid correction, correction prolongation, and postsmooth-
ing, are essentially the same as those of the V-cycle iteration
for the composite grid equations on a single interval. We
refer the readers to Ying’s thesis work [13] for details of the
multilevel/multigrid iteration.

5. Adaptive Mesh Refinement

The adaptive mesh refinement (AMR) algorithm applied for
this study discretizes the fiber network into a hierarchy of
dynamically, locally, and adaptively refined grids. See Figure 2
for a few composite grids, each ofwhich consists of five locally
refined grids, at different times.

The AMR algorithm follows Berger-Oliger’s approach
in timestepping [6–10]. It uses a multilevel approach to
recursively integrate the reaction-diffusion system on the
composite grids. It first integrates the system with a large
timestep on a coarse level grid. Next a locally refined fine grid
is generated based on available coarse data. Then the algo-
rithm integrates the system on the fine level grid with a small
timestep. Error estimation is achieved by the Richardson
extrapolation [14]. By the recursive nature of the algorithm,
fine grids are dynamically and locally created based on the
data on coarse grids. On fine grids, smaller timesteps are
used for time integration. The AMR algorithm synchronizes
adjacent coarse and fine levels from time to time. At the
moment of synchronization, typical routines such as mesh
regridding and data up-/downscaling are performed.

Let𝐾 be themaximumnumber ofmesh refinement levels
and let ℓ

𝑘
with 𝑘 ∈ {1, 2, . . . , 𝐾} be the 𝑘th level of mesh

refinement. Algorithm 1 below gives a brief description of
the central part of the adaptive mesh refinement procedure,
which recursively advances the data at the current level ℓ

𝑘
and

its finer levels.
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Figure 2: Adaptively refined grids from a simulation, which use five
refinement levels.

Algorithm 1 (advance(level ℓ
𝑘
, timestep Δ𝑡

𝑘
)).

Step 1. Integrate the differential equation at the level ℓ
𝑘
by its

timestep Δ𝑡
𝑘
with the Strang operator splitting technique.

(a) Integrate the split reaction equation by a half timestep
Δ𝑡
𝑘
/2.

(b) Integrate the split diffusion equation by a full timestep
Δ𝑡
𝑘
.

(c) Integrate the split reaction equation by a half timestep
Δ𝑡
𝑘
/2.

Step 2. If the level ℓ
𝑘
has not been refined with 𝑘 < 𝐾 or

it is time to regrid the grid on the finer level ℓ
𝑘+1

, refine
the current level ℓ

𝑘
or regrid the finer level ℓ

𝑘+1
after error

estimation. Scale data down from the current level ℓ
𝑘
to the

finer level ℓ
𝑘+1

.

Step 3. Set the timestep Δ𝑡
𝑘+1

= Δ𝑡
𝑘
/2 and integrate the finer

level ℓ
𝑘+1

by two timesteps by recursively calling the function
itself “advance(level ℓ

𝑘+1
, timestep Δ𝑡

𝑘+1
).”

Step 4. If the finer level ℓ
𝑘+1

and the current level ℓ
𝑘
are

synchronized, reaching the same time, scale data up from the
finer level ℓ

𝑘+1
to the current level ℓ

𝑘
.

Figure 3 illustrates the recursive advancing or integration
of three different mesh refinement levels. Coarse levels are
advanced/integrated before fine levels. Each level has its own
timestep of different size: a coarser level has a larger timestep
size and a finer level has a smaller timestep. The algorithm
first advances level ℓ

0
byΔ𝑡
0
(indicated by “1”), next advances

level ℓ
1
by Δ𝑡
1
= Δ𝑡
0
/2 (indicated by “2”), and then advances

level ℓ
2
by two steps with Δ𝑡

2
= Δ𝑡
1
/2 (indicated by “3” and

“4”). Upon the synchronization of levels ℓ
1
and ℓ
2
, data on the

fine level ℓ
2
are upscaled to the coarser level ℓ

1
. The recursive

integration continues with Steps “5,” “6,” “7,” and so forth.
The design of the AMR algorithm used in this work was

based on a few assumptions proposed by Trangenstein and
Kim [10].

(i) First we assume the number of elements in the base
grid, which describes the computational domain and
is provided by the user and is relatively small. This
will allow linear systems on the grid to be solved very
quickly in the middle of a multilevel (composite grid)

Time

UpscaleDownscale Upscale

1

3

2 5 9

4 6 7 10 11

12

13 14

8

𝓁1

𝓁2

𝓁0

Figure 3: Recursive advancing of three mesh refinement levels.

iteration andwill also improve the performance of the
adaptive algorithm. The base grid is fixed during the
process of adaptive mesh refinement. Other grids on
fine levels are in general dynamically and recursively
generated by local or uniform refinement of those on
coarse levels.

(ii) Second, we assume that the region covered by the grid
on a fine level is contained in the interior of that on
the coarser level unless both coarse and fine grids
coincide with physical boundary of the computa-
tional domain.This assumption can prevent recursive
searching for element neighbors. This assumption is
called proper level nesting.

(iii) Third, we assume that if an element of a coarse grid
is refined in any part of its physical space, it must be
refined everywhere. As a result, the boundary of the
main grid on a fine level aligns with the boundary of
a subgrid of that on the previous coarser level. By a
subgrid of a grid, we mean the union of a subset of its
elements. This assumption is called alignment of level
grids.

(iv) Fourth, after the data on a coarse level grid are
advanced by some time, we assume that the data on
its finer level are advanced by as several timesteps as
required by stability and accuracy to reach exactly
the same time as the coarse level. This assumption
implies that a coarse level is integrated before its finer
levels and the timestep on a coarse level is an integer
multiple of that on the next finer level. It also implies
that the time stepping algorithm must be applied
recursively within each timestep on all but the finest
level. This assumption is called synchronization of
advancement.

(v) Fifth, by the time a fine level and its coarser level are
synchronized, we assume that data on the fine level
is more accurate than that on the coarse level. So, the
data on a fine levelmust be upscaled to its coarser level
before the coarse level is further advanced by another
coarse timestep. This assumption is called fine data
preference.
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(vi) Sixth, as stated, all grids except the coarsest one in
the AMR algorithm are changing dynamically. It is
necessary for a coarse level to regrid its finer level
from time to time. But it will be extremely costly to
tag elements and regrid levels every coarse timestep.
So, we would rather make regridding infrequently. At
a coarse level, the number of timesteps between times
of regridding its finer level is called regrid interval.
In the AMR algorithm, the regrid interval may be
chosen to be an integer divisor of the refinement ratio
[13], which could be any even integer number in the
implementation. This assumption is called infrequent
regridding.

(vii) Finally, there is one more assumption on the adaptive
algorithm, called finite termination. This means that
the user shall specify a maximum number of refine-
ment levels. Once the refinement reaches the maxi-
mum level, no further mesh refinement is performed.

As determined by the nature of the Purkinje system, the
grids resulting from space discretization of the computational
domain are essentially unstructured. This restricts direct
application of Berger-Oliger’s originalAMRalgorithm,which
requires the underlying grid to be Cartesian or logically
rectangular. The AMR algorithm adapted here for the Purk-
inje system works with unstructured grids. It represents an
unstructured grid by lists of edges and nodes. A grid node
is allowed to have multiple connected edges and the degree
of a node could be greater than two. The unstructured grid
representation can naturally describe the Purkinje system,
which primarily is a tree-like structure but has some loops
inside.

Finally, it is worthmentioning that in theAMRalgorithm,
there is a critical parameter, called AMR tolerance and
denoted by tolAMR, which is used by the Richardson extrap-
olation process for tagging coarse grid elements. The AMR
tolerance closely influences efficiency and accuracy of the
algorithm. The larger the tolerance is, the more efficient the
algorithm is but the less accurate the solution is. The smaller
the tolerance is, the more accurate the solution is but the
less efficient the algorithm is. Due to the limitation of space,
the detailed explanation of the Richardson extrapolation,
the AMR tolerance, and other components of the AMR
algorithm, such as tagging and buffering of coarse grid
elements, implementation of the V-cycle multigrid iteration
on the adaptively refined grids, and the data up-/downscaling
between coarse and fine grids, are all omitted. We refer
interested readers to Ying’s dissertation [13].

6. Adaptive Time Integration

The AMR algorithm can automatically recognize when and
where the wave fronts start to leave or enter the computa-
tional domain due to external current/voltage stimulation or
self-excitation. Once the algorithm finds that the wave fronts
have left the computational domain and determines that there
is no need to make any further mesh refinement, it will turn
it off and work with adaptive time integration (ATI) only.The
implementation of timestep size control for the adaptive time

integration is standard. In each timestep, the ODEs/reactions
are integrated with a full timestep once and independently
integrated with a half timestep twice. Then the two solutions
are compared and an estimation of relative numerical error is
obtained by the standard Richardson extrapolation technique
[13]. If the estimated (maximum) relative error, denoted by
‖𝐸‖max, is greater than amaximum relative tolerance rtol(max)

ATI ,
the timestep size was rejected and a new timestep will be
estimated by

Δ𝑡
(new)

= 𝛾 ⋅ (
rtol(max)

ATI
‖𝐸‖max

)

1/(𝑝+1)

⋅ Δ𝑡
(old)

, (19)

and the Richardson extrapolation process is repeated. Other-
wise, the solution with two half timesteps is simply accepted
(actually an extrapolated solution could be used for better
accuracy). Here, the coefficient 𝛾 = 0.8 is called a safety
factor, which ensures that the new timestep size will be
strictly smaller than the old one to avoid repeated rejection
of timesteps. The constant 𝑝 in the exponent of (19) is the
accuracy order of the overall scheme.

If the suggested timestep size is less than a threshold
timestep, which usually indicates that there is an abrupt/quick
change of solution states, a local change of membrane
properties or arrival of an external stimulus, the adaptive
mesh refinement process, is then automatically turned back
on again. In the implementation, the threshold timestep is not
explicitly specified by the user. It is set as the timestep that is
used on the base grid.

In addition, during the ATI period, if the estimated
relative error ‖𝐸‖max is less than aminimum relative tolerance
rtol(min)

ATI , a slightly larger timestep,

Δ𝑡
(new)

= 1.1Δ𝑡
(old)

, (20)

is suggested for integration in the next step. The adaptive
time integration does not like timestep size to be significantly
increased within two consecutive steps for the implicit solver
to have a good initial guess. For the same reason, a maximum
timestep size Δ𝑡(max) is imposed during the adaptive time
integration. This usually guarantees that the Newton solver
used converges within a few iterations.

7. Results

The AMR algorithm proposed in the work was implemented
in custom codes written in C++. The simulations presented
in this section were all performed in double precision on a
dual Xeon 3.6GHz computer. No data was output when the
programs were run for timing studies.

In all of the numerical studies, the electrical resistivity 𝑅
and the membrane capacitance 𝐶

𝑚
are fixed to be constant,

0.5 kΩ⋅cm and 1𝜇F/cm2, respectively.Themembrane dynam-
ics are described by the Beeler-Reuter model [15]. No-flux
(homogeneous Neumann-type) boundary conditions were
applied at the leaf-nodes of the fiber network.
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During the time integration for the time-dependent
PDEs, a second-order operator splitting technique, the Strang
splitting, is applied in each timestep. The ODEs resulting
from operator splitting are integrated with a second-order
singly diagonally implicit Runge-Kutta (SDIRK2) scheme.
The linear diffusion equation is temporally integrated with
the Crank-Nicolson scheme and spatially discretizedwith the
continuous piecewise linear finite element method.The finite
element system on locally refined grids is solved with a V-
cycle multigrid/multilevel iterative method in each timestep
at each refinement level. (In the V-cycle composite grid
iteration, the multigrid prolongation is done by the piecewise
linear interpolation.Themultigrid restriction is implemented
in a way so that the restriction matrix is the transpose of the
prolongation matrix. At the coarsest level, as the coefficient
matrix of the discrete system is a symmetric and positive
definiteM-matrix, the linear equations are solvedwith a sym-
metric successive overrelaxation preconditioned conjugate
gradient method.) The resulting scheme has second-order
global accuracy if the tolerances in each component of the
adaptive algorithm are consistently selected [13].

In the adaptive simulations, the mesh refinement ratio is
fixed to be two and the critical AMR tolerance tolAMR is set as
0.02.Themaximum andminimum relative tolerances, which
are used in the ATI period, are chosen to be rtol(max)

ATI = 10
−2

and rtol(min)
ATI = 10

−4, respectively. We restrict the timestep
sizes used in the adaptive time integration so that they are
not greater than one millisecond, that is, Δ𝑡(max)

= 1msec.
The value of 𝑝 in the exponent of (19) is equal to two as the
scheme has second-order accuracy.

Example 2. Simulations on a two-dimensional branch with
thickness/radius-variable and nonuniform branch segments.
Voltage stimulation is applied from right.

The two-dimensional branch shown in Figure 4 has a
dimension of 4 cm× 2 cm, which is bounded by the rectangu-
lar domain [0, 4] × [1, 3] cm2. This two-dimensional branch
has variable (piecewise constant) radius. Branch segments
“6” and “7” have the smallest radius, equal to 20 𝜇m. Branch
segment “1” has the largest radius, equal to 160𝜇m and
eight times that of branch segment “6.” The radius of branch
segment “2” is six times that of “6.” Branch segments “3” and
“4” have the same radius, four times that of “6.”The radius of
branch segment “5” is twice that of branch segment “6.”

A voltage stimulation is applied from the right end of
branch segment “1” through a discontinuous initial action
potential, which is given as follows:

𝑉
𝑚
(𝑥, 𝑦) =

{

{

{

25.4mvolts if 𝑥 > 3.5

−84.6mvolts otherwise.
(21)

The base grid used by the simulation with adaptive mesh
refinement is a coarse partition of the branch structure (Fig-
ure 4) and has 240 edges with minimum element size equal
to 0.0078 cm and maximum element size equal to 0.078 cm.
Note that this is a highly nonuniform grid as the ratio of the
maximum to theminimum element size is much greater than

1

2

3

4
5

6

7

Figure 4: A typical branch in the heart conduction system is highly
nonuniform in the sense that the lengths of branch segments, each
of which is bounded by two adjacent leaves or branching vertices,
may vary significantly. In this figure, branch segments “1” and “4”
are not directly connected. Instead, they are connected through a
very short branch segment. Similarly, branch segments “4” and “6”
are also connected through a very short segment.

one. Actually, in the simulation, the base grid was generated
by three times uniform bisection from a much coarser grid,
which only has 30 edges. This makes the multigrid iterations
for linear systems more efficient even though its contribution
to the speedup of the overall algorithm is marginal as most
(>90%) of the computer time used by the simulation was
spent integrating nonlinear ODEs/reactions. The adaptive
simulation effectively uses three refinement levels. To apply
the Richardson extrapolation technique, the second level grid
was created from uniform bisection of the base grid. In fact,
only the grids at the third level were dynamically changing.
They are regridded every other timestep.

In the adaptive simulation, the timestep sizes vary from
Δ𝑡 = 0.0098msecs to Δ𝑡 = 1.0msec. The AMR process was
automatically turned off at time 𝑡 = 42.85msecs as the algo-
rithm determines there is no need to make spatially local
refinement. After that, the ATI process is activated. The
simulation on the time interval [0, 400]msecs totally used
99.1 secs in computer time.

The two-dimensional branch is also partitioned into a
fine, quasi-uniform grid, which has 726 edges withminimum
element size equal to 0.0104 cm and maximum element size
equal to 0.0127 cm. The simulation with this fine, quasi-
uniform grid and timestep Δ𝑡 = 0.00635msecs on the same
time interval as the adaptive one used about 1406.0 secs in
computer time. We call this one “uniform” simulation.

Another simulation simply working with the coarse grid,
which is used as the base grid for the AMR one, is also
performed. We call this as “no-refinement” simulation. The
timestep is fixed to be Δ𝑡 = 0.039msecs. This one used
76.7 secs in computer time.

In each of the simulations above, the action potential
is initiated at the right end of branch segment “1” and
propagates across the whole computational domain. We
collected action potentials at those seven marked points (see
Figure 4) during the simulations. See Figures 5 and 6 for
traces of action potentials at the marked points “4” and “7,”
respectively. The action potentials from the adaptive and
uniform mesh refinement simulations match very well, and
their difference at the peak of the upstroke phase is uniformly
bounded by 0.1mV. The action potential from the “no-
refinement” simulation has least accurate results. Potential
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Figure 5: Traces of action potentials during the simulation period
[0, 400]msecs at marked point “4” in the two-dimensional branch
shown in Figure 4. The solid curves were from the adaptive simu-
lation. The dotted curves were from the uniform simulation. The
dashed curves were from the “no-refinement” simulation. In these
simulations, a voltage stimulation is applied from the right side of
the radius-variable branch structure. The right plot is a close-up of
the left plot.

oscillation is even observed at point “7” (see Figure 6) in the
“no-refinement” simulation.

Example 3. Simulations on a two-dimensional branch whose
segments have piecewise constant radii. Voltage stimulation
is applied from top.

We once again run three simulations, respectively, with
adaptive, uniform mesh refinement and no-refinement. The
computational domain and parameters are all the same as
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Figure 6: Traces of action potentials during the simulation period
[0, 400]msecs at the point marked as “7” in the two-dimensional
branch shown in Figure 4. The solid curves were from the adaptive
simulation. The dotted curves were from the uniform simulation.
The dashed curves were from the “no-refinement” simulation. In
these simulations, a voltage stimulation is applied from the right side
of the thickness/radius-variable branch structure. The right plot is a
close-up of the left plot.

those used previously.The only difference now is to stimulate
the tissue from top instead of from right.

The voltage stimulation is applied from the upper part of
branch “7” through a discontinuous initial action potential,
which is given as follows:

𝑉
𝑚
(𝑥, 𝑦) =

{

{

{

25.4mvolts if 𝑦 > 2.8

−84.6mvolts otherwise.
(22)
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Figure 7: Traces of action potentials during the simulation period
[0, 400]msecs at marked points “7” and “6” in the two-dimensional
branch shown in Figure 4. The solid curves were from the adaptive
simulation. The dotted curves were from the uniform simulation.
The dashed curves were from the “no-refinement” simulation. In
these simulations, a voltage stimulation is applied from the top of
the radius-variable branch structure.The left plot corresponds to the
marked point “7” and the right plot corresponds to themarked point
“6.”

The action potential successfully propagates across the
whole computational domain in each of the adaptive and
uniform refinement simulations while it fails to pass across
branching points where the fiber radius changes from small
to large in the “no-refinement” simulation (see Figure 7).

To verify accuracy of the solution from the adaptive
simulation, action potentials at the seven marked points (see
Figure 4) are also collected and compared with those from
the simulation with the fine and quasi-uniform grid. It is
observed that the adaptive and uniform results match very

3

20

76
109

Figure 8: The idealized Purkinje system of the heart.

well too, and their difference at the peak of the upstroke phase
is bounded by 0.15mvolts.

The simulation with adaptive mesh refinement used
100.4msecs in computer time. The timestep sizes used in the
adaptive simulation vary from Δ𝑡 = 0.0098msecs to Δ𝑡 =
1.0msec. The adaptive mesh refinement was automatically
turned off at time 𝑡 = 44.02msecs.

The one with the uniform grid and timestep Δ𝑡 =

0.00635msecs used 1405.0msecs in computer time.

Example 4. Simulations on a three-dimensional branch
whose segments have piecewise constant radii.

The three-dimensional Purkinje system used in the fol-
lowing simulations was originally from 3Dscience.com. The
fiber radius of the system was modified to be piecewise
constant for simplicity. The radius of each branch segment
takes one of the five values as the two-dimensional case.
The minimum and the maximum radius of the fiber are,
respectively, 20 𝜇m and 160 𝜇m. Intermediate values are
40, 80, and 120 cm. See Figure 8 for an illustration of the
topological structure, where the ratios of variable radii are not
courteously shown.

The idealized Purkinje system has a dimension 2.04 ×

2.16 × 2.98 cm3. It is bounded by the rectangular domain,
[−0.39, 1.65]×[4.05, 6.21]×[−1.31, 1.67] cm3.Themaximum
of the shortest paths from the top-most vertex to other leaf-
vertices, computed by Dijkstra’s algorithm is about 5.29 cm.

As in the two-dimensional examples, in each of the
simulations with the idealized Purkinje system, a voltage
stimulation is applied from the top branch through a discon-
tinuous initial action potential, given as follows:

𝑉
𝑚
(𝑥, 𝑦, 𝑧) = {

25.4mvolts if 𝑧 > 1.372
−84.6mvolts otherwise.

(23)
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The base grid used by the adaptive simulation is a coarse
partition of the Purkinje system and has 1412 edges/elements
withminimum element size equal to 0.006 cm andmaximum
element size equal to 0.075 cm. This is also a highly nonuni-
form grid as the ratio of the maximum to the minimum
element size is up to 12.5. Once again, in this simulation, the
base grid was actually generated from uniform bisection of a
coarser grid, which has 706 edges/elements as this will make
the multigrid iterations for linear systems more efficient. The
adaptive simulation effectively uses three refinement levels.
Similar to the two-dimensional case, the second level gridwas
created from uniform bisection of the base grid and only the
grids at the third level were dynamically changing, regridded
every other timestep.

The timestep sizes used in the adaptive simulation vary
from 0.00935msecs to 1.0msec. The adaptive mesh refine-
ment was automatically turned off at time 𝑡 = 42.74msecs.
The simulation on the time interval [0, 400]msecs totally
used 626.7 secs in computer time.

The three-dimensional Purkinje system is also par-
titioned into a fine and quasi-uniform grid, which has
6311 edges/elements with minimum element size equal to
0.0095 cm and maximum element size equal to 0.016 cm.
The simulation with this fine quasi-uniform grid and time-
step Δ𝑡 = 0.0082msecs used about 9696.0 secs in computer
time.

We also run a simulation with timestep Δ𝑡 =

0.0374msecs on the coarse grid that is used as the base
grid for the adaptive simulation. This “no-refinement”
simulation used 458.0 secs in computer time.

It is observed that, in each of the adaptive, uniform refine-
ment and no-refinement simulations, the action potential
successfully propagates and goes through the whole domain.
The solution from the adaptive simulation is in very good
agreement with that from the uniform simulation. We col-
lected action potentials at sixteen points located in different
regions of the domain and found that the corresponding
potential traces almost overlap. Their difference at the peak
of the upstroke phases is uniformly bounded by 0.4mvolts.
See Figures 9, 10, 11, and 12 for some visualized results, which
correspond to action potentials at the four marked points
shown in Figure 8. Figure 13 shows four plots of the action
potential at different times by the AMR-ATI simulation. The
adaptive simulation roughly uses the same computer time
as the “no-refinement” one but yields much more accurate
results and gains about 15.5 times speedup over the uniform
one.

8. Discussion

This paper demonstrates the promising application of a
both space and time adaptive algorithm for simulating wave
propagation on the His-Purkinje system.

In this work, only the numerical results with membrane
dynamics described by Beeler-Reuter model are presented.
The adaptive algorithm, however, is by no means restricted
to the simple model. In fact, in our implementation, the
algorithm successfully works with other physically realistic
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Figure 9: Traces of action potentials during the simulation period
[0, 400]msecs at the point marked as “3” in Figure 8. The right plot
is a close-up of the left one.

models, such as Luo-Rudy dynamic model and DiFrancesco-
Noble model. As the advantage of the algorithm due to
application of the operator splitting technique, principally
any standard cardiac model of reaction-diffusion type for
modeling wave propagation can be easily incorporated into
the adaptive algorithm.

In addition, the adaptive algorithm can also be straight-
forwardly applied to modeling signal propagation on the
neural system of the body or even the brain.

Other than its advantages, admittedly the algorithm has
its own limitations. For example, efficiency of the adaptive
algorithm heavily relies on the existence of a relatively coarse
base grid, which describes the computational domain. As the
speedup of an adaptivemesh refinement algorithm is roughly
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Figure 10: Traces of action potentials during the simulation period [0, 400]msecs at the point marked as “20” in Figure 8. The right plot is a
close-up of the left one.
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Figure 11: Traces of action potentials during the simulation period [0, 400]msecs at the point marked as “76” in Figure 8. The right plot is a
close-up of the left one.

bounded by the ratio of the maximum degree of freedoms
(DOFs) of the grid with the highest resolution to the mean
DOFs of all grids that have ever been created during the
adaptive process, the existence of a coarse base grid makes
the ratio as large as possible and hence its speedup over a
simulation on the grid with highest resolution. The use of a
relatively coarse base grid alsomakes themultigrid/multilevel
solver for linear systems more efficient. It is noticeable that in
our simulations the base grids were all selected to have the
number of edges/elements as small as possible.

In the AMR algorithm [10, 13] designed for uniform or
quasi-uniform grids, the timestep size is typically selected to
be proportional to the minimum of element sizes (multiplied
by an estimated wave speed) in a grid in order that the
numerical waves or discontinuities will never propagatemore
than one element within a single timestep. As this strategy
guarantees that the fronts of traveling waves are always
bounded and tracked by fine grids, the ODEs resulting from
operator splitting applied to the reaction-diffusion systems
are only integrated on the fine grids while the solution in
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Figure 12: Traces of action potentials during the simulation period [0, 400]msecs at the point marked as “109” in Figure 8. The right plot is
a close-up of the left one.
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Figure 13: Four plots of the action potential at different times by the AMR-ATI simulation (red denotes activated potential and blue denotes
inactivated potential).
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other regions covered by coarser level grids is simply obtained
by time interpolation.

However, a typical branch in the heart conduction system
or the whole system on its own is highly nonuniform in the
sense that the lengths of branch segments, each of which is
bounded by two adjacent leaves or branching vertices, may
vary significantly (see Figure 4), which determines that the
coarse partition of the domain is also highly nonuniform
since the algorithm requires the number of edges/elements
as small as possible for the efficiency considerations. On
this kind of computational domain, the determination of
timesteps based onminimum element sizes is found to be less
efficient. Here, in the proposed adaptive algorithm, timestep
sizes are instead chosen to be proportional to the maximum
of the element sizes in a grid. This alternative strategy is
experimentally proved to be efficient and accurate enough
in simulating electric waves that travel moderately fast even
though its rigidity needs further investigation, in particular
when the fiber radius is much larger than those currently
used.

In the simulations presented in this work, error estima-
tions in both the AMR and ATI processes were all based
on the Richardson extrapolation process, which is in general
more expensive but more rigorous and reliable than other
simpler ones such as the gradient detector. If the gradient
detector is used, the second coarsest grid in the AMR process
does not need to be uniformly bisected and can also be
changing dynamically, and the ATI period can use less
computer time.The potential gain in algorithm efficiency and
the possible loss in solution accuracy with the alternative use
of a gradient detector can be studied and compared in a future
work.

Finally, we make a remark about the parallelization of
the space-time adaptive mesh refinement and adaptive time
integration algorithm on the Purkinje system. Our numerical
experiments in this work indicate that a large fraction (about
80%) of the computer time in the simulation is spent in
the time integration for the reaction part while the V-cycle
multigrid iteration as well as the mesh refinement part uses
only a small fraction (less than 20%). The dominance of the
computer time in the split reaction part is partially due to
the one-dimensional nature of the Purkinje network system
(mesh refinement and grid generation on one-dimensional
structures are much easier than the ones with multiple
dimensions). It is obvious that this dominance will be ben-
eficial for the parallelization of the algorithm since the split
reaction part (ODEs) is spatially independent, highly par-
allelizable, and can even be massively parallelized. Of course,
the time consumption on different parts of the operator
splitting depends on the specific cardiac models. With a
more complicated cardiac model, the reaction part will
consume more computer time than the diffusion part and
the corresponding parallel algorithm is expected to have
better efficiency. Admittedly, with the reaction part fully
parallelized, further improvement in parallel efficiency will
depend on the parallelization of the V-cycle multigrid itera-
tion, which solves linear systems over thewhole fiber network
and needs time in data communication between different

CPUs or multicores. The parallel performance of the AMR-
ATI algorithm deserves further investigation.
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