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Abstract
Recent work has attempted to use whole-genome sequence data from pathogens to recon-

struct the transmission trees linking infectors and infectees in outbreaks. However, trans-

mission trees from one outbreak do not generalize to future outbreaks. Reconstruction of

transmission trees is most useful to public health if it leads to generalizable scientific

insights about disease transmission. In a survival analysis framework, estimation of trans-

mission parameters is based on sums or averages over the possible transmission trees. A

phylogeny can increase the precision of these estimates by providing partial information

about who infected whom. The leaves of the phylogeny represent sampled pathogens,

which have known hosts. The interior nodes represent common ancestors of sampled path-

ogens, which have unknown hosts. Starting from assumptions about disease biology and

epidemiologic study design, we prove that there is a one-to-one correspondence between

the possible assignments of interior node hosts and the transmission trees simultaneously

consistent with the phylogeny and the epidemiologic data on person, place, and time. We

develop algorithms to enumerate these transmission trees and show these can be used to

calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation

study confirms that this leads to more efficient estimates of hazard ratios for infectiousness

and baseline hazards of infectious contact, and we use these methods to analyze data

from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results

demonstrate the importance of data on individuals who escape infection, which is often

overlooked. The combination of survival analysis and algorithms linking phylogenies to

transmission trees is a rigorous but flexible statistical foundation for molecular infectious dis-

ease epidemiology.
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Author Summary

Recent work has attempted to use whole-genome sequence data from pathogens to recon-
struct the transmission trees linking infectors and infectees in outbreaks. However, trans-
mission trees from one outbreak do not generalize to future outbreaks. Reconstruction of
transmission trees is most useful to public health if it leads to generalizable scientific
insights about disease transmission. Accurate estimates of transmission parameters can
help identify risk factors for transmission and aid the design and evaluation of public health
interventions for emerging infections. Using statistical methods for time-to-event data (sur-
vival analysis), estimation of transmission parameters is based on sums or averages over the
possible transmission trees. By providing partial information about who infected whom, a
pathogen phylogeny can reduce the set of possible transmission trees and increase the pre-
cision of transmission parameter estimates. We derive algorithms that enumerate the trans-
mission trees consistent with a pathogen phylogeny and epidemiologic data, show how to
calculate likelihoods for transmission data with a phylogeny, and apply these methods to a
foot and mouth disease outbreak in the United Kingdom in 2001. These methods will allow
pathogen genetic sequences to be incorporated into the analysis of outbreak investigations,
vaccine trials, and other studies of infectious disease transmission.

Introduction
Genetic sequences from pathogen samples are an increasingly important source of information
in infectious disease epidemiology. The structure of a pathogen phylogeny can reflect immuno-
logical strain selection, epidemic dynamics, and patterns of spatial spread [1–3]. Phylogenies
linking pathogen genetic sequences sampled at known times and places have been used to
investigate the origins and spread of HIV-1 [4, 5] and the global circulation of seasonal influ-
enza [6–9]. Using coalescent models, phylogenies can be used to reconstruct the history of
effective viral population sizes [10] or estimate basic reproductive numbers (R0) [11]. These
methods can reveal details of the large-scale spread of infection that would be difficult or
impossible to detect otherwise. For example, Biek et al. [12] showed that the invasion of the
eastern United States by a raccoon-specific rabies virus occurred in seven distinct clades (each
representing a different direction of spread from the epizootic origin in West Virginia) and
three waves of expansion (1987–1993, 1986–1990, and 1990–1992).

When epidemic models are integrated with population genetics, several complications arise
in the interpretation of the effective number of infections and the scaling of time [13–15].
Recently, methods have been developed that use phylogenetic trees to make inferences about
the prevalence of infection over time while accounting for epidemic dynamics [13, 16], and
some of these can incorporate time series data on the number of cases [17, 18]. These phylody-
namic methods generally assume a sparse sample of pathogen genetic sequences from a large
infected population. In this paper, we consider the use of densely-sampled pathogen genetic
sequences to make inferences about person-to-person transmission.

Reconstructing transmission trees with genetic sequences
The earliest use of phylogenetics in infectious disease epidemiology was to confirm or rule out a
suspected source of the human immunodeficiency virus (HIV). Phylogenetic analyses were used
to confirm that five HIV patients were infected at a dental practice in Florida between 1987 and
1989 [19] and to rule out infection of a Baltimore patient in 1985 by an HIV-positive surgeon
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[20]. A more ambitious use of phylogenetics is to reconstruct a transmission tree, which is a
directed graph with an edge from node i to node j if person i infected person j. An analysis by
Leitner et al. [21, 22] of an HIV-1 transmission cluster in Sweden from the early 1980s com-
pared reconstructed phylogenies based on HIV genetic sequences to a true phylogeny based on
the known transmission tree, times of transmission, and times of sequence sampling. The recon-
structed phylogenies accurately reflected the topology of the true phylogeny, and the accuracy
increased when sequences from different regions of the HIV genome were combined.

The increasing availability of whole-genome sequence data has renewed interest in combin-
ing pathogen genetic sequence data with epidemiologic data to reconstruct transmission trees.
One approach to this problem is to reconstruct the transmission tree using genetic distances.
Spada et al. [23] reconstructed the transmission tree linking five children infected with hepati-
tis C virus (HCV) by finding the spanning tree linking the HCV genetic sequences that mini-
mized the sum of the genetic distances across its edges, excluding edges inconsistent with the
epidemiologic data. The SeqTrack algorithm of Jombart et al. [24] generalizes this approach. It
constructs a transmission tree by finding the spanning tree linking the sampled sequences that
minimizes (or maximizes) a set of edge weights. Snitkin et al. [25] used this algorithm to inves-
tigate a 2011 outbreak of carbapenem-resistant Klebsiella pneumoniae in the NIH Clinical Cen-
ter, penalizing edges with large genetic distances, between patients who did not overlap in the
same ward, or that required a long silent colonization. Wertheim et al. [26] constructed a net-
work among HIV patients in San Diego by linking individuals whose sequences were<1% dis-
tant. This was used to estimate community-level effects of HIV prevention and treatment.

A second approach to transmission tree reconstruction is to weight possible infector-infectee
links using a pseudolikelihood based on genetic and epidemiologic data. Ypma et al. [27] ana-
lyzed a 2003 influenza A(H7N7) outbreak among poultry farms in the Netherlands by combin-
ing data on the times of infection and culling at each farm, the distances between the farms, and
RNA consensus sequences. The weight of each possible transmission link was the product of
components based on temporal, geographic, and genetic data. The weight of a complete trans-
mission tree was the product of the edge weights. The R package outbreaker implements an
extension of this approach that allows multiple introductions of infection and unobserved cases
[28]. Like the spanning tree methods above, these methods model pathogen evolution as a pro-
cess that occurs at the moment of transmission. Morelli et al. [29] proposed a variation of these
methods that allows within-host pathogen evolution by incorporating the times of infection and
observation into the likelihood component for the genetic sequence data.

A third approach is to reconstruct the transmission tree by combining a phylogeny with epi-
demiologic data, which was first done by Cottam et al. [30, 31] in an investigation of a 2001
foot-and-mouth disease virus (FMDV) outbreak among farms in the United Kingdom (UK).
The phylogeny and the transmission tree were linked by considering possible locations of the
most recent common ancestors (MRCAs) of viruses sampled from the farms. The probability
pij that farm i infected farm j was calculated using epidemiologic data on the oldest detected
FMDV lesion and the dates of sampling and culling on each farm. The weight of each possible
transmission network was proportional to the product of the pij for all edges i! j. Similar
methods were used to track farm-to-farm spread of a 2007 FMDV outbreak [32]. Gardy et al.
[33] combined social network analysis with a phylogeny based on whole-genome sequences to
construct a transmission tree for a tuberculosis outbreak in British Columbia. Didelot et al.
used the time of the most recent common ancestor (TMRCA) to identify possible person-to-
person transmission events in studies of Clostridium difficile transmission in the UK [34] and
Helicobacter pylori transmission in South Africa [35]. In a study ofMycobacterium tuberculosis
transmission in the Netherlands, Bryant et al. [36] ruled out transmission between individuals
whose samples did not share a parent in the phylogeny.
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Recent research has identified problems with using genetic sequence data to reconstruct
transmission trees. Simulations by Worby et al. [37, 38] found that pairwise genetic distances
cannot reliably identify sources of infection. Methods based on phylogenies often underesti-
mate the complexity of the relationship between the phylogenetic and transmission trees.
Branching events in a phylogeny do not necessarily correspond to transmissions, and the
topology of the phylogenetic tree need not be the same as the topology of the transmission tree
[39–41]. These differences are especially important for diseases with significant within-host
pathogen diversity and long latent or infectious periods [41, 42].

Ypma et al. [40] and Didelot et al. [42] have developed Bayesian methods that enforce con-
sistency between phylogenetic and transmission trees in Markov chain Monte Carlo (MCMC)
iterations. More recently, Lau et al. [43] have outlined a Bayesian integration of epidemiologic
and genetic sequence data that uses likelihoods based on survival analysis, but their approach
does not use pathogen phylogenies directly, assuming that a single dominant lineage within
each host can be transmitted. Here, we build a systematic understanding of the relationship
between pathogen phylogenies and transmission trees under much weaker assumptions about
within-host evolution, allowing the incorporation of genetic sequence data into frequentist and
Bayesian survival analysis of infectious disease transmission data.

Transmission trees and public health
Reconstruction of transmission trees is most useful to public health if it leads to generalizable
scientific insights about disease transmission. The transmission tree from one outbreak does
not generalize to future outbreaks, but a phylogeny provides partial information about who-
infected-whom. Survival analysis provides a rigorous but flexible statistical framework for
infectious disease transmission data that explicitly links parameter estimation to the set of pos-
sible transmission trees [44–46]. In this framework, estimates of transmission parameters such
as covariate effects on infectiousness and susceptibility and evolution of infectiousness over
time in infectious individuals are based on sums or averages over all possible transmission
trees. Since a phylogeny linking pathogen samples from infected individuals constrains the set
of possible transmission trees, pathogen genetic sequence data can be combined with epidemi-
ologic data to obtain more efficient estimates of transmission parameters.

Methods

General stochastic S(E)IR model
At any time, each individual i 2 {1, . . ., n} is in one of four states: susceptible (S), exposed (E),
infectious (I), or removed (R). Person imoves from S to E at his or her infection time ti, with
ti =1 if i is never infected. After infection, i has a latent period of length εi during which he or
she is infected but not infectious. At time ti + εi, imoves from E to I, beginning an infectious
period of length ιi. At time ti + εi + ιi, imoves from I to R, where he or she can no longer infect
others or be infected. The latent period εi is a nonnegative random variable, the infectious
period ιi is a strictly positive random variable, and both have finite mean and variance. If per-
son i is infected, the time elapsed since the onset of infectiousness at time ti + εi is the infectious
age of i.

After becoming infectious at time ti + εi, person imakes infectious contact with j 6¼ i at time
tij ¼ ti þ εi þ t�ij. We define infectious contact to be sufficient to cause infection in a susceptible

person, so tj � tij. The infectious contact interval t�ij is a strictly positive random variable with

t�ij ¼ 1 if infectious contact never occurs. Since infectious contact must occur while i is infec-

tious or never, t�ij 2 ð0; ii� or t�ij ¼ 1.
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For each ordered pair ij, let Cij = 1 if infectious contact from i to j is possible and Cij = 0 oth-
erwise. For example, the Cij could be the entries in the adjacency matrix for a contact network.
However, we do not require that Cij = Cji. We assume the infectious contact interval t�ij is gener-

ated in the following way: A contact interval τij is drawn from a distribution with hazard func-
tion hij(τ). If τij � ιi and Cij = 1, then t�ij ¼ tij. Otherwise, t

�
ij ¼ 1.

Epidemiologic data. Our epidemiologic data contain the times of all S! E (infection),
E! I (infectiousness onset), and I! R (removal) transitions in the population between time
0 and time T. For all ordered pairs ij in which i is infected, we observe Cij.

An exogenous infection occurs when an individual is infected from a source outside the
observed population. An endogenous infection occurs when an individual is infected from
within the observed population. For each endogenous infection j, let vj denote the index of his
or her infector. Let vj = 0 if j is an exogenous infection and vj =1 if j is not infected. Let V j

denote the set of possible vj <1, which we call the infectious set of j. If j is not infected, let
V j ¼ O= (the empty set).

The transmission tree is the directed network with an edge from vj to j for each infected j. It
is a directed tree rooted at node 0, and it can be represented by a vector v = (v1, . . ., vn). Let V
denote the set of all possible v consistent with the observed data. A v 2 V can be generated by
choosing a vj 2 V j for each infected j, but we do not assume that all possible transmission trees

have the same probability.

Survival analysis of transmission data
Survival analysis of infectious disease transmission data can be viewed as a generalization of dis-
crete-time chain binomial models [47] to continuous time, and it includes parametric methods
[44], nonparametric methods [45], and semiparametric relative-risk regression models [46]. For
simplicity, we use parametric methods and assume that exogenous infections are known. Let the
hazard of infectious contact from i to j at time τ after the onset of infectiousness in i be

hijðtÞ ¼ exp β>
0 XijðtÞ

� �
h0ðtÞ; ð1Þ

where β0 is an unknown coefficient vector, Xij(τ) is a covariate vector, and h0(τ) is a baseline
hazard function. The vector Xij(τ) can include individual-level covariates affecting the infec-
tiousness of i or the susceptibility of j as well as pairwise covariates (e.g., membership in the
same household). The coefficient vector β0 captures covariate effects on the hazard of transmis-
sion, and the baseline hazard function h0(τ) captures the evolution of infectiousness over time
in infectious individuals.

We assume that τij can be observed only if j is infected by i at time ti + εi + τij. The contact
interval τij will be unobserved if i recovers from infectiousness before making infectious con-
tact with j, if j is infected by a someone other than i, or if observation of j has stopped. Let
Ii(τ) = 1τ 2 (0, ιi] be a left-continuous process indicating whether i remains infectious at infec-
tious age τ. Let Sij(τ) = 1ti+εi+τ � tj be a left-continuous process indicating whether j remains
susceptible when i reaches infectious age τ. Assume that the population is under observation
until a stopping time T and let Oij(τ) = 1ti+εi+τ � T be a left-continuous process indicating
whether j is under observation when i reaches infectious age τ. Then

YijðtÞ ¼ CijIiðtÞSijðtÞOijðtÞ ð2Þ

is a left-continuous process indicating whether infectious contact from i to j can be observed
at infectious age τ of i. The assumptions above ensure that censoring of τij is independent for
all ij, and they can be relaxed if independent censoring is preserved.
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Let θ be a parameter vector for a family of hazard functions h(τ, θ) such that h0(τ) = h(τ, θ0)
for an unknown θ0. To allow maximum likelihood estimation, we assume that h(τ, θ) has con-
tinuous second derivatives with respect to θ. Let

hijðt; β; θÞ ¼ exp β>XijðtÞ
� �

hðt; θÞ: ð3Þ

LetW j ¼ fi : ti þ εi < tj and Cij ¼ 1g denote the set of all infectious individuals to whom j

was exposed while susceptible, which we call the exposure set of j. When we observe who-
infected-whom (i.e., v is known), the likelihood is

Lvðβ; θÞ ¼
Yn
j¼1

hvjj
ðtj � tvj � εvj ; β; θÞ

1vj=2f0;1g
Y
i2W j

e�
R ii

0
hijðt;β;θÞYijðtÞ dt

2
4

3
5: ð4Þ

The hazard terms depend on v, but the survival terms do not [44].
When we do not observe who-infected-whom, the likelihood is a sum over all possible

transmission trees: Lðβ; θÞ ¼ P
v2VLvðβ; θÞ [44]. Each v 2 V can be generated by choosing a

vj 2 V j for each endogenous infection j. Given the epidemiologic data, each vj can be chosen

independently [48]. This leads to the sum-product factorization

Lðβ; θÞ ¼
Yn
j¼1

X
i2Vj

hijðtj � ti � εi; β; θÞ
0
@

1
A

1vj=2f0;1gY
i2W j

e�
R ii

0
hijðt;β;θÞYijðtÞ dt

2
4

3
5: ð5Þ

The probability of a particular transmission tree v is

Pr ðvjβ; θÞ ¼ Lvðβ; θÞ
Lðβ; θÞ ¼

Y
j:vj=2f0;1g

hvjj
ðtj � tvj � εvj ; β; θÞP

i2V j
hijðtj � ti � εi; β; θÞ

; ð6Þ

and Lv(β, θ) = Pr(v|β, θ)L(β, θ). In this framework, estimation of (β, θ), and the probabilities of
possible transmission trees is simultaneous. An interesting special case is when hij(τ, β, θ) = λ for
all ij. Then Pr(v|β, θ) does not depend on λ, so the transmission tree is an ancillary statistic [44].

Likelihood calculation with a phylogeny. Let F denote a pathogen phylogeny, v denote a
transmission tree, and Epi denote the epidemiologic data. Let the function Pr(�) denote proba-
bilities or probability densities as necessary, and let V denote the set of transmission trees con-
sistent with both F and Epi. Then the likelihood for β is

Pr ðF; Epijβ; θÞ ¼
X
v2V

Pr ðv;F; Epijβ; θÞ ¼
X
v2V

Pr ðFjv; EpiÞPr ðv; Epijβ; θÞ: ð7Þ

The factor Pr(v, Epi|β, θ) is the likelihood in Eq (4). The factor Pr(F|v, Epi) depends on
within-host pathogen evolution and could incorporate genetic distances and branching times,
allowing the joint estimation of between-host transmission parameters and within-host evolu-
tionary parameters. For example, within-host coalescent models were used by Ypma et al. [40]
and Didelot et al. [42]. The probability of a given transmission tree v is

Pr ðvjβ; θ;FÞ ¼ Pr ðFjv; EpiÞPr ðv; Epijβ; θÞ
Pr ðF; Epijβ; θÞ : ð8Þ

As before, estimation of (β, θ) and the probabilities of different transmission trees is simul-
taneous. By providing partial information about who-infected-whom, a phylogeny can increase
the precision of transmission parameter estimates.
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Phylogenies and transmission trees
The relationship between phylogenies and transmission trees we develop here is similar to the
approach taken by Cottam et al. [31] who linked phylogenetic and transmission trees via the
locations of common ancestors. It is logically equivalent to the approaches of Ypma et al. [40]
who joined the within-host phylogenies of infectors and infectees into a single phylogeny,
Didelot et al. [42] who colored lineages in the phylogeny with a unique color for each individ-
ual, and Hall and Rambaut [49] who represented transmission trees as partitions of phyloge-
nies. We begin with these assumptions:

1. Each individual is infected at most once.

2. Each infection is initiated by a single pathogen. Following infection, within-host pathogen
evolution occurs and the evolved pathogens are transmitted to others.

3. The order in which infections (or onsets of infectiousness) occurred is known.

4. We have at least one pathogen sequence from each infected individual, and these sequences
are linked in a rooted phylogeny. The root of this phylogeny has a parent node r0.

5. Each node in the phylogeny represents a pathogen that had a host, which is also the “host”
of the node. A parent-child relationship between nodes with different hosts represents a
direct transmission of infection from the host of the parent to the host of the child. The
node r0 has a host outside the observed population.

The first two assumptions concern the biology of disease. The last three assumptions con-
cern the resolution of the epidemiologic data, which can be controlled through study design.
Initially, we use only the topology of the pathogen phylogeny to infer the set of possible trans-
mission trees. Later, we consider how branching times at interior nodes further restrict the set
of possible transmission trees.

Transmission trees and interior node hosts. The leaves (tips) of the phylogenetic tree
represent sampled pathogens. Each interior node represents a most recent common ancestor
(MRCA) of two or more sampled pathogens. Let host(x) be the host of the pathogen repre-
sented by node x in the phylogeny. If x is a leaf, then host(x) is known. If x had a host outside
the observed population, let host(x) = 0. In particular, host(r0) = 0. The hosts of all other inte-
rior nodes are unknown.

Lemma 1. The nodes hosted by an infected individual form a subtree of the phylogenetic tree.
Proof. See S1 Appendix.
Theorem 1. A phylogeny with known interior node hosts implies a unique transmission tree.
Proof. See S1 Appendix.
Lemma 1 applies to nodes hosted by infected individuals in the observed population, not to

the set of nodes hosted by 0 (i.e., hosts outside the observed population). In the rest of this sec-
tion, we assume that the set of nodes hosted by 0 is a tree rooted at r0. In practice, this restricts
the study design. For example, this assumption would be violated if we observed only individu-
als A and C in a household where A was the index case and there was a chain of transmission A
! B! C. The results of this section can be generalized to phylogenies where the set of nodes
hosted by 0 is a union of subtrees as long as each subtree has a known root node. In this case,
the phylogeny can split into disjoint pieces by erasing the incoming edge to each root of a sub-
tree hosted by 0. Each of these pieces can be treated as a separate phylogeny in which the nodes
hosted by 0 form a subtree.

An assignment of interior node hosts consistent with Lemma 1 will produce at most one
transmission tree. A possible assignment of interior node hosts is an assignment consistent with
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Lemma 1 that produces a transmission tree consistent with the epidemiologic data. A possible
transmission tree is a transmission tree consistent with the epidemiologic data that can be pro-
duced by at least one assignment of interior node hosts consistent with Lemma 1. We now
show that each possible transmission tree is produced by exactly one possible assignment of
interior node hosts.

Let Cx denote the set of nodes in the phylogenetic clade rooted at node x, and let Lx be the
set of hosts of leaf nodes in Cx. If x is an interior node, host(x) may not be in Lx. Let first(x)
denote the individual in Lx who is infected earliest or has the earliest onset of infectiousness, at
least one of which is well-defined by Assumption 3. If the individual infected earliest and the
individual with the earliest onset of infectiousness are different, either of them can be used as
first(x). If x is a leaf, Cx = {x}, L(x) = {host(x)}, and first(x) = host(x).

Lemma 2. For any node x, host(x) = first(x) or host(x) infected first(x).
Proof. See S1 Appendix.
Theorem 2. A transmission tree corresponds to at most one possible assignment of interior

node hosts in a phylogeny.
Proof. See S1 Appendix.
Theorems 1 and 2 imply a one-to-one correspondence between the possible transmission

trees and the possible assignments of interior node hosts in a phylogeny. Fig 1 illustrates this
relationship in a very simple case. An similar result was proven independently by Hall and
Rambaut [49] using partitions of phylogenies.

Sets of possible interior node hosts. Theorems 1 and 2 reduce the problem of finding the
transmission trees consistent with a given phylogeny to that of finding the possible assignments
of interior node hosts. Let Hx denote the set of hosts h of node x such that at least one possible
transmission tree can be generated when host(x) = h. There are two sets of constraints on Hx.
The ancestors of x constrain the possible hosts because of Lemma 1. The descendants of x con-
strain the possible hosts because host(x) must be a common ancestor of all members of Lx in
the transmission tree.

Fig 1. Two possible transmission trees and three possible pathogen phylogenies for a household outbreak. A, B, and C were infected in alphabetical
order such that their infectious sets are VA ¼ f0g, VB ¼ fAg, and VC ¼ fA;Bg. We have a single pathogen sequence from each person. The top shows the
two possible transmission trees within the household: either A infected B and B infected C (left) or A infected B and C (right). The bottom shows the three
rooted, bifurcating phylogenies linking pathogen sequences from A, B, and C. In each phylogeny, the possible hosts are written underneath each interior
node and arrows indicate how each assignment of interior node hosts determines a transmission tree via Assumption 5.

doi:10.1371/journal.pcbi.1004869.g001
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We deal first with the descendant constraints. A transmission tree within clade Cx is a trans-
mission tree rooted at host(x) that consists of host(x) and all members of Lx. Let Dx denote the
set of all hosts h such that at least one possible transmission tree within Cx can be generated
when host(x) = h. If x is a leaf, Dx = {host(x)} where host(x) is the source of the pathogen sam-
ple whose genetic sequence is represented by x. If x is an interior node, Dx can be calculated
using the following results:

Lemma 3. If x is an interior node, host(x) = first(x) or host(x) = host(parent(x)).
Proof. See S1 Appendix.
Lemma 4. If x is an interior node with child y in the phylogeny, then

hostðxÞ 2 D�
y ¼

Dy if firstðyÞ =2 Dy;

Dy [ VfirstðyÞ if firstðyÞ 2 Dy:

8<
: ð9Þ

Proof. See S1 Appendix.
Theorem 3. For any interior node x in the phylogeny,

Dx ¼ \
y2childrenðxÞ

D�
y ; ð10Þ

where children(x) denotes the children of x.
Proof. See S1 Appendix.
Now we consider the ancestral constraints onHx. By assumption, host(r0) = 0. Let Ar0 = {0}.

For all other nodes in the phylogeny, let

Ax ¼ HparentðxÞ [ ffirstðxÞg: ð11Þ

Theorem 4. Hx = Ax \ Dx.
Proof. See S1 Appendix.
Since Dx is known for each leaf x, Theorem 3 shows that Dx can be found for each interior

node x in a postorder (i.e., childen before parents) traversal of the phylogeny. Since Ar0 = {0},
Theorem 4 shows that we can calculateHx for each interior node x in a preorder (parents
before children) traversal of the phylogeny once all Dx are known. Combining these results, we
get Algorithm 1 for calculating allHx in two traversals of the phylogeny. We say that a phylog-
eny F is topologically consistent with the epidemiologic data ifHx is nonempty for each interior
node x of F.

Algorithm 1: Finding host sets.
Input: Rooted phylogeny Φ and epidemiologic data
Output: Hx for each node x of Φ

for node x in postorder traversal of Φ do
if x is a leaf then Dx = {host(x)};
else Dx ¼ \y2childrenðxÞD

�
y, where D�

y is defined in Eq (9);

end
for node x in preorder traversal of Φ do

if x = r0 then Hx = {0};
else Hx = Dx \ Ax, where Ax = Hparent(x)[{first(x)};

end

Having found the Hx at each interior node x, it is possible to generate all possible transmis-
sion trees consistent with the phylogeny and the epidemiologic data.

Theorem 5. Given a pathogen phylogeny F that is topologically consistent with the epidemio-
logic data, a transmission tree v is possible if and only if it can be generated using Algorithm 2.
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Proof. See S1 Appendix.

Algorithm 2: Generating transmission trees.
Input: Rooted phylogeny Φ with nonempty Hx for each node x
Output: Transmission tree v consistent with Φ and the epidemiologic data
for node x in preorder traversal of Φ do

if x = r0 then set host(x) = 0;
else
w = parent(x);
choose host(x) 2 Hx \ {host(w), first(x)};
if host(x) 6¼ host(w) then

add edge host(w)!host(x) to v, adding node host(x) if necessary
end

end
end

Theorem 5 gives a useful indication of the value of a phylogeny. A bifurcating phylogeny
with n leaves has n − 1 interior nodes. For each interior node x, we have at most 2 possible
hosts given the host of parent(x). Thus, there are at most 2n − 1 possible transmission trees con-
sistent with a pathogen phylogeny of n infections. Without a phylogeny, the worst-case sce-
nario is n! possible transmission trees. Using partitions, Hall and Rambaut [49] independently
proved that a phylogeny reduces the number of possible transmission trees when n> 2.

The combination of Algorithms 1 and 2 is similar to a Sankoff parsimony [50] where the
states represent infected individuals and the cost of going from state i to state j is 1 if i 2 V j and

1 otherwise. If there is a single exogenous infection, any transmission tree consistent with the
phylogeny and the epidemiologic data will have cost n − 1, and all other transmission trees will
have infinite cost. Compared to the more general context of a Sankoff parsimony, our algo-
rithms gain efficiency by not having to consider all possible states at each internal node or cal-
culate costs. They also have the advantage of being based on explicit assumptions about the
biology of infection and study design.

Host sets under a molecular clock. Under a strict or relaxed molecular clock model, each
interior node of the phylogenetic tree can be assigned a branching time based on its genetic dis-
tance to one or more sequences with known sampling times. These branching times produce
new opportunities for inconsistency between the phylogenetic tree and the epidemic data,
increasing the possible value of the phylogeny for transmission parameter estimation. Let tx
denote time assigned to node x in the phylogeny. For each leaf, tx is the time at which the corre-
sponding pathogen was sampled. If x is an interior node, tx is a branching time.

If host(x) is known, the branching time tx is subject to two constraints. Because branching
must occur after the infection of host(x) and before the end of his or her infectious period,

tx 2 ðthostðxÞ; thostðxÞ þ εhostðxÞ þ ihostðxÞ�; ð12Þ

where a square bracket indicates an endpoint included in the interval and a parenthesis indi-
cates an endpoint excluded from the interval. We have tx > thost(x) because a branching time in
host(x) cannot occur until after he or she is infected. We have tx � thost(x) + εhost(x) + ιhost(x)
because a descendant of virus x was transmitted to at least one other host. The second con-
straint is that if x is a parent of y and host(x) 6¼host(y), then tx < thost(y) because a descendant
of virus x infected host(y). These constraints are sufficient to find a valid set of branching times
given a possible assignment of interior node hosts.
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Theorem 6. If a transmission tree is generated using Algorithm 2, then Algorithm 3 assigns a
valid branching time to each internal node of the phylogeny. Any assignment of branching times
consistent with the epidemiologic data can be generated this way.

Proof. See S1 Appendix.

Algorithm 3: Assigning branching times.
Input: Rooted phylogeny Φ with known host(x) for each node x
Output: Branching time tx for each node x
for node x in postorder traversal of Φ do

if x is a leaf then set tx to be the time pathogen x was sampled;
else
tmax = miny 2 children(x) ty;
choose tx 2 (thost(x), tmax);

end
end

Now suppose we have a phylogenetic tree with known branching times but unknown inte-
rior node hosts. Let

HðtÞ ¼ fi : ti < t � ti þ εi þ iig ð13Þ
be the set of individuals who are infected but not yet removed at time t, and letHx(t) be the set
of possible hosts of node x when tx = t. To findHx(tx), it is not sufficient to calculateHx using
Algorithm 1 and then letHx(tx) =Hx \ H(tx). To see why, suppose x and y are nodes in the phy-
logeny such that h 2Hx \ Hy and h 2 H(tx) \H(ty). Let w be the MCRA of x and y. There is no
guarantee that h 2Hw(tw). If not, h can be in at most one ofHx(tx) andHy(ty) by Lemma 1.

Algorithm 1 can be modified to find Hx(tx) with the following changes: In the postorder tra-
versal, we replace Dx with

DxðtxÞ ¼ HðtxÞ \ \y2childrenðxÞD
�
y

� �
: ð14Þ

In the preorder traversal, we define

Ax ¼ HparentðxÞðtparentðxÞÞ [ ffirstðxÞg ð15Þ

for all x 6¼ r0. Then Hx(tx) = Ax \ Dx(tx). With these changes, the proofs of Theorems 3 and 4
in S1 Appendix work as before under the additional constraint that host(x) 2H(tx) for all
nodes x in the phylogeny.

Simulations
To study the impact of a phylogeny on the efficiency of transmission parameter estimates, we
conducted a series of 1,000 simulations. In each simulation, there were 100 independent house-
holds of size 6. Each household had an index case with an infection time chosen from an expo-
nential distribution with mean one. Each individual i had a binary covariate Xi that could affect
infectiousness and susceptibility. Given a parameter vector β = (βinf, βsus), the hazard of infec-
tious contact from i to j at infectious age τ of i is

hijðt; βÞ ¼ exp ðbinfXi þ bsusXjÞl0: ð16Þ

In each simulation, βinf and βsus were independently chosen from a uniform distribution on
(−1, 1). In all simulations, the baseline hazard was λ0 = 1 and the infectious periods were inde-
pendent exponential random variables with mean one.
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In each simulation, we analyzed data from the first 200 infections in three ways: using only
epidemiologic data via the likelihood in Eq (5), using epidemiologic data with who-infected-
whom via the likelihood in Eq (4), and using epidemiologic data with a phylogeny via the likeli-
hood in Eq (7). In the phylogenetic analysis, we assumed a single pathogen sample from each
infected individual. The within-host phylogeny for each individual who infectedm> 0 individ-
uals was chosen uniformly at random from all rooted, bifurcating phylogenies withm + 1 tips.
Within-individual phylogenies were chosen independently and combined into a single phylog-
eny as in Ypma et al. [40]. Thus, the conditional probability Pr(F|v, Epi) for a phylogeny F
given a transmission tree v in which each individual j infectedmj � 0 other individuals was
proportional to

Y
j:mj>0

2mj�1ðmj � 1Þ!
ð2mj � 1Þ! : ð17Þ

The set of transmission trees consistent with the phylogeny was determined using Algo-
rithms 1 and 2. We calculated the mean error, mean squared error, 95% confidence interval
coverage probability, and relative efficiency of βinf, βsus, and ln λ0 estimates in all three analyses.

The simulations were conducted in Python 2.7 (www.python.org) and analysis was con-
ducted in R 3.2 (cran.r-project.org) via RPy2 2.7 (rpy.sourceforge.net). The
Python code is in S1 Text. Parameters, point estimates, and 95% confidence limits are in S1
Data. R code for the simulation data analysis is in S1 Text.

Data on individuals who escape infection. The likelihoods in Eqs (4) and (5) require data
on individuals who were at risk of infection but not infected. Except for Lau et al. [43], these
data are not used in any of the studies cited in the Introduction. To study the value of data on
individuals who escape infection in the households of infected individuals, we repeated all anal-
yses excluding data on the uninfected. The parameters, point estimates, and 95% confidence
limits are in S2 Data.

Time variation in infectiousness. When contact intervals are exponential and there is no
variation in infectiousness, the transmission tree is an ancillary statistic for the hazard λ of infec-
tious contact [44]. To explore the effect of time variation in infectiousness on the value of a phy-
logeny, we repeated the simulations using a Weibull contact interval distribution with shape
parameter γ = 0.5. To keep the same mean contact interval, we set the rate parameter λ0 = 2.
The hazard of infectious contact from i to j at infectious age τ or i is

hijðt; βÞ ¼ exp ðbinfXi þ bsusXjÞglg
0t

g�1: ð18Þ

With γ = 0.5, this decreases monotonically during the infectious period. These simulations
used the same combinations of (βinf, βsus) that were used in the simulations with exponential
contact intervals. The parameters, point estimates, and 95% confidence limits are in S3 Data.

Data analysis
To illustrate an application of these algorithms and likelihoods, we use them to analyze farm-
to-farm transmission trees of foot and mouth disease virus (FMDV) in a cluster of 12 epidemi-
ologically linked farms in Durham, UK in 2001. The genetic and epidemiologic data are pub-
licly available as Data S3 and Data S4 in Morelli et al. [29]. These data were previously
analyzed by Cottam et al. [31, 32], Morelli et al. [29], Ypma et al. [40], and Lau et al. [43].

FMDV is a picornavirus that causes a highly contagious disease in cattle, pigs, sheep, and
goats [51]. Upon infection, there is an incubation period of approximately 1–12 days in sheep,
2–14 days in cattle, and two or more days in pigs. The incubation period is followed by an acute
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febrile illness with painful blisters on the feet, the mouth, and the mammary glands. It is trans-
mitted through secretions from infected animals, fomites, virus carried on skin or clothing, and
aerosolized virus. Outbreaks of foot-and-mouth disease are difficult to control and can devastate
livestock. During the FMDV outbreak, teams from the UK Department for Environment, Food,
and Rural Affairs (DEFRA) visited each infected farm [30, 31]. They recorded the number and
types of susceptible and infected animals, examined infected animals to determine the age of the
oldest lesions, and collected epithelial samples. Finally, they recorded the date of the cull.

We assume that infectiousness begins on the day that the first lesions appeared and ends
with the cull, and we assumed a latent period (between infection and the onset of infectiousness)
of 2–16 days. Fig 2 shows the relative locations of the farms, and Fig 3 shows the timeline of the
latent and infectious periods. Analysis was conducted in R 3.2 (cran.r-project.org), and
the code is available in S3 Text.

Fig 2. Relative locations of the 12 farms in the Durham cluster. These were infected in the 2001 FMDV outbreak in the UK.

doi:10.1371/journal.pcbi.1004869.g002
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Estimating the hazard of infectious contact. Without a phylogeny, we estimated the haz-
ard of transmission from an infected farm to a susceptible farm using the likelihood in Eq (5).
We assumed a log-logistic contact interval distribution with rate parameter λ and shape
parameter γ, which has the hazard function

hðt; l; gÞ ¼ glgtg�1

1þ ðltÞg ð19Þ

and the survival function S(τ, λ, γ) = (1 + (λτ)γ)−1 where τ is the infectious age. This is the sim-
plest parametric model in survival analysis that allows a non-monotonic hazard function.
When γ� 1, the hazard decreases monotonically. When γ> 1, the hazard is unimodal. To
enforce the restriction that λ> 0 and γ> 0, maximum likelihood estimation was done using
parameters ln λ and ln γ.

If farm j is infected on day t, let V jðtÞ denote its infectious set andW jðtÞ denote its exposure
set. For each i 2 V jðtÞ, the times ti + εi of onset of infectiousness and t�j of onset of symptoms

are known. Without a phylogeny, the overall likelihood contribution for each infected farm j
except K (the index farm) is the sum of the likelihood in Eq (5) over all possible infection times:

Xt�j �2

t¼t�j �16

X
i2VjðtÞ

h t � ti � εi; l; gð Þ
Y

i2W jðtÞ
S min ðii; t � ti � εiÞ; l; gð Þ

2
4

3
5: ð20Þ

Fig 3. Timeline of latent and infectious periods in the Durham cluster. The gray bars represent the range of days on which each farm might have been
infected.

doi:10.1371/journal.pcbi.1004869.g003
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Note that the sum of the hazards is zero for each t where there is no possible infector. Via a
sum-product factorization, the product of Eq (20) over all j 6¼ L is the sum of the likelihoods of
all possible combinations of infection times at the farms.

With a phylogeny, we estimated the hazard of transmission from an infected farm to a sus-
ceptible farm using the likelihood in Eq (7), which is a weighted sum of the likelihood contribu-
tions of each transmission tree. Let I denote the set of endogenously infected farms. For each
transmission tree v, the likelihood is

Y
j2I

Xt�j �2

t¼t�
j
�16

h t � tvj � εvj ; l; g
� � Y

i2W jðtÞ
S min ðii; t � ti � εiÞ; l; gð Þ

2
4

3
5 ð21Þ

where vj denotes the infector of farm j. We assumed that the within-host phylogeny for each
farm that infectedm> 0 other farms was chosen uniformly at random from all rooted, bifurcat-
ing phylogenies withm + 1 tips, so each transmission tree gets a weight proportional to Eq (17).

Data on farms that escaped infection. As usual, the epidemiologic data set contains only
infected farms. To illustrate how our results depend on farms that escaped infection, we repeat
the analyses with and without a phylogeny using 6, 12, and 24 uninfected farms. Because obser-
vation of the outbreak ended after the end of infectiousness in all infected farms, the likelihood
contribution from each uninfected farm is

Q
i2W�Sðii; l; gÞ whereW� is the set of infected

farms and ιi is the infectious period for farm i.

Results

Simulations
Table 1 shows the mean error, mean squared error, 95% confidence interval coverage probability,
and relative efficiency of βinf, βsus, and ln λ0 estimators in the simulations. In all cases, the point
estimates were nearly unbiased (indicated by the mean error squared being much smaller than
the mean squared error) and the 95% confidence interval coverage probabilities were near 0.95.

Table 1. Statistical performance of estimators under exponential contact intervals.

Epidemiologic only + phylogeny + who-infected-whom

βinf

Mean error 0.0032 0.0060 0.0080

Mean squared error 0.0537 0.0386 0.0307

Coverage probability 0.945 0.942 0.945

Relative efficiency* 1 1.39 1.75

βsus

Mean error 0.0023 0.0025 0.0023

Mean squared error 0.0306 0.0306 0.0305

Coverage probability 0.953 0.953 0.953

Relative efficiency* 1 1.00 1.00

ln λ0

Mean error -0.0050 -0.0054 -0.0057

Mean squared error 0.0300 0.0256 0.0230

Coverage probability 0.952 0.953 0.955

Relative efficiency* 1 1.17 1.31

* Compared to estimates with epidemiologic data only.

doi:10.1371/journal.pcbi.1004869.t001
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Fig 4 shows that estimates of βinf using a phylogeny were more efficient than estimates using epi-
demiologic data only and less efficient than estimates using who-infected-whom. By mean
squared error, the phylogenetic estimates had a relative efficiency of 1.39 compared to estimates
using only epidemiologic data and 0.80 compared to estimates using who-infected-whom.
Because knowledge of who-infected-whom does not add to our knowledge of who was infected,
all three analyses were equally efficient for βsus (similar results were obtained for estimates with
and without who-infected-whom in Ref [46]). Fig 5 shows that estimates of ln λ0 using a phylog-
eny were more efficient than those using epidemiologic data only and less efficient than those
using who-infected whom. By mean squared error, the phylogenetic estimates had a relative effi-
ciency of 1.17 compared to estimates using only epidemiologic data and 0.90 compared to esti-
mates using who-infected-whom.

Fig 4. Relative efficiencies of βinf estimates based on squared widths of confidence intervals. The dashed and dotted lines are smoothed means.

doi:10.1371/journal.pcbi.1004869.g004
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Table 2 shows the mean error, mean squared error, 95% confidence interval coverage proba-
bility, and relative efficiency of βinf, βsus, and ln λ0 estimators that excluded data on uninfected
household members. The mean squared errors were much higher than the corresponding esti-
mators in Table 1, so their relative efficiency was very low. In all cases, the efficiency loss from
excluding data on individuals who escape infection was much larger than the efficiency gain
from incorporating a phylogeny or from knowing exactly who infected whom. For estimators
of βinf and βsus, the square of the mean error was much smaller than the mean squared error,
indicating little bias. Estimates of ln λ0 were biased upward, resulting in extremely low relative
efficiencies and coverage probabilities. In [44], similar results were seen for estimates of the
basic reproduction number (R0) when approximate likelihoods for mass-action models, which
do not require data on uninfected individuals, were used to analyze data from network-based
epidemics.

Fig 5. Relative efficiencies of ln λ0 estimates based on squared widths of confidence intervals. The dashed and dotted lines are smoothed means.

doi:10.1371/journal.pcbi.1004869.g005
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Table 3 shows results the mean error, mean squared error, 95% confidence interval coverage
probability, and relative efficiency of βinf, βsus, ln λ0, and ln γ estimators from models with Wei-
bull contact interval distributions with rate parameter λ0 = 2 and shape parameter γ = .5. All
estimators are unbiased with 95% confidence interval coverage probabilities near 0.95. The

Table 2. Statistical performance of estimators using infecteds only.

Epidemiologic data + phylogeny + who-infected-whom

βinf

Mean error 0.0300 0.0312 0.0299

Mean squared error 0.1850 0.1115 0.0804

Coverage probability 0.682 0.756 0.779

Relative efficiency* 0.29 0.48 0.67

βsus

Mean error 0.0408 0.0410 0.0261

Mean squared error 0.1351 0.1339 0.1842

Coverage probability 0.583 0.582 0.491

Relative efficiency* 0.23 0.23 0.17

ln λ0

Mean error 0.7647 0.7559 0.9341

Mean squared error 0.6151 0.5978 0.9033

Coverage probability 0.008 0.007 0.000

Relative efficiency* 0.05 0.05 0.03

* Compared to estimates in Table 1 with epidemiologic data only.

doi:10.1371/journal.pcbi.1004869.t002

Table 3. Statistical performance of estimators under Weibull contact intervals.

Epidemiologic data + phylogeny + who-infected-whom

βinf

Mean error 0.0030 0.0043 0.0000

Mean squared error 0.0454 0.0318 0.0251

Coverage probability 0.948 0.960 0.966

Relative efficiency* 1 1.43 1.81

βsus

Mean error -0.0076 -0.0076 -0.0075

Mean squared error 0.0278 0.0276 0.0276

Coverage probability 0.949 0.949 0.946

Relative efficiency* 1 1.01 1.01

ln λ0

Mean error 0.0278 0.0224 0.0260

Mean squared error 0.1188 0.1069 0.0978

Coverage probability 0.941 0.948 0.943

Relative efficiency* 1 1.11 1.21

ln γ

Mean error 0.0133 0.0114 0.0106

Mean squared error 0.0052 0.0046 0.0045

Coverage probability 0.958 0.961 0.960

Relative efficiency* 1 1.12 1.15

* Compared to estimates using epidemiologic data only.

doi:10.1371/journal.pcbi.1004869.t003
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relative efficiencies are similar to those in Table 1, showing that the gains in efficiency for esti-
mates of infectiousness hazard ratios and baseline hazards occur under weak assumptions
about the baseline hazard.

Data analysis
With no phylogeny, there are 19,440 possible transmission trees linking the 12 farms in the
Durham cluster. A phylogeny was constructed in SeaView [52] using consensus RNA
sequences from 15 farms, including three farms not epidemiologically linked to the cluster [29].
We used a generalized time reversible (GTR) nucleotide substitution model with four rate clas-
ses on 8,196 sites. Fig 6 shows the rooted phylogeny for the 12 farms in the cluster with branch
tips scaled to reflect the time of infectiousness onset at each farm (interior branch lengths do
not indicate branching times). The order of infectiousness onsets is known, so first(x) is the

Fig 6. First hosts in the Durham cluster. Rooted phylogeny for RNA sequences from the 12 farms in the Durham cluster with tips at the onset of
infectiousness. Each interior node x has first(x) written next to it.

doi:10.1371/journal.pcbi.1004869.g006
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host with the earliest onset of infectiousness in clade Cx. Fig 7 shows the postorder host set Dx

for each node x in the phylogeny, and Fig 8 shows the host sets. The host is uniquely deter-
mined by the phylogeny for all interior nodes except three. Fig 9 shows the six possible interior
node host assignments and the corresponding transmission trees.

Hazard of infectious contact. Table 4 shows the rate and shape parameter estimates with
and without a phylogeny for 0, 6, 12, and 24 uninfected farms. The estimates with a phylogeny
have lower rate and shape parameters, suggesting a slightly more rapid increase in infectious-
ness with a lower peak. The estimates using a phylogeny have narrower confidence intervals.
The predicted hazard functions are shown in Fig 10, and they are very sensitive to the number
of farms that escaped infection. A similar sensitivity was observed by Lau et al. [43], who esti-
mated 300 uninfected farms based on the crude density of farms in Durham County.

Fig 7. Postorder host sets in the Durham cluster. The postorder host set Dx is written next to each interior node x. These are calculated in a postorder
traversal using the leaf hosts and the infectious sets.

doi:10.1371/journal.pcbi.1004869.g007
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To understand the effect of the phylogenies on the precision of the hazard function esti-
mates, we constructed approximate pointwise 95% confidence bands for the hazard functions
estimated with no uninfected farms. We took 4000 samples from each likelihood using a grid
with spacing 0.02 on the interval [−3.6, −1.3] for ln λ and [−0.5, 1.8] for ln γ. These intervals
include the 99% confidence limits for both estimates plus a boundary of width 0.2. For each
sample, we calculated the hazard function at 500 time points between 0 and 15. At each time
point, we took the .025 and .975 quantiles of the calculated hazards to get an approximate 95%
confidence interval. Fig 11 shows that the confidence bands for the estimates with phylogenies
are narrower. Similar results were obtained when parameters were sampled from their approxi-
mate multivariate normal distributions, which can be done using S3 Text.

Fig 8. Host sets in the Durham cluster. The host set Hx is written next to each interior node x. These are calculated in a preorder traversal using the root
host and the postorder host sets.

doi:10.1371/journal.pcbi.1004869.g008
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Discussion
Here we took a single phylogeny, derived the set of possible transmission trees, and estimated
transmission parameters using likelihoods that are sums over the possible transmission trees.
By restricting the set of possible transmission trees, incorporating a phylogeny into the analysis
produced more efficient estimates of infectiousness hazard ratios and the baseline hazard of
infectious contact. The efficiency gain was largest for infectiousness hazard ratio estimates. The

Fig 9. Interior node host assignments (left) and transmission trees (right) consistent with the phylogeny and the epidemiologic data.Dashed lines
on the right indicate transmissions fixed by the phylogeny to the left. Dotted lines indicate that the infector of an individual depends on a choice of hosts in the
phylogeny. At the top, K infectsC, C infects P, and either K or L infects E. At the bottom,O infectsC, eitherO or C infects P, and either K or L infects E. There
are six possible transmission trees—two on top and four on the bottom.

doi:10.1371/journal.pcbi.1004869.g009
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Table 4. Log-logistic rate and shape parameter estimates.

Uninfected farms Without phylogeny With phylogeny
Point estimate (95% CI) Point estimate (95% CI)

0 rate (λ) 0.132 (0.062, 0.180) 0.125 (0.060, 0.175)

shape (γ) 2.486 (1.131, 4.748) 2.233 (1.158, 3.807)

6 rate (λ) 0.068 (0.018, 0.110) 0.062 (0.018, 0.103)

shape (γ) 1.972 (0.946, 3.605) 1.812 (0.966, 2.979)

12 rate (λ) 0.049 (0.010, 0.089) 0.043 (0.010, 0.080)

shape (γ) 1.878 (0.907, 3.413) 1.725 (0.924, 2.823)

24 rate (λ) 0.034 (0.005, 0.070) 0.029 (0.005, 0.061)

shape (γ) 1.815 (0.881, 3.289) 1.666 (0.894, 2.720)

doi:10.1371/journal.pcbi.1004869.t004

Fig 10. Predicted farm-to-farm infectiousness with (black) and without (gray) phylogenies. These are log-logistic hazard functions based on the rate
and shape parameters estimates in Table 4.

doi:10.1371/journal.pcbi.1004869.g010
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combination of survival analysis and algorithms linking phylogenies to transmission trees can
be incorporated into analyses based on many different statistical and phylogenetic methods.
More precise estimates of transmission parameters, not the transmission trees themselves, will
inform public health responses to emerging infections.

We assumed complete observation of infection times, latent periods, and infectious periods,
so our methods need to be extended to account for missing data and phylogenetic uncertainty.
Bayesian MCMC with data augmentation is a well-established method of handling missing
data in infectious disease epidemiology [53]. Combining this with a Bayesian MCMC for phy-
logeny reconstruction would allow our likelihoods to be integrated over both missing data and
phylogenetic uncertainty [54]. Standard phylogenetic reconstruction assumes a well-mixed
population, which may not be a good approximation for pathogen populations partitioned

Fig 11. Point estimates and approximate 95% confidence bands for the hazard function estimates. These assume no farms escaped infection. The
bands for the estimates using a phylogeny are narrower.

doi:10.1371/journal.pcbi.1004869.g011
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among hosts, but Bayesian methods can reconcile the reconstruction of phylogenies with possi-
ble transmission trees [49]. Extending these methods to nonparametric or semiparametric
models of disease transmission will require iterative approaches to the assignment of probabili-
ties to possible transmission trees [45, 46].

Our methods can be extended to diseases with complex within-host and between-host
dynamics by adapting the likelihood in Eq (7) or the algorithms linking phylogenies to trans-
mission trees. For example, Assumption 2 requires a strict transmission bottleneck. If multiple
pathogen lineages can be transmitted when a new host is infected at time t, sequences sampled
from the infectee could have an MRCA with a branching time before t. The nodes hosted by
the infectee would no longer form a subtree of the phylogeny. This is similar to deep coales-
cence (lineage sorting), which causes gene trees and species trees to have different topologies.
Deep coalescence would be most likely to occur in a disease with a wide transmission bottle-
neck, substantial within-host diversity, and little within-host evolution [55]. Algorithm 1 could
be adapted by allowing the infector of an i 2 V j to be the host of an interior node of the phylog-

eny whose child is hosted by j. The likelihood in Eq (7) would have to include the likelihood
contributions of these additional host assignments, including the within-host pathogen
dynamics allowing two parallel strains to pass through i to j.

Simulations
The simulations suggest that a phylogeny can recover much of the information that would be
obtained by observing who-infected-whom. Incorporating a phylogeny generated more precise
estimates of βinf and ln λ0. This increase in efficiency remained when infectiousness varied over
the course of the infectious period, as in the Weibull models. The simulations used only phylo-
genetic topologies and assumed that all within-host topologies were equally likely, limiting the
ability of the phylogeny to constrain the set of possible transmission trees. Using branching
times and more realistic models of within-host pathogen evolution would allow greater infor-
mation about who-infected-whom to be extracted from a phylogeny.

The simulations that excluded data on household members who escape infection showed
that this information is critical to estimating βinf, βsus, and ln λ0 accurately. These individuals do
not appear anywhere on the pathogen phylogeny, so this point has escaped the attention of
many researchers working on incorporating phylogenetics into the analysis of infectious disease
transmission data. Any analysis that excludes this data should have an explicit justification
based on a complete-data model—for example, the initial spread of a mass-action epidemic can
be analyzed without data on escapees [44]. In general, epidemiologic studies of emerging infec-
tions should be designed to capture information on individuals who were exposed to infection
but not infected, which might justify greater emphasis on detailed studies of households,
schools, or other settings with rapid transmission and a clearly defined population at risk.

Data analysis
The data analysis showed that the increased precision found in the simulations can be obtained
in practice. The incorporation of phylogenies allowed more precise estimates of the hazard of
FMDV transmission from infected to susceptible farms. For simplicity, our analysis assumed
that the times of infectiousness onset were accurately estimated. A data-augmented MCMC
[53] could be used to account for uncertainty in the onset of infectiousness, showing the impor-
tance of extending our methods to account for missing data.

A more important limitation of this analysis was the lack of data on uninfected farms. The
hazard function estimates were highly sensitive to the number of uninfected farms in the area
where the cluster occurred. These data often go uncollected in outbreaks because their
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importance is unrecognized. This insight has important implications for the theory and prac-
tice of molecular infectious disease epidemiology.
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