
www.annalsofneurosciences.org	 ANNALS OF NEUROSCIENCES  VOLUME 21  NUMBER 2  APRIL 2014

51
ANNALS 
R E S  A R T I C L E
ANNALS
RES ARTICLE

Olfactory Sensory Neuron Morphotypes in the Featherback Fish, 
Notopterus notopterus (Osteoglossiformes: Notopteridae)

Pratap J. Patle and Vidya V. Baile

Division of Fish Neurobiology, PG Department of Zoology, RTM Nagpur University Campus, Nagpur - 440 033, India

Methods

Teleost phylogeny

Our study on olfactory sensory neuron morphotypes makes use 
of fish taxonomy by Nelson (1994)34 and the phylogenetic tree 
of evolution of teleosts is presented in Fig. 1. 

Animals 

Adult featherbacks (N. notopterus) of either sex (n = 6) with 
body weight ranging between 125g to 150g and length 27±2cm 
were obtained from a single freshwater body, Telangkhedi-Futala 
lake, Nagpur City from 2009-2011. After transport, fishes were 
maintained in well-aerated glass aquaria (3×2×1.5). Animal 
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Introduction

Olfactory system is one of the crucial chemosensory systems 
for fishes functioning in almost all aspects of their life in-
cluding food-finding, nest-finding, detecting and avoiding 
predators or other perilous situations,1 feeding,2 kin discrimi-
nation,3 reproduction4 and to identify natal streams during 
spawning migration by salmon.5-7 Fish communication is of-
ten accomplished via the use of pheromones.8 In fish and oth-
er vertebrates, this system consists of a peripheral part called 
olfactory rosette (OR) including olfactory nerve formed by the 
axons of olfactory sensory neurons (OSNs) and a central part 
comprising olfactory bulb and higher brain areas involved in 
processing of olfactory information.9 The olfactory epithelium 
consists of lamellae whose surfaces include sensory and non-
sensory regions. Main components of sensory region are the 
OSNs.

In teleosts, OSNs exhibit three polymorphic forms - ciliated 
OSNs, microvillous OSNs and crypt receptor cells.10-19 These 
morphotypes are distinguished by location of their somata 
within the depth of olfactory epithelium and resulting length 
of their dendrites. These polymorphs differ in relation to their 
shape and position within the OE and also functionally.20 They 
have differential projections to the olfactory bulb,18,19,21,22 dif-
ferent molecular23,24 and physiological properties.18,25-28

Among the teleosts, OSN polymorphism has been reported in 
many species including the members of cypriniformes - gold-
fish, Carassius auratus;29 zebrafish, Danio rerio;13 Aplochelius 
lineatus and Xiphophorus helleri,30 siluriformes - channel cat-
fish, Ictalurus punctatus29,31 and salmonid fishes.16,32

In the present study using the Kluver and Barrera (1953)33 
neuronal staining technique, we sought to analyze OSN poly-
morphism in the olfactory epithelium of a freshwater teleost, 
featherback fish, Notopterus notopterus belonging to the or-
der Osteoglossiformes. 

Fig. 1: Phyletic tree of the Teleostei, based on Nelson (1994) showing 
the occurrence of olfactory sensory neurons polymorphism (P) (For ref-
erences see the discussion section). The grey box/overlay depicts the 
group of Acanthopterygii. 
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care protocols were approved by the Institutional Animal Care 
and Use Committee.

Neuroanatomical analysis

Fishes were anaesthetized with an aqueous solution of  
2 phenoxyethanol (0.03%; P 1126; Sigma), decapitated, olfac-
tory system with the brain was dissected out and immediately 
fixed in aqueous Bouin’s fixative for 24 hrs, dehydrated in grad-
ed series of alcohol and embedded in paraffin wax after clear-
ing in xylene. For neuroanatomical studies, sections of olfactory 
epithelium were cut at 10 µm thickness in horizontal as well as 
saggital planes on a rocking microtome, mounted on Mayer’s 
albumin coated slides, and then subjected to Kluver and Bar-
rera (1953)33 staining. The stained sections were analyzed on 
a Nikon Eclipse E200 photomicroscope (Japan) and different 
cellular groups were identified according to their characteristic 
size, shape, staining intensity of the perikaryon and packing 
density as well as distribution pattern of the cell bodies. Cell 
and nuclear diameter were measured with an oculometer. All 
the numeral data in the results were presented as mean values 
± standard deviations (SD).

Analysis of OSN morphotypes

OSN morphology was classified based on depth of soma with-
in the olfactory epithelium and resulting length of their den-
drites.20,26 To determine the depth, olfactory epithelium was  
divided into 3 arbitrary horizontal layers, most apical layer be-
ing layer 1 and the most basal being layer 3 (Fig. 3C). With 
these criteria, OSNs were grouped into one of the three overall 
types: ciliated, microvillous and crypt types. 

Imaging

Desired fields from various sections were photographed using 
Nikon (E8400) camera at different magnifications and adjusted 
for size, contrast and brightness in Adobe Photoshop 7.0 and 
Corel Photo-Paint X4 software. Photo plates were prepared 
using Corel Draw X4 (version 14) software. Different types of 
identified OSNs from the photographs were isolated and pre-
sented/illustrated according to their distribution in different 
zones within the olfactory epithelium (Fig. 3B, C). Scale bars 
were expressed in terms of µm and measurements were taken 
by using an oculometer. 

Results

In the featherback fish, N. notopterus (Fig. 2A), paired olfac-
tory organs are situated on snout region in a cavity called 
olfactory pits or olfactory chambers connected to the telen-
cephalic hemispheres of brain by a long olfactory tract and 
are thus pedunculated (Fig. 2B). Each olfactory organ is a 
cup shaped elongated structure possessing a series of 74±2 
lamellae radiating from a central raphe on both the sides  
(Fig. 2B, C). The lamellae in the middle of rosette (on both 
sides) are the largest and they gradually taper towards anteri-
or and posterior ends of the rosette (Fig. 2C). Olfactory epithe-
lium (OE) is a thick sheet (30–35 µm) of pseudo-stratified cili-
ated epithelial cells which is folded to form olfactory lamellae  
(Fig. 3A). Each lamella is divisible into sensory and nonsen-
sory regions (Fig. 3A). The sensory region is located at the 
base of lamellae consisting of bipolar OSNs, supporting cells 
and basal cells (Fig. 3B, C).

Fig. 2: (A) Photograph of Notopterus notopterus. (B) In situ photograph of olfactory organ with brain of N. notopterus showing; olfactory epithelium 
(OE), olfactory bulb (OB), olfactory tract (OT), cerebrum (C), optic lobe (OptL), cerebellum (CEB) and spinal cord (SPC). (C) Horizontal section of the 
olfactory epithelium showing olfactory lamellae (OlfL) radiating from the central raphe (R). Scale bar = 500 µm. 
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OSN Morphotypes

In N. notopterus, three types of OSNs are noted- ciliated, 
microvillous and crypt cells (Fig. 3B, C). Each morphotype is 
characterized by a cell soma in a specific layer of the olfactory 
epithelium, variable length of dendrite and extension of axo-
nal process towards basal lamina. OSN morphotypes and their 
properties are summarized in Table 1. 

1.  �Ciliated olfactory sensory neurons (ciOSNs): These are lon-
gest (18.78±1.2 µm) among all the types of OSNs distribut-
ed throughout the sensory epithelium. These are character-
ized by their columnar, bipolar organization having basally 
located somata within layer 3 of the epithelium and their 
thin, long dendrites reaching upto epithelial surface. They 
have pronounced olfactory knob with cilia projecting into 
olfactory mucosa and at the opposite pole axonal process 
extends towards the basal lamina (Fig. 3B, C). Their cell body 
containing a round prominent nucleus is situated deep in 
the epithelium, cytoplasm is highly granular and intensely 
stained (Fig. 3B, C). 

2.  �Microvillous olfactory sensory neurons (mOSNs): These have 
moderate (12.06±0.81 µm) length and are characterized by 
their columnar, fusiform, bipolar organization having cell 
body located in the mid region within layer 2 of the epi-
thelium. Their thick, moderate length dendrite reaches upto 
epithelial surface having less pronounced olfactory knob 
with microvilli at the top. At the opposite pole, axonal pro-
cess extends towards the basal lamina (Fig. 3B, C). The cell 
body is more superficial in the epithelium than the ciOSNs 
and possesses a round nucleus. Cytoplasm is granular and 
stained intensely (Fig. 3B, C). Population of these cells domi-
nates over the ciOSNs. 

3. � Crypt olfactory sensory neurons (crOSNs): These are the 
shortest (2.9±0.22 µm) OSNs. These neurons are charac-
terized by their spherical, pear-shaped or ovoid structure 
having somata situated apically in the most superficial layer 
1 of the olfactory epithelium, devoid of any dendrite and 
with a axonal process extending toward the basal lamina  
(Fig. 3B, C). These cells bear submerged cilia and microvilli 
in the upper portion of the cell and are intensely stained  
(Fig. 3B, C). They occur regularly in all the lamellae but their 
absolute number appears to be low as compared to the 
other two cell types.

Discussion

Olfactory epithelium in N. notopterus is a continuous thick 
sheet of pseudo-stratified columnar epithelial cells; 30–35 µm 
in thickness. It is 35 µm in piranha, Serrasalmus nattereri,35 
35–55 µm in European eel, Anguilla anguilla36 and 60–75 µm 
in swordtail, Xiphophorus helleri37 which is folded to form ol-
factory lamellae. Number, shape and arrangement of lamellae 
vary considerably among different teleosts ranging from flat 
unfolded surface to multi-lamellar rosette.9,38-43 Olfactory epi-
thelium in N. notopterus is a multi-lamellar rosette compris-
ing large number (74±2) of lamellae. Generally lamellae are 
arranged laterally around a central raphe in Zebrafish, Danio 
rerio,13 Catfish, Clarias batrachus,44,45 Carp, Cirrhinus mrigala,46 
Cichlid, Oreochromis mossambicus,47  A. Anguilla,14 Mugil par-
sia,48 Indian major carp, Labeo rohita,49,50 Wallago attu51 and 
Macrognathus aculeatus,52 same arrangement is observed in  
N. notopterus.  However, in some other teleosts, olfactory la-
mellae are arranged at the top of raphe, parallel to each other 
and in rostro-caudal orientation as in Channa punctatus53 and 
Channa gachua.54 

In N. notopterus, each olfactory lamella comprises sensory and 
nonsensory regions. Location of these regions varies in differ-
ent species.42 In N. notopterus, sensory region is at the proxi-
mal end and basal region of lamellae and non sensory region 
at the middle of lamellae. Sensory region is at the middle of 

Fig. 3: (A) Part of horizontal section of olfactory epithelium showing lo-
cation of sensory (S) and nonsensory (NS) regions of olfactory lamellae. 
Scale bar = 100 µm. (B) Magnified view of sensory region of olfactory 
lamellae showing; basal cell (BC), basal lamina (BL), central core (CC)/
lamina propria (LP), crypt olfactory sensory neurons (crOSNs), ciliated 
olfactory sensory neurons (ciOSNs), microvillous olfactory sensory neu-
rons (mOSNs) and supporting cell (SC). Scale bar = 50 µm.  (C) Magni-
fied view of sensory region of olfactory lamellae (left) showing location 
of different cell types including; crOSNs, ciOSNs and mOSNs in different 
zones of olfactory epithelium. Scale bar = 25 µm. Illustrations (right) 
of different types of olfactory sensory neurons found in different layers 
of olfactory epithelium (Upper dotted line represents epithelial surface 
and lower dotted line represents basal lamina).



ANNALS OF NEUROSCIENCES  VOLUME 21  NUMBER 2  APRIL 2014	 www.annalsofneurosciences.org

54
ANNALS 
R E S  A R T I C L E 
ANNALS
RES ARTICLE

lamellae and nonsensory region is at the proximal and basal 
regions of lamellae in a Cyprinid, L. rohita49,50 but in Rhodeus 
amarus, sensory region is at the base and middle of lamellae 
and nonsensory region is at the proximal end.55 Sensory region 
comprises olfactory sensory neurons, supporting cells and bas-
al cells.13,14 Same cell types are observed in N. notopterus.

OSNs in N. notopterus exhibit polymorphisms similar to that 
observed in other teleosts. Three OSN morphotypes (ciliated, 
microvillous and crypt) vary in their shape and position within 
the epithelium. First type, the ciliated OSN, has a cell body lo-
cated deep in the OE (in layer 3) near the basal lamina. Its den-
drite is long and also quite thin, with a bulbous ending in the 
olfactory mucosa known as the olfactory knob, which bears 
cilia.13,14,16,17,20,26,56 Same types of ciOSNs are observed in N. not-
opterus. Second morphotype, the microvillous OSN, have their 
cell bodies located in the middle third (in layer 2) of OE hav-
ing thick and moderately long dendrites bearing microvilli at 
the top which are also reported in other teleosts.13,14,16,17,20,26,56 
These two polymorphic forms are seen even in the rainbow 
trout embryos (Salmo gairdneri), where ciliated OSNs appear 
8 days earlier than the microvillous type.57 Third OSN morph 
is the crypt cells.11-13 It is devoid of any dendrite. It has a cell 
body located superficially (in layer 1) in the OE bearing api-
cally located cilia and microvilli both, in a crypt-like invagina-
tion and longest axonal process extending towards the basal 
lamina.13,14,20,26,56  Their number in N. notopterus is less as com-
pared to the other two types.

In the sensory region, two morphologically distinct types of 
OSNs, ciliated and microvillous are prevalent in teleosts.57 In 
addition to the teleosts, expression of both ciliated and mi-
crovillous sensory cells is seen in a primitive extant ray-finned 
fishes, the bichir (Polypterus senegalus and P. ornatipinnis58) 
and the sturgeons of genus Acipencer.59 They occur together 
but in varying proportions in different species.59 In the OE of 
N. notopterus, mOSNs visually seem to dominate over ciOSNs, 
same is observed in C. punctatus53 whereas ciOSNs are domi-

nant over mOSNs in Labeo bata.60 In channel catfish, density 
of mOSNs is highest in the medial part of lamellae while that 
of ciOSNs is highest in the lateral areas of lamellae.61 In gold-
fish, mOSNs are most abundant in dorso-medial areas of the 
lamella close to the midline raphe.24 Third type of cells, crypt 
OSNs are also observed in N. notopterus but are very few in 
number. These are however widespread in number of teleost 
fishes.10,12,58,59,62-66 They are reported in Cyprinodonts,37 catfish, 
swordtail and needlefishes11 and in Zebrafish, Danio rerio.13 

Expression of OSN polymorphism appears to follow an evolu-
tionary pattern in those species that have been investigated. 
In an ancient jawless fish (superclass Agnatha), the sea lam-
prey (Petromyzon marinus), only ciliated OSNs are seen67,68 
but three morphotypes are reported in  P. marinus based on 
dendrite length and position of cell body within the OE.15 In 
elasmobranchs, these sensory cells bear only microvilli65,66,69-71 
and crypt cell also appears in the OE.65,66 With the divergence of 
rayfinned fishes in different habitats OE seems to be populated 
by all the three OSNs.58,59,64 Overall, in fishes displaying all the 
three morphotypes, ciliated cells predominate with microvil-
lous OSNs being fewer in number.16 Generally, crypt cells tend 
to be rare,63 and in some species, these do not appear in all the 
specimens10 and their number may also vary with season72 and 
sex.63 Ciliated OSNs are tuned toward bile salts and microvil-
lous OSNs toward amino acids.16 However, recent electrophysi-
ological studies concluded that ciliated OSNs might be termed 
as generalists which respond to varying species of odorants 
including amino acids, bile salts and other odorants whereas 
microvillous OSNs might be called as specialist, which respond 
specifically to amino acids and nucleotides.27,73

In addition to Agnatha15 and Elasmobranchs, OSN polymor-
phism has been reported in many Teleostomi such as bich-
ir- Polypterus senegalus and P. ornatipinnis58 and sturgeon, 
Acipencer.59 In the teleosts it is reported in order Cyprini-
formes- goldfish, Carassius auratus,29 Aplochelius lineatus and  
Xiphophorus helleri;30 zebrafish, D. rerio,13 Siluriformes- channel  

Table 1: �Summary of olfactory sensory neuron morphotypes and their properties.

OSN Morphotypes Crypt Cell Microvillous Ciliated

Structural organization 

Apical surface Submerged crypt with  
cilia and microvilli

Short olfactory knob with  
microvilli

Olfactory knob with cilia

Dendrite Absent Thick Thin

Location of cell body in OE Upper third Mid region Lower third

Size 2.9±0.22 µm 12.06±0.81 µm 18.78±1.2 µm
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catfish, Ictalurus punctatus,29,31 Salmonid fishes,16,32 and among 
Perciformes in round goby, Neogobius melanostomus.10 

Order Osteoglossiformes is a representative of an early evolu-
tionary lineage of teleost fishes. N. notopterus belongs to this 
order. In this fish, polymorphous OSNs are noted similar to those 
reported among the members of other teleosts including orders- 
cypriniformes, siluriformes and salmoniformes which are highly 
evolved orders. This indicates that OSN polymorphism is a con-
served trait throughout the evolution of teleosts. Present study 
will be helpful to study the expression of receptor subtypes on 
each receptor cell and to know the physiological role assigned 
to each of the receptor cell types. Possibly these polymorphs  
respond to different odors, as seen in other teleosts.

This article complies with International Committee of Medical Journal edi-
tor’s uniform requirements for manuscript.
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