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	 Background:	 Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive gastrointestinal tumors and has an 
extremely high mortality rate. Recent studies indicate that alternative splicing (AS), a common post-transcrip-
tional process, has important roles in tumor biological behaviors and may provide novel immunotherapeutic 
targets. This study systematically analyzes AS profiles in PDAC and reveals their potential regulatory effects on 
cancer immune response.

	 Material/Methods:	 AS event, RNA sequencing, and splicing factor (SF) data were extracted from SpliceSeq, The Cancer Genome 
Atlas, and SpliceAid2, respectively. Overall survival (OS)-associated AS events and SFs were identified with uni-
variate analysis. The LASSO method and multivariate Cox regression analysis were used to construct predic-
tive signatures for the prediction of patient prognosis. The proportions of immune cells within PDAC samples 
were evaluated using the CIBERSORT algorithm. The correlations among AS events, SFs, and immune cell pro-
portions were calculated using Spearman correlation analysis. Consensus clustering and immune classification 
were performed on the PDAC cohort.

	 Results:	 A total of 4812 OS-related AS events from 3341 parent genes were identified, and 8 AS-based predictive mod-
els were constructed for PDAC. An OS-related SF-AS regulatory network was constructed. The AS events reg-
ulated by ELAVL4 exhibited strong correlations with CD8 T cells and regulatory T cells. In addition, AS-based 
clusters demonstrated distinct OS outcomes and immune features.

	 Conclusions:	 AS-based predictive models with high accuracy were constructed to facilitate prognosis prediction and treat-
ment of PDAC. An SF-AS regulatory network was constructed, revealing the potential relationships among SF, 
AS, and immune response.
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Background

Pancreatic ductal adenocarcinoma (PDAC) is the most aggres-
sive and common malignancy of the pancreas, and is estimat-
ed to be the second leading cause of cancer-related deaths in 
developed countries [1,2]. The overall 5-year survival rate of 
PDAC is less than 8% worldwide, primarily owing to late diag-
nosis, early metastasis, and a high recurrence rate [3]. The stro-
mal-rich tumor microenvironment (TME) of PDAC is considered 
to be a great barrier for the infiltration of cytotoxic immune 
cells [4]. The interactions between pancreatic cancer cells and 
stromal cells like cancer-associated fibroblasts work in concert 
to induce the malignant phenotypes of PDAC, such as angio-
genesis, proliferation, and epithelial to mesenchymal transi-
tion (EMT) [5,6]. Moreover, owing to the highly heterogeneous 
molecular characteristics of the TME, PADC patients on che-
motherapies frequently experience drug resistance and tumor 
recurrence [4,7]. With advances in understanding the diversity 
and complexity of the PDAC TME, aberrantly expressed signal-
ing pathways have been increasingly found to be significant in 
the regulation of the immune microenvironment. For instance, 
it was reported that the aberrantly activated WNT pathway is 
a critical factor driving the central gene expression signatures 
that fuel lymph node metastasis in PDAC by shaping the tumor 
milieu [8]. In addition, immune-based therapies targeting such 
signaling show increased potency in enhancing tumor cytotox-
icity. Thus, elucidating the molecular mechanisms underlying 
the PDAC TME with data analysis could be crucial for improv-
ing diagnostic, prognostic, and therapeutic techniques in PDAC.

Pre-messenger RNA (pre-mRNA) transcripts require the selec-
tive exclusion of introns and the inclusion of specific exons to 
form mature mRNA in a process known as alternative splic-
ing (AS), one of the most researched forms of mRNA process-
ing [9]. AS enables a single gene to be transcribed into vari-
ous mRNA isoforms at the post-transcriptional level, thereby 
diversifying the translation of proteome [9,10]. AS is a ubiqui-
tous RNA processing pattern across diverse cells and tissues, 
and its dysregulation is involved in multiple pathophysiologi-
cal processes, including cancer [11,12]. Accumulating evidence 
implicates aberrant AS events as the hallmarks of carcinogen-
esis, including tumor growth, angiogenesis, immune evasion, 
and metastasis [13–15]. AS promotes tumor progression not 
only by activating oncogene isoforms such as VEGFA but also 
through facilitating the degradation of suppressor genes such 
as TP53 [16,17]. AS events are also accurate predictive mark-
ers for various cancer types, including breast, lung, colorectal, 
and liver [18–21]. Peptides generated from tumor-specific AS 
events may serve as neopitopes (similar to neoantigens de-
rived from somatic mutations), which are potential therapeutic 
targets for emerging immunotherapies [22,23]. The prognos-
tic value of AS events and their potential use in novel thera-
pies have made them a hot topic in research.

Splicing factors (SFs) play an important role in the regulation of AS. 
SFs promote or inhibit certain splicing events by binding to spe-
cific sequence motifs. Somatic mutations and altered expression 
of SFs, together with dysregulated AS events, have been found in 
several cancers, indicating a possible role in tumorigenesis [24–26]. 
However, because the regulation of aberrant AS events by SFs in 
cancers is only partially understood, it is imperative to investigate 
this relationship and its potential effects on PDAC.

Few studies have focused on both the complex genomic splic-
ing events and the interplay of cancer cells with their surround-
ing tumor stroma, which together result in poor outcomes 
for PDAC patients. Therefore, we systematically characterized 
cancer-specific AS events in PDAC patients using The Cancer 
Genome Atlas (TCGA) data and constructed AS-based prognos-
tic models. Furthermore, we established a regulatory network 
of SFs and their target AS events and analyzed their associa-
tions with immune-infiltrating cells. Finally, we clustered PDAC 
cohorts based on clinical and molecular characteristics, evalu-
ated the immune landscape of each cluster, and explained the 
corresponding clinical phenotypes.

Material and Methods

Ethical compliance

All the clinical and genomic data in this study were acquired 
from open-access public databases, including TCGA, SpliceSeq, 
and SpliceAid2. Our acquisition procedure fully complied with 
the requirements of these databases. Therefore, no ethics com-
mittee approval or consent process was needed.

Data acquisition and pre-processing

Level-3 RNA-seq data and the corresponding clinical infor-
mation for 177 PDAC patients were downloaded from TCGA 
(https://portal.gdc.cancer.gov/). To explicitly quantify the inclu-
sion level of each splice junction and exon, SpliceSeq was used 
to profile the AS patterns of each PDAC sample. The percent 
spliced in (PSI) value, which ranges from 0 to 1, was calculat-
ed to assess the incidence of splicing patterns in each specif-
ic AS event [27]. A total of 7 AS event patterns, including exon 
skipping (ES), alternate donor site (AD), alternate acceptor site 
(AA), alternate promoter (AP), alternate terminator (AT), mu-
tually exclusive exons (ME), and retained intron (RI), were in-
cluded in the study. To obtain a set of reliable AS events, we 
used the R package impute to replenish the missing PSI data 
and applied strict filtering criteria (average PSI value >0.05, per-
centage of samples with PSI value ³75%). To distinguish dif-
ferent AS events, each event was assigned a unique identifier 
code. For instance, in code “SMAD4|45557|AP”, SMAD4 is the 
gene symbol, 45557 is the ID number from SpliceSeq, and AP is 
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the splicing subtype. The R package UpSet (version 1.3.3) was 
used to visualize the intersections of the 7 AS event subtypes.

Survival analysis and functional annotation

Overall survival-associated AS (OS-AS) events were initial-
ly identified by univariate Cox analysis based on PSI values. 
A false discovery rate <0.05 was considered significant. A pro-
tein–protein interaction (PPI) network was constructed based 
on the parent genes of the top 500 significant OS-AS events 
from the String database (https://string-db.org/) with an in-
teraction score of 0.7. Cytoscape (version 3.7.1) was used to 
visualize the network. We performed gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) function-
al enrichment analysis on parent genes of the prognostic AS 
events using the R package clusterProfile.

Construction of predictive models based on AS events

The 20 most significant OS-AS events for each subtype were 
used to construct prognostic models. The 20 most significant 
OS-AS events in all subtypes were used in the final model. 
The LASSO method is widely used to identify predictive rules 
and avoid data overfitting in multi-dimensional data [28]; there-
fore, we used LASSO implemented with the R package glmnet 
to decrease redundancy and irrelevance. Survival-associated AS 
events of each subtype were selected according to the optimal 
penalty l value. Multivariate Cox regression analysis was used 
to optimize the prognostic model and to calculate the regres-
sion coefficients of identified predictor events in each mod-
el. Risk scores for each sample were calculated using the PSI 
value and regression coefficient of each predictor event. PDAC 
patients were further divided into high- and low-risk groups 
according to the median risk score value, and Kaplan-Meier 
curves were used to compare survival differences between the 
2 groups. Receiver operator characteristic (ROC) curves and the 
area under curve (AUC) were used to evaluate and compare 
the predictive accuracies of each model.

Survival related SF-AS regulatory network and immune 
correlation analysis

A total of 71 SFs were extracted from SpliceAid2 (www.intro-
ni.it/spliceaid.html) [29]. Univariate Cox regression analysis 
was performed to identify OS-SFs based on mRNA expression 
data. Spearman correlation analysis was performed to evalu-
ate the relationship between the PSI values of AS events and 
mRNA expression of the OS-SFs. An SF-AS regulatory network 
was generated using Cytoscape, with correlation coefficients 
greater than |0.6|.

CIBERSORT is a robust deconvolution algorithm that pre-
dicts the proportions of 22 human immune-infiltrating cell 

subsets based on the mRNA expression profiles in cancer pa-
tients [30]. It was run using the LM22 signature (downloaded 
from website https://cibersort.stanford.edu) and 1000 permu-
tations. Samples with output values of P<0.05 were preserved. 
The results were generated in violin plot using the R package 
ggplot2. We used CIBERSORT to evaluate and quantify the 
infiltration levels (fractions) of various immune cell types in 
177 PDAC samples with P<0.05. Spearman correlation anal-
ysis determined the relationships between the PSI values of 
AS events and infiltrating immune cell subtypes. To illustrate 
the complex regulatory correlation, we visualized the SFs, AS 
events, and immune cell proportions in a dual axis plot using 
the R package ggplot2.

Clustering and immune landscape analysis

Unbiased classification of the TCGA PDAC cohort was performed 
using the R package CancerSubtypes based on identified OS-
AS events [31]. To ensure a robust and unsupervised classifi-
cation, we used the consensus cluster algorithm with the fol-
lowing settings: maxk=5, pItem=0.8, innerlinkage=average, 
distance=pearson. The optimal number of clusters was deter-
mined by the cumulative distribution curve, and then survival 
analysis comparisons were made among these clusters. The im-
mune scores and stromal scores of each PDAC cohort were cal-
culated using the ESTIMATE algorithm to reflect the TME consti-
tution [32]. Six disparate immune subgroups were referenced 
from the research of Thorsson et al. [33]. Distributions of clin-
icopathological phenotypes, including TNM stage, survival sta-
tus, grade, gender, microsatellite instability, and driver gene 
mutations, including TP53, KARAS, SMAD4, and CDKN2A (en-
coding p16), were compared using chi-squared tests (2-sided, 
P<0.05). A flowchart of this study is shown in Figure 1.

Statistical analysis

Statistical analyses were carried out using R version 3.5.1 with 
multiple publicly available packages. Independent t test and 
analysis of variance were used to determine differences among 
groups. Survival curves were generated using the R package sur-
vival. Spearman’s correlation analysis was used to evaluate the 
correlations of AS events, SFs, and immune infiltration levels. 
Pearson’s chi-squared test was employed for comparison of the 
distributions of clinicopathological phenotypes and somatic mu-
tation phenotypes. P<0.05 was considered statistically significant.

Results

Systematic characterization of AS events in PDAC cohort

A total of 177 PDAC patients with corresponding clinical infor-
mation and AS patterns were included. The 7 types of AS events 
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included in the study are demonstrated in the schematic dia-
gram in Figure 2A. After rigorous filtering of the original data, 
30 328 AS events were detected from 16 755 genes, including 
2597 AAs in 1962 genes, 2184 ADs in 1655 genes, 6130 APs in 
3388 genes, 5040 ATs in 2697 genes, 12 177 ESs in 5479 genes, 
131 MEs in 130 genes, and 2069 RIs in 1444 genes (Figure 2B). 
As 1 gene could have multiple splicing events, UpSet plots were 
used to determine the intersections of the 7 AS subtypes with 
gene numbers (Figure 2C). ES splicing constituted the major-
ity of AS patterns and accounted for more than one-third of 
AS events in PDAC; 60 genes had up to 5 types of AS events.

Prognostic AS events in PDAC and functional enrichment 
analysis

To explore the prognostic value of splicing events in PDAC, 
univariate Cox regression analysis was performed to acquire 
OS-AS events. We detected a total of 4812 OS-AS events from 
3341 parent genes, including 263 AAs in 249 genes, 290 ADs 
in 263 genes, 1218 APs in 736 genes, 1173 ATs in 673 genes, 
1455 ESs in 1071 genes, 24 MEs in 24 genes, and 389 RIs in 
325 genes (Figure 2B, P<0.05). Three genes occurred in up to 
4 AS event types, although most genes underwent only 1 type 

RNA-Seq data
PDAC samples (n=177)

30328 AS events
from 16755 genes

Splicing factors
(n=71)

4852 OS-related AS evants
from 3355 genes

LASSO method
multivariate
cox regression

Programic models
based on AS events

SF-AS-in�ltrating immune
cells regulatory network

PPI GO, KEEG

SF-AS network

CIBERSORT Correlation analysis

Clinicophathological
and mutation features

TME analysis (immune
score and stromal score)

Correlation analysis

Univariate cox analysis

OS-related splicing
factors (n-16)

SpllceSeq analysis≥0.05
Average PSI Value
Percentage of samples with PSI Value ≥75%

Immune classi�cation Survival analysis

C1 (n=56) C2 (n=64) C31 (n=57)

SpliceAid2 databse Clinical information
PDAC patients (n=177databse)

14000

12000

10000

8000

6000

4000

2000

0

Al
te

rn
at

ive
 sp

lic
ing

 ev
en

ts

AS Gene
AA

Genes
AS events
OS-related (p<0.05)

AS Gene
AD

AS Gene
AP

AS Gene
AT

AS Gene
ES

AS Gene
ME

AS Gene
RI

SWI5|87732|AA
SRSF7|53281|AA
SRSF2|43664|AA

SLC1SA4|93374|AA
SEPT8|73303|AA
PTK2|85303|AA

PRR13|22033|AA
PPIL2|61245|AA 
PLCG1|59390|AA

MRPL4|47484|AA
MAP4|64551|AA

ITGB1BP1|52617|AA
IGSF8|8426|AA

EML3|16362|AA
CYB561A3|16164|AA

CPSF3L|80|AA
COX4|1|156373|AA

CENPV|39431|AA
CELF1|15763|AA

C19orf33|49601|AA

8e–10 8e–07 8e–04 1e+00

Hazard ratios of AA in PAAD

8e–02 9e–05

P value
0.00125
0.00100
0.00075
0.00050
0.00025

Type
AA
AD
AP
AT
ES
ME
RI
Mulity-AS

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

AA
P=1.58e–08

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

AD
P=2.18e–11

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

AT
P=5.52e–06

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

AP
P=1.14e–10

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

ES
P=2.38e–08

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

ME
P=2.45e–08

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

RI
P=9.00e–08

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

ALL
P=1.64e–12

0 1 2 3 4
Time (years)

High risk Low risk

5 6 7 8

1.0

0.8

0.6

0.4

0.2

0.0

Tru
e p

os
iti

ve
 ra

te

0.0 0.2 0.4 0.6 0.8

ALL (AUC=0.884)
AA (AUC=0.808)
AD (AUC=0.803)
AT (AUC=0.832)
AP (AUC=0.851)
ES (AUC=0.812)
ME (AUC=0.798)
RI (AUC=0.765)

False positive rate
1.0

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1 0.2
PSI value of ARVCF_ES

0.3 0.4 0.5

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1 0.2
PSI value of MEAF6_ES

0.3 0.4 0.5

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.2
PSI value of ATP6V0A1_ES

0.4 0.6

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1
PSI value of GRAMD1A_ES

0.2 0.3

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1 0.2
PSI value of ARVCF_ES

0.3 0.4 0.5

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1 0.2
PSI value of MEAF6_ES

0.3 0.4 0.5

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.2
PSI value of ATP6V0A1_ES

0.4 0.6

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1
PSI value of GRAMD1A_ES

0.2 0.3

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1 0.2
PSI value of NCKAP1_ES

0.3 0.4

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1 0.2
PSI value of VDAC3_ES

0.3 0.4

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.0 0.1
PSI value of SH3GLB2_ES

0.2

6

4

2

0

0.12

0.09

0.06

0.03

0.00

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s r
eg

ula
to

ry
 (t

re
gs

)

0.25 0.50
PSI value of STX1A_ES

0.75 1.00

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1 0.2
PSI value of NCKAP1_ES

0.3 0.4

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1 0.2
PSI value of VDAC3_ES

0.3 0.4

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.0 0.1
PSI value of SH3GLB2_ES

0.2

6

4

2

0

0.2

0.1

0.0

EL
AV

L4
 ex

pr
es

sio
n

T c
ell

s C
D8

0.25 0.50
PSI value of STX1A_AA

0.75 1.00

100

80

60

40

20

0

Re
lat

ive
 pe

rce
nt

 (%
)

B cells naive
B cells memory
Plasma cells
T cells CDS
T cells CD4 naive
T cells CD4 memory resting
 T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta
NK cells resting
NK cells activated
Monocytes
Macrophages MO
Macrophages M1
Macrophages M2
Dendritic cetls resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

CDKN2A
SMAD4
KRAS
TP53
MSI
Nstage
Tstage
TNMstage
Grade
Gender
Age
Survival

P=0.0100
P=0.2399
P=0.0002
P=0.0027
P=0.0648
P=0.8843
P=0.0876
P=0.1900
P=0.1665
P=0.0400
P=0.8800
P<0.0001

C1 C2
Cluster

μ=777.93

P adjusted ≤0.001
P adjusted ≤0.001

μ=1481.03

μ=1343.8

C3

3000

2000

1000

0

–1000

Im
m

un
e s

co
re

s
C1 C2

Cluster

μ=207.69

P adjusted ≤0.001
P adjusted ≤0.001

μ=922.23

μ=986.45

C3

2000

1000

0

–1000

St
ro

m
al 

sco
re

s

Percentage (%)

Clu
ste

r

50 75 100250

C1

C2

C3

Immune class
Wound healing
IFN-γ dominant
In�ammatory
Lymphocyte dep-loeted
TGF-β dominant

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iva
l p

ro
ba

bil
ity

P=0.000218

0 20 40

Survival time (months)

Molecular subtype CC cluster=3

60 80

C1
C2
C3

Clustering display
GTroup

C1
C2
C3

1.0

0.8

0.6

0.4

0.2

0.0

Silhouette width si

Sillhouette plot
n=177 3 clusters Cj

j: nj | avei�cj  si

–0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. �Experimental design of the study. RNA-seq data and clinical information of pancreatic ductal adenocarcinoma (PDAC) 
patients were extracted from the Cancer Genome Atlas database. Splicing factors were obtained from SpliceAid2 database. 
Percent spliced in (PSI) value of each AS event was calculated with SpliceSeq analysis, and subjected to stringent filters: 
average of PSI value ³0.05 and percentage of samples with PSI value ³75%. Univariate Cox analysis was used to identify 
overall survival-related alternate splicing (AS) events and splicing factors. Then, a splicing factor (SF)-AS regulatory network 
was constructed based on correlation analysis. In terms of OS-related AS events, enrichment analysis was performed on their 
parent genes for functional exploration, and LASSO multivariate Cox regression was used to build an AS-based prognostic 
model. CIBERSORT was used to further explore the correlation between SFs, AS events, and immune-infiltrating cells. 
Finally, to explore the relationship between AS events and patient survival in immune infiltration, consensus clustering was 
performed on the PDAC cohort. Three clusters exhibited distinct characteristics in survival analysis, immune classification, 
tumor microenvironment analysis, and clinicopathological features.
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of AS event (Figure 2D). The 20 most significant prognostic 
AS events in each pattern are shown in Figure 3. The major-
ity of the mRNA splicing events acted as favorable prognos-
tic predictors (hazard ratio [HR] <1) in the AA, AD, ES, and RI 
splicing patterns.

Given that AS might affect the expression and translation 
of the parent RNA and protein, we constructed a PPI net-
work of the 500 most significant prognostic AS events to pro-
vide an overview of the cellular interactions at a protein lev-
el (Figure 4A). Hub genes including POLR2D, DYNLL1, SRSF1, 
VEGFA, and PRKACB were identified in the PPI network. GO 
and KEGG functional enrichment analyses were performed on 
all the parent genes of OS-AS events (Figure 4B). Most of the 
significantly enriched GO terms were in “RNA splicing”, “focal 
adhesion”, “cell adhesion molecule binding”, “tumor necrosis 

factor-mediated signaling pathway”, and “cadherin binding”; 
whereas the KEGG analysis showed enrichment in pathways 
including “guanyl-nucleotide exchange factor activity”, “pro-
tein binding, bridging”, and “EGFR tyrosine kinase inhibitor 
resistance”.

Construction of predictive models in PDAC cohort

To obtain predictive models with high accuracy, we performed 
LASSO logistic regression to select the 20 most powerful prog-
nostic predictor OS-AS events in each pattern. Multivariate 
Cox analysis was used to determine the independent predic-
tors. Seven prognostic models were constructed, with 11 AS-
events in AAs, 8 in ADs, 7 in APs, 5 in ATs, 7 in ESs, 7 in MEs, 
and 5 in RIs (Supplementary Table 1). The final predictive mod-
el was constructed using the top 20 prognostic events from all 

21 3

3 4.1

Poly (A) Poly (A)
4.1

m7G m7G

4.2 5

Alternate acceptor site (AA)

Alternate donor site (AD)

Alternate promoter (AP)

Alternate terminator (AT)

Exon skip (ES)

Mutually exclussive exons (ME)

Retained intron (RI)

1.1 1.2 2

5 6.1 6.2

3 4 5

3 4 5

32 4 5

4 5 6 14000

12000

10000

8000

6000

4000

2000

0

Al
te

rn
at

ive
 sp

lic
ing

 ev
en

ts
2000

1500

1000

500

0
ME

RI
AD
AA
AT
AP
ES

Ge
ne

 in
te

rse
cti

on
s

4000 2000
Set size

0

750

500

250

0
ME

RI
AD
AA
AT
AP
ES

Ge
ne

 in
te

rse
cti

on
s

600900 300
Set size

0

AS Gene
AA

Genes
AS events
OS-related (p<0.05)

AS Gene
AD

AS Gene
AP

AS Gene
AT

AS Gene
ES

AS Gene
ME

AS Gene
RI

A

C

B

D

Figure 2. �Profiles of 7 alternate splicing (AS) patterns and overall survival (OS)-related AS events in pancreatic ductal carcinoma 
(PDAC). (A) Schematic illustration of 7 AS patterns: exon skipping (ES), alternate donor site (AD), alternate acceptor site 
(AA), alternate promoter (AP), alternate terminator (AT), mutually exclusive exons (ME), and retained intron (RI). (B) Bar plot 
of counts of AS events and parent genes for the 7 AS patterns. Red bars represent OS-AS events and parent genes from 
univariate Cox analysis. Black and gray bars represent all AS events and corresponding parent genes in PDAC, respectively. 
(C) UpSet plot of intersections of the 7 patterns of AS events. One gene may have up to 4 types of AS events in the dot 
panel, as shown in the next to last line, which connects 4 AS events (RI, AD, AT and ES). (D) UpSet plot of intersections of 
the 7 patterns of OS-AS events.
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Figure 3. �Forest plots for subgroup analyses of the 7 patterns of alternative splicing (AS) events associated with overall survival (OS) in 
pancreatic ductal carcinoma. (A–G) Forest plots of hazard ratios for top 20 OS-AS events: exon skipping (ES), alternate donor 
site (AD), alternate acceptor site (AA), alternate promoter (AP), alternate terminator (AT), mutually exclusive exons (ME), and 
retained intron (RI). P-values are indicated by the color scale; horizontal bars represent 95% CIs.
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AS patterns, and 6 events were eventually included in the fi-
nal model (Supplementary Table 1). Risk scores were calculat-
ed using the coefficients of each event’s PSI value. The PDAC 
cohort was divided into high- and low-risk groups according 
to the median risk score. Supplementary Figure 1 shows the 
risk score curve and distribution of survival outcomes, as well 
as a PSI heatmap for each model. Kaplan-Meier survival anal-
ysis showed significant differences in survival outcomes be-
tween the high- and low-risk groups in all 8 prognostic mod-
els, suggesting excellent predictive performance (P<0.001, 
Figure 5A–5H). The ROC curve confirmed the superiority of 
the final prognostic model, with an AUC of 0.884 for 3-year 
survival (Figure 5I).

To assess the performance of the final prognostic model, we 
performed univariate and multivariate Cox regression analy-
ses on the TCGA PDAC cohort. Associations between surviv-
al and risk scores, as well as clinicopathological features in-
cluding age, gender, grade, stage, and T and N stage were 
analyzed (Supplementary Table 2). In the univariate Cox anal-
ysis, age, N stage, and risk score were all significantly corre-
lated with poor prognosis (Figure 6A). Multivariate Cox anal-
ysis showed that risk score (HR=1.149, 95% CI [1.097–1.202], 
P<0.001), age, and N stage were independent prognostic fac-
tors for PDAC (Figure 6B).

Regulatory network of OS-associated SFs and AS events

SFs regulate AS by binding to specific sequence motifs of pre-
mRNA, which in turn might contribute to tumor progression. 
Existing evidence suggests that prognostic AS events are de-
termined by a limited number of SFs [34]. Hence, we construct-
ed a potential regulatory network to explore this underlying 
relationship. Based on level-3 RNA-seq data from TCGA, we 
performed univariate Cox analysis on 71 SFs and acquired 16 
SFs whose expression was significantly associated with OS in 
PDAC patients. Spearman’s correlation analysis identified 7 SFs 
strongly (|cor| >0.6, P<0.001) correlated with 319 AS events, 
among which 105 were adverse AS events (HR >1) and 214 were 
favorable AS events (HR <1, Figure 7A). More than half the AS 
events were positively correlated with SF expression and were 
mainly favorable prognostic events. Furthermore, the small pro-
portion of AS events negatively regulated by SFs mainly predict-
ed unfavorable prognosis. Thus, the AS events and SFs in the 
regulatory network may inhibit the development of pancreat-
ic cancer. Moreover, PDAC patients were divided into 2 groups 
according to the median expression value of OS-related SFs. 
Kaplan-Meier analysis showed significant prognostic differences 
in 4 SFs: TRA2A, ESRP1, ELAVL3, and ELAVL4. High expression 
of ELAVL4 (HR=0.57, P=6.1e-0.3), RBM5 (HR=0.53, P=1.5e-0.2), 
and TRA2A (HR=0.58, P=4.6e-0.3) predicted favorable OS in 
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Figure 4. �Protein–protein interaction network and functional annotations for parent genes of overall survival (OS)-associated 
alternative splicing (AS) events in pancreatic ductal carcinoma. (A) Interaction network of top 500 significant OS-associated 
AS events. Different shapes and colors represent different AS types of parent genes; node size corresponds to the number 
of neighboring genes. (B) Functional enrichment pathways from gene ontology and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. Top 10 significant biological process pathways, and top 5 significant molecular function (MF), 
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PDAC, whereas high expression of ESRP1 (HR=1.9, P=1.3e-0.3) 
predicted adverse OS (Figure 7B–7E). These results indicate the 
overall tumor inhibitory effect of the SF-AS regulatory network 
on PDAC. The most significantly correlated AS events with 4 
SFs are shown in Figure 7F–7M.

Correlation between AS events, SFs, and infiltrating 
immune cells

Accumulating evidence demonstrates the important role of 
AS in TME remodeling and that AS alterations may affect im-
mune cell infiltrations [35]. To explore potential mechanisms, 
we used CIBERSORT to evaluate the proportion of each in-
filtrating immune cell type in the PDAC samples (Figure 8A). 
Correlation analysis showed that expression of ELAVL4 was 

strongly positively correlated with the PSI values of ARVCF, 
ATP6V0A1, GRAMD1A, MEAF6, NCKAP1, SH3GLB2, and VDAC3 
in the ES pattern (Figure 8B). Moreover, these AS events were 
significantly positively correlated with the fraction of CD8 cy-
totoxic T cells in PDAC patients, indicating a positive regula-
tory relationship between ELAVL4 and CD8 cytotoxic T cells. 
In addition, these AS events were negatively associated with 
the regulator T cell (Treg) subtype (Figure 8C). Thus, we iden-
tified a potential regulatory network in which ELAVL4 not only 
positively regulates the activation of CD8 T cells but also neg-
atively regulates Tregs, via alterations in AS events.
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Figure 5. �Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves of 8 prognostic models based on overall 
survival (OS)-related alternative splicing events for pancreatic ductal carcinoma (PDAC) cohort. (A–H) High- and low-risk 
groups in each prognostic model show OS difference in Kaplan-Meier plot. (I) ROC curves and area under the curve of each 
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Clustering based on AS events significantly correlated with 
immune features

Previous experiments have demonstrated the heterogeneity 
of AS events between various PDAC cohorts, and the identifi-
cation of aberrant AS events has helped to elucidate patterns 
among the PDAC cohorts. To better understand the molecu-
lar heterogeneity underlying AS events in PDAC, we performed 
unsupervised consensus clustering on the 177 PDAC sam-
ples. As shown in Figure 9A, the clusters had significant inde-
pendence and acquired a balanced partition with k=3. Thus, 
the tumor-specific clustering based on AS events classified the 
PDAC cohorts into 3 subgroups: C1 (n=56, 31.6%), C2 (n=64, 
36.2%), and C3 (n=57, 32.2%) (Figure 9B). Kaplan-Meier sur-
vival analysis of the 3 subgroups demonstrated distinct sur-
vival outcomes: C1 showed the best prognosis, followed by 
C2, whereas C3 exhibited poor prognosis (P<0.001) (Figure 9C).

Given the close relationship between AS events and infiltrating 
immune cells identified in previous steps, we systematically 
evaluated the immune landscapes of the 3 clusters. Immune 
classification was performed on each sample within the clus-
ters, based on a previous study by Thorsson et al. [33]. The ma-
jority of C1 samples were classified as inflammatory subtypes 
(51.2%), characterized by elevated Th17 and Th1 expression 
and inhibited tumor growth. In addition, C1 had lower propor-
tions of wound healing subtypes (14.6%) compared with the 
other clusters, indicating reduced angiogenesis and lower pro-
liferation of tumor cells. C2 and C3 had higher proportions of 
wound healing (C2, 47.5%; C3, 45.8%) and IFN-g-dominant sub-
types (C2, 26%; C3, 20.8%), suggesting an immunosuppressive 
state, whereas C2 contained fewer TGF-b dominant samples 
and more IFN-g samples compared with C3, indicating higher 
levels of inflammatory response (Figure 9D).

We also calculated the immune scores and stromal scores of 
each PDAC sample to assess the potential constitution of TME 
in the 3 clusters. C1 had the highest immune scores, followed 
by C3 and C2 (P<0.001), consistent with the immune classifi-
cations (Figure 9E). C3 had slightly higher stromal scores than 
C1, and C2 had the lowest (P<0.001) (Figure 9F). Thus, the ma-
jority of immune-infiltrating cells in C3 may have immunosup-
pressive status and facilitate tumor progression. Figure 9G 
shows clinicopathological information and driver gene muta-
tions for each cluster. The prevalent mutated genes in pancre-
atic cancer, including KRAS (P=0.0002), CDKN2A (P=0.0100), 
and TP53 (P=0.0027), were preferentially distributed in the C2 
and C3 clusters, indicating a close relationship between AS-
based clusters and somatic mutation.

Overall, these findings indicate that clusters based on AS 
events differ significantly in terms of immune molecular pat-
terns; thus, they represent potential immunotherapeutic tar-
gets as well as prognostic tools for PDAC.

Discussion

PDAC is one of the most malignant tumors of the gastrointes-
tinal system and exhibits high molecular heterogeneity and a 
complex immune microenvironment [7]. Recent research into 
aberrant AS events has shed some light on the complex bi-
ological behaviors of such tumors [23]. In this study, we sys-
tematically collected clinical and genomic data from TCGA and 
SpliceSeq to analyze the role of AS in PDAC. We used univar-
iate analysis to identify 7 subtypes of AS events associated 
with survival, many of which are involved in PDAC develop-
ment. CD44|15131 and CD44|15130 were identified as top AS 
events significantly correlated with survival outcomes (P<0.001). 
Gansauge et al. found that the CD44 variant 6 (CD44v6) and 
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CD44 standard (CD44s) isoforms were significantly reduced in 
PDAC patients and soluble CD44v6 is a potential biomarker for 
unfavorable outcomes [36]. Another study showed that exon 
v7-containing CD44 isoforms could mediate tumor stroma for-
mation through activating PI3K/AKT signaling, which is essen-
tial for tumor metastasis [37]. Differentially expressed splice 
variants of CD44 also serve as biomarkers in PDAC [38,39]. 
The diversity of splicing-derived CD44 isoforms makes them 
promising targets for immunotherapies.

IL32|33396|AD was identified as an unfavorable prognostic 
event in this study. Interleukin-32 (IL32) was previously re-
ported to be a novel cytokine comprised of 8 small exons that 
has 9 AS isoforms [40]. In PDAC, the IL-32a isoform can re-
vert IL-6-induced EMT, invasion, and metastasis through in-
activation of JAK2/STAT3 signaling [41]. Many other prognos-
tic AS events identified here were also potentially associated 
with PDAC, including SMAD4|45557|AP, SMAD4|45559|AP, 
TP53AIP1|19438|AT, and SRSF2|43664|AA, whose parent genes 
are reported to regulate PDAC progression [42,43]. In addition 

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

P=6.1e–03

0 1 2 3 4

Time (years)

ELAVL4 High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

P=1.5e–02

0 1 2 3 4

Time (years)

RBM5 High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

P=1.3e–03

0 1 2 3 4

Time (years)

ESRP1 High risk Low risk

5 6 7 8

1.00

0.75

0.50

0.25

0.00

Su
rv

iva
l p

ro
ba

bil
ity

P=4.6e–03

0 1 2 3 4

Time (years)

TRA2A High risk Low risk

5 6 7 8

0.4

0.3

0.2

0.1

PS
I v

alu
e o

f G
ST

K1
|R

I

5 10 15 20
Expression of RBM5

5 10 15 20
Expression of RBM5

Cor=0.75 Cor=0.75

mean=0.16 mean=0.28

mean=8.95

0.75

0.50

0.25

0.00

PS
I v

alu
e o

f P
TK

2|E
S

0 3 6 9 12
Expression of ELAVL4

Cor=0.81
mean=0.05

mean=0.62

0.8

0.6

0.4

0.2

0.0

PS
I v

alu
e o

f D
CT

N1
|ES

0 3 6 9 12
Expression of ELAVL4

Cor=0.88
mean=0.06

mean=0.62 mean=8.95

0.8

0.6

0.4

0.2

0.0

PS
I v

alu
e o

f S
NR

NP
70

|ES

0.2

0.1

0.1PS
I v

alu
e o

f S
ER

PI
NB

6|A
P

10 20 30
Expression of TRA2A

10 20 30
Expression of TRA2A

Cor=0.64 Cor=0.64

mean=0.08
mean=0.11

mean=17.36

0.3

0.2

0.1

0.0

PS
I v

alu
e o

f S
LC

35
A2

|AT

Expression of ESRP1

Cor=–0.71

mean=0.10

mean=17.73

1.00

0.75

0.50

0.25PS
I v

alu
e o

f C
YB

56
1A

3|A
A

0 20 40 0 20 40
Expression of ESRP1

Cor=–0.72

mean=0.68
mean=17.73

mean=17.36

0.8

0.6

0.4

0.2

0.0

PS
I v

alu
e o

f S
RS

F7
|R

I

A

F

J

G

K

H

L

I

M

B

D

C

E

Figure 7. �(A) Regulatory splicing factor (SF)-alternative splicing (AS) network based on strong correlations between percent spliced 
in (PSI) value of splicing events and mRNA expression of SFs (|cor| >0.6). Favorable (purple circles) or unfavorable (orange 
circles) AS events were positively (red lines) or negatively (green lines) regulated by SFs (yellow triangles). (B–E) Kaplan-
Meier survival analysis validated the prognostic value of SFs. Four SFs (ELAVL4, ESRP1, RBM5, and TRA2A) were significantly 
associated with overall survival of pancreatic ductal carcinoma patients (P<0.05). (F–M) Representative dot plots showing 
the correlation between expression of prognostic SFs (ELAVL4, ESRP1, RBM5, and TRA2A) and PSI values of splicing events.

e925733-10
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Lu J. et al.: 
Alternative Splicing in PDAC

© Med Sci Monit, 2020; 26: e925733

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



to RNA-splicing pathways, significantly enriched functions in-
cluded “focal adhesion”, “cell adhesion molecule binding”, 
“cadherin binding”, and “EGFR tyrosine kinase inhibitor re-
sistance”, which have been implicated in tumor metastasis, 
invasion, and drug resistance [44,45]. However, the molecu-
lar mechanisms associated with these AS events in PDAC re-
quire more research.

Clinically, pancreatic cancer is difficult to diagnose at an ear-
ly stage, which usually leads to poor prognosis. Many diag-
nostic biomarkers and prognostic models for pancreatic can-
cer have been proposed based on mRNA and noncoding RNA 
profiles [46]; however, gene expression signatures are infre-
quently used in clinical practice. In this study, the final prog-
nostic model based on AS subtypes showed efficient prognos-
tic prediction. Moreover, ROC curves and multivariate analysis 
confirmed that the final model, consisting of 6 AS events, could 
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Figure 8. �Correlation analysis of prognostic splicing factors (SFs), alternative splicing (AS) events, and infiltrating immune cells. 
(A) Proportion of the 22 human immune cell subtypes in each pancreatic ductal carcinoma sample calculated with 
CIBERSORT. (B, C) Dual axis correlation dot plot of SFs, AS events, and infiltrating immune cells. The x-axis represents percent 
spliced in (PSI) values of AS events, the left y-axis represents SF mRNA expression, and the right y-axis represents relative 
proportions of immune cell subtypes.
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accurately predict patient outcomes and independently stratify 
high-risk PDAC patients. Therefore, our final prognostic mod-
el is suitable for clinical use.

The extensive occurrence of aberrant AS events in the TME 
may be driven by a small number of SFs. A regulatory network 

was constructed based on SFs showing strong correlation 
(|cor| >0.6) with OS-related AS events; these included ESRP1, 
ESRP2, RBM5, hnRNPF, ELAVL4, ELAVL3, and TRA2A, most of 
which have been reported to affect the biological behaviors 
of tumors [47–49]. For example, heterogenous nuclear ribo-
nucleoprotein family F (hnRNPF) inhibits EMT in breast cancer 
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Figure 9. �Consensus clustering based on prognosis-related alternative splicing (AS) events and immune landscape analysis. 
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by regulating AS events of CD44 in a G-quadruplex-dependent 
manner [50]. Another ESRP1-CD44 regulatory axis, not shown 
in the correlation network, has an important role in PDAC de-
velopment. EMT reduced the expression of ESRP1, thereby reg-
ulating the splicing of CD44, turning variant CD44v into CD44s 
isoforms [51]. ZEB1 represses ESRP1 to regulate AS events of 
CD44s, and CD44s activate ZEB1, forming a regulatory loop be-
tween CD44s, ESRP1, and ZEB1. This feedback loop promotes 
EMT and sustains stemness in pancreatic cancer, reflecting the 
crucial role of both SFs and OS-related AS events in PDAC [51]. 
SRSF1 enhances chemoresistance and inhibits drug-induced 
apoptosis in PDAC by regulating the AS events of target genes 
such as MNK2b [52]. In the current study, SRSF1 was positively 
regulated by RBM5 in event SRSF1|42632|RI (P<0.001), which 
indicated favorable prognosis (HR <1), which is contrary to pre-
vious reports. This discrepancy suggests that the same gene 
may have completely different functions in the regulation of 
different AS events. Furthermore, it highlights the complexity 
of the SF-AS regulatory network underlying PDAC progression.

The majority of favorable prognostic AS events (HR <1) were 
upregulated by SFs, whereas adverse AS events (HR >1) were 
downregulated. In contrast to observations in other cancers, 
this suggests that most of the SFs in PDAC inhibit tumor pro-
gression through the regulation of AS events [53,54]. However, 
owing to the lack of normal samples in TCGA, we were unable 
to identify differentially expressed SFs and draw comprehensive 
conclusions about the effects of SFs on PDAC. Nevertheless, 
we identified 4 SFs (ELAVL4, RBM5, ESRP1, and TRA2A) signif-
icantly related to OS in PDAC patients. The high expression 
of ELAVL4, RBM5, and TRA2A predicted favorable outcomes.

Recent studies indicated that aberrant AS events may create 
a predisposition to the regulation of immune response of can-
cers [22,23,35]. Proteins derived from aberrant AS events in tu-
mors can be processed into residual peptides by proteasome. 
The peptides are then transported into the endoplasmic re-
ticulum through the transporter associated with processing, 
after which they could be loaded onto major histocompati-
bility complex class I molecules, which can be recognized by 
T lymphocytes to induce anti-tumor immune responses [55]. 
Therefore, we evaluated the correlation of AS events with im-
mune cell subtypes within tumor samples. AS events regulat-
ed by ELAVL4 were significantly associated with upregulat-
ed CD8 cytotoxic T cells and downregulated Tregs within the 
PDAC TME, indicating ELAVL4’s potential role in inhibiting PDAC 
tumor progression. ELAVL4 (also known as HuD) was initially 
identified as a neural antigen specifically expressed in small 
cell lung cancer or neuroblastoma [56]. Later, some studies re-
ported that HuD could elicit specific cytotoxic T lymphocytes to 
inhibit tumor growth in small cell lung cancer patients, and it 
was studied as a potential vaccination for lung cancers [57,58]. 
The present study suggests that ELAVL4 elicits the activation 

of effector T cells within the PDAC TME in an AS-dependent 
manner, making it a promising new immunotherapeutic target 
in PDAC. Moreover, its inhibition of immunosuppressive T cells 
and activation of CD8 T cells indicate that the SF-AS axis could 
reverse the immunosuppressive TME. However, more detailed 
experiments are needed to validate this effect.

To the best of our knowledge, this is the first study to com-
prehensively analyze AS-based clusters in PDAC from an im-
mune landscape perspective. Using integrated algorithms, 
3 prognostic AS event-based clusters were identified, with dis-
tinct clinical outcomes according to survival analysis. Clinical 
characteristics and the genetic phenotypes of KRAS, TP53, 
SMAD4, and CDKN2A were unevenly distributed within the 
clusters. In a recent study, Thorsson et al. identified 6 novel 
immune subtypes across 33 cancer types and 10 000 TCGA 
tumors, which could help to explain the biological behaviors 
of tumors and tailor targeted immunotherapies [33]. Notably, 
the 3 AS clusters identified here exhibited distinct immune 
features after reclassification. The C1 cluster included inflam-
matory subtypes, suggesting an immune-activated status, fea-
turing higher expression of pro-inflammatory genes and low 
to moderate tumor growth [59]. Furthermore, the inflamma-
tory subtype showed lower levels of aneuploidy and somat-
ic mutations compared with the other subtypes [60]. Somatic 
mutations of 4 driver genes were preferentially distributed 
in the C2 and C3 clusters, supporting the efficacy of this im-
mune classification. C2 showed higher proportions of IFN-g-
dominant subtypes as well as wound healing subtypes. IFN-g 
subtypes have high M1/M2 macrophage polarization and ex-
pression of CD8 genes and also demonstrate significant tumor 
cell proliferation, which may override the evolving inflamma-
tory response to promote tumor progression [61]. The wound 
healing subtype was characterized by the transformation into 
immunosuppressive states and promotion of tumor angiogen-
esis [62]. Overall, the C2 cluster represents a transition from 
inflammatory-dominant to immunosuppressive status. In C3, 
increasing TGF-b subtypes suppressed immune response and 
promoted tumor development [63]. This AS-based clustering 
and immune classification may facilitate prediction of progno-
sis and patient response to different immunotherapies, as has 
been demonstrated in squamous cell carcinoma [64].

The abundant fibrotic stroma surrounding pancreatic tumors 
could impede the infiltration of effector T cells, greatly reduc-
ing the efficacy of immunotherapies [65]. We evaluated TME 
components in each cluster: C3 had significantly higher stro-
mal and immune scores than those of C2, whereas C1 had the 
highest immune scores. Previous studies indicated that stro-
mal compartments such as cancer-associated fibroblasts and 
mast cells in the PDAC microenvironment can greatly promote 
tumor invasion and drug resistance [66]. Moreover, these ef-
fects were mediated through the TGF-b pathways, consistent 
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with our previous clustering results. Thus, it is suggested that 
the majority of infiltrating immune cells within the C3 TME are 
inhibited by tumor stroma and stromal cells, leading to tumor 
progression, and that the highly active immune response in C1 
could reduce tumor growth. The interaction of tumor stroma 
and AS events suggests a new way to bypass immune barriers 
in PDAC and directly regulate immune response.

This study had some limitations which will be addressed in fur-
ther experiments. First, owing to the lack of normal samples 
for comparison with PDAC, we selected the most significant 
AS events instead of differentially expressed AS events in the 
univariate analysis for further model construction. Also, com-
parison between databases was not feasible because TCGA is 
the only available source for patient AS information. Second, 
the accuracy of the infiltration cell levels calculated by the 
CIBERSORT algorithm was restricted by the fidelity of the ref-
erence profile, especially in the heterogenous PDAC TME. To 
lower estimation bias and increase accuracy, larger sample 
sizes and additional experiments are required for future vali-
dation. Third, the retrospective nature of this study makes it 
difficult to rule out the impact of some clinical features such 
as R0 or R1 surgical resection and adjuvant therapies on HR, 
though multivariate Cox analysis was performed.

Conclusions

We have systematically evaluated the splicing profiles of PDAC 
patients and established a prognostic model with high accuracy 

based on AS events to facilitate clinical decision making. We 
also constructed an SF-AS regulatory network, which could reg-
ulate the immune response in PDAC. We stratified PDAC pa-
tients based on AS events and found a significant relationship 
between AS clusters and the immune landscape, identifying a 
novel direction for immunotherapeutic research. Further stud-
ies are needed to explore the regulation of immune respons-
es by AS events and identify possible tumor-specific antigens 
derived from AS events.
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Supplementary Data

Type AS event Coef HR 95% lower 95% Up P-value

AA MRPL4|47484|AA –8.02 3.30E-04 2.68E-08 4.04 0.095098

ITGB1BP1|52617|AA –1.51 0.22 0.04 1.21 0.081335

CYB561A3|16164|AA –2.16 0.12 0.03 0.49 0.003402

SWI5|87732|AA 2.51 12.27 0.69 216.66 0.087002

CELF1|15763|AA –2.94 0.05 3.59E-03 0.78 0.032441

EML3|16362|AA –9.34 8.82E-05 4.39E-09 1.77 0.064770

PLCG1|59390|AA –6.08 2.29E-03 5.51E-05 0.09 0.001375

C19orf33|49601|AA –8.14 2.91E-04 4.23E-07 0.20 0.014598

SRSF7|53281|AA 5.00 149.15 1.82 1.22E+04 0.026008

IGSF8|8426|AA 12.85 3.83E+05 91.05 1.61E+09 0.002530

SLC15A4|93374|AA –1.59 0.20 0.03 1.51 0.119692

Supplementary Table 1. Multivariate Cox regression analysis for alternative splicing (AS) events in each predictive model.
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Supplementary Table 1 continued. Multivariate Cox regression analysis for alternative splicing (AS) events in each predictive model.

Type AS event Coef HR 95% lower 95% Up P-value

AD CDK11A|218|AD –3.19 0.04 2.25E-03 0.75 0.031458

SUPT4H1|42666|AD –14.97 3.16E-07 4.77E-11 2.09E-03 0.000853

NFATC4|26993|AD –4.08 0.02 9.09E-04 0.31 0.006114

CLASRP|50392|AD –2.22 0.11 9.80E-03 1.21 0.070738

RAB15|27923|AD –1.26 0.28 0.08 1.06 0.061960

PTHLH|20910|AD 1.95 7.01 1.79 27.35 0.005089

NDUFAF2|72172|AD –6.18 2.08E-03 2.30E-05 0.19 0.007177

CCDC58|66432|AD –13.82 9.95E-07 5.96E-10 1.66E-03 0.000262

AP S100A13|7733|AP –5.05 6.40E-03 1.66E-04 0.25 0.006691

UBA1|88907|AP 4.78 118.67 1.01 1.39E+04 0.049376

COPS7A|19933|AP 2.10 8.16 1.16 57.64 0.035306

UBE2L6|15862|AP 13.94 1.13E+06 1.59 8.09E+11 0.042642

SH3KBP1|88641|AP –1.36 0.26 0.06 1.20 0.083722

SLC7A8|26712|AP 2.17 8.73 1.37 55.77 0.022006

EIF5A|38908|AP 3.60 36.48 0.94 1414.49 0.053957

AT VRK3|51144|AT 2.09 8.10 0.51 128.40 0.137897

RHOF|24898|AT 5.72 305.26 3.21 2.90E+04 0.013794

CDCA3|19984|AT –4.26 0.01 4.28E-04 0.47 0.016996

DOCK10|57781|AT –8.96 1.28E-04 6.29E-07 0.03 0.000949

ZNF506|48683|AT –3.63 0.03 1.49E-03 0.47 0.013505

ES CTNND1|15980|ES –1.16 0.31 0.09 1.11 0.072179

CTNND1|15958|ES –2.19 0.11 0.02 0.71 0.020238

CTAGE5|27377|ES –5.08 6.20E-03 2.13E-04 0.18 0.003117

UAP1|8750|ES 6.59 725.58 10.87 4.84E+04 0.002116

NCAPH|54528|ES –11.51 1.00E-05 2.19E-08 4.58E-03 0.000230

GSE1|37883|ES –1.46 0.23 0.06 0.86 0.028096

CASP8|56821|ES –6.82 1.09E-03 1.10E-05 0.11 0.003605

ME RAD51|30020|ME –3.24 0.04 4.58E-04 3.33 0.152682

RBM39|59248|ME –3.12 0.04 0.01 0.25 0.000410

ICA1|97384|ME –5.22 5.40E-03 1.80E-04 0.16 0.002600

TCF7L2|151705|ME –4.03 0.02 1.31E-04 2.43 0.108170

AMT|64866|ME 7.26 1428.93 1.19 1.71E+06 0.044545

CERS5|21668|ME 2.08 8.01 1.23 52.28 0.029715

DNM2|47588|ME 4.75 115.11 4.19 3162.60 0.004994
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Characteristics Patients, n (%)

Age

	 >65 	 83	 (47.9)

	 £65 	 94	 (53.1)

Sex

	 Male 	 97	 (54.8)

	 Female 	 80	 (45.2)

Grade

	 G1 	 30	 (16.9)

	 G2 	 95	 (53.7)

	 G3 	 48	 (27.2)

	 G4 	 2	 (1.1)

	 GX 	 2	 (1.1)

Pathologic stage

	 I 	 21	 (11.9)

	 II 	 146	 (82.4)

	 III 	 3	 (1.7)

	 IV 	 4	 (2.3)

	 Unknow 	 3	 (1.7)

Supplementary Table 2. Clinical features of PDAC patients in TCGA database.

OS – overall survival.

Characteristics Patients, n (%)

Pathologic T

	 T1 	 7	 (4.0)

	 T2 	 24	 (13.5)

	 T3 	 141	 (79.7)

	 T4 	 3	 (1.7)

	 Unknow 	 2	 (1.1)

Pathologic N

	 N0 	 49	 (27.7)

	 N1 	 123	 (69.5)

	 Unknow 	 5	 (2.8)

Median follow-up, OS (days) 440 (4–2,741)

OS event (0/1) 88/89

Type AS event Coef HR 95% lower 95% Up P-value

RI SPAG7|38626|RI –12.53 3.63E-06 4.86E-11 0.27 0.028648

CYB561A3|16163|RI –4.65 9.58E-03 7.33E-05 1.25 0.061473

TMEM9|9354|RI –1.32 0.27 0.08 0.92 0.036773

HTATIP2|14711|RI –1.93 0.14 0.02 0.84 0.031768

KRT15|40913|RI –1.52 0.22 0.05 0.90 0.035230

ALL S100A13|7733|AP –4.68 9.29E-03 2.66E-04 0.32 0.009853

SH3KBP1|88643|AP 1.05 2.87 0.91 9.07 0.073418

CDCA3|19984|AT –2.95 0.05 1.82E-03 1.52 0.086090

COPS7A|19933|AP 2.42 11.20 1.61 77.90 0.014633

UBE2L6|15862|AP 15.43 5.01E+06 2.16 1.16E+13 0.039109

SON|60435|AT –6.49 1.52E-03 5.80E-06 0.40 0.022398

Supplementary Table 1 continued. Multivariate Cox regression analysis for alternative splicing (AS) events in each predictive model.

AA – alternate acceptor site; AD – alternate donor site; AP – alternate promoter; AT – alternate terminator; ES – exon skipping; 
HR – hazard ratio; ME – mutually exclusive exons; RI – retained intron.
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Supplementary Figure 1. �Risk score calculation based on overall survival (OS)-related alternative splicing (AS) events. Risk score curves 
showing that pancreatic ductal carcinoma patients were divided into high- and low-risk groups based on the 
median risk score, as shown at the top of each assembly. Survival status and OS of each patient are shown 
in the middle, and the percent spliced in (PSI) heatmaps at the bottom. The 8 assemblies of risk scores were 
based on (A) alternate acceptor site, (B) alternate donor site, (C) alternate terminator, (D) alternate promoter 
site, (E) exon skipping, (F) mutually exclusive exons, (G) retained intron, and (H) all patterns of OS-related AS 
events.
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