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Abstract: Plasma protein binding is an important determinant of the pharmacokinetic properties
of chemical compounds in living organisms. The aim of the present study was to determine the
index of protein binding affinity based on chromatographic experiments. The question is which
chromatographic environment will best mimic the drug–protein binding conditions. Retention data
from normal phase thin-layer liquid chromatography (NP TLC), reversed phase (RP) TLC and HPLC
chromatography experiments with 129 active pharmaceutical ingredients (APIs) were collected. The
stationary phase of the TLC plates was modified with protein and the HPLC column was filled
with immobilized human serum albumin. In both chromatographic methods, the mobile phase was
based on a buffer with a pH of 7.4 to mimic physiological conditions. Chemometric analyses were
performed to compare multiple linear regression models (MLRs) with retention data, using protein
binding values as the dependent variable. In the course of the analysis, APIs were divided into acidic,
basic and neutral groups, and separate models were created for each group. The MLR models had a
coefficient of determination between 0.73 and 0.91, with the highest values from NP TLC data.

Keywords: protein binding; human serum albumin; statistical modeling; chromatographic data;
QSPR; thin layer chromatography; high performance liquid chromatography

1. Introduction

Protein binding (PB) is an important consideration in the design of new drug sub-
stances. Only the free form of the drug is capable of pharmacodynamic action and passing
through biological barriers. However, as proteins are widely distributed throughout the
human body, it seems impossible to prevent them from interacting with medications [1,2].
For this reason, a number of in vitro and in vivo methods have been developed to ana-
lyze PB. Of these, chemometric methods, i.e., those that use measurement data to predict
the chemical, physical or biological properties of compounds, are gaining increasing
importance [3–5], mainly due to their relative simplicity and low cost.

Binding with proteins occurs most often as a result of hydrophobic, van der Waals
and electrostatic interactions. The most important drug binding proteins are human serum
albumin (HSA), alpha-1-acid glycoprotein (AGP), transferrin, transcobalamin, thyroglob-
ulin, haptoglobin, corticosteroid binding protein, lipoproteins and immunoglobulins [6].
HSA is responsible for the majority of PB in human plasma [7,8], and is mainly responsible
for the binding of neutral or acidic hydrophobic compounds [9].

The aim of this study is to find the best chromatographic environment in which
the PB conditions of the body can be recreated. We tested a range of chromatographic
experiments (normal phase thin-layer liquid chromatography (NP TLC), reverse phase (RP)
TLC and HPLC) as indicators of the PB affinity of selected active pharmaceutical ingredients
(APIs), with the assumption that results could be used to predict the PB. The successful
model should demonstrate the protein binding at the physiological pH of human plasma;
therefore, the mobile phase was based on a buffer at pH 7.4. Comparing the effectiveness

Pharmaceuticals 2021, 14, 202. https://doi.org/10.3390/ph14030202 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-7764-4993
https://doi.org/10.3390/ph14030202
https://doi.org/10.3390/ph14030202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14030202
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph14030202?type=check_update&version=4


Pharmaceuticals 2021, 14, 202 2 of 13

of these methods and proposing mathematical modifications of the retention values of the
studied APIs can be a source of convenient quantitative parameters. The chromatographic
data obtained in the subsequent experiments were compared with the PB values from the
literature [10].

In the HPLC experiment, a commercial column was used, the packing of which was
immobilized with HSA (HPLCHSA). The values of the retention factor (k) were collected,
along with a more useful derivative thereof: log k.

Thin-layer chromatography (TLC) was performed in normal and reverse phase (NP
and RP) systems. The stationary phase surface-modifying protein was bovine serum
albumin (BSA). This protein is often used as an effective replacement for human plasma
albumin when studying the affinity of drugs to protein [11,12]. Such a substrate should
also offer good adhesion of the protein modifier, even coverage of the plate surface and be
as immobile as possible under chromatographic conditions.

Chromatographic data were later transformed using physicochemical properties such
as lipophilicity or polar surfae areas. All descriptors used in the multiple linear regression
are listed in Table 1.

Table 1. Chromatographic parameters from normal phase/reverse phase thin-layer liquid chromatography (NP/RP TLC)
and HPLCHSA experiments and their derivatives used in the analysis of analytical models as independent variables.

Chromatographic Parameter or the Derivative Description

NP; RP The Rf, obtained in TLC chromatography on the bovine serum albumin
(BSA)-impregnated plates, in normal and reversed mode, respectively

NP/C; RP/C The Rf from BSA-impregnated NP or RP plates/the Rf from a clean plate
NP/PSA; RP/PSA The Rf from BSA-impregnated NP or RP plate/polar surface area

NP/PB; RP/PB The Rf from BSA-impregnated NP or RP plate/protein binding value
NP/logP; RP/logP The Rf from BSA-impregnated NP or RP plate/partition coefficient

NP/B2; RP/B2 The Rf from BSA-impregnated NP or RP plate/computational parameter
B2, describes the bioavailability in the central nervous system

RMNP; RMRP The RM, obtained in TLC chromatography on the BSA-impregnated
plates, in normal and reversed mode, respectively

RMNP/C; RMRP/C The RM from BSA-impregnated NP or RP plate/the RM from a clean plate
RMNP/PSA; RMRP/PSA The RM from BSA-impregnated NP or RP plate/polar surface area

RMNP/PB; RMRP/PB The RM from BSA-impregnated NP or RP plate/protein binding value
RMNP/logP; RMRP/logP The RM from BSA-impregnated NP or RP plate/partition coefficient

RMNP/B2; RMRP/B2 The RM from BSA-impregnated NP or RP plate/computational
parameter B2, describes the bioavailability in the central nervous system

log k logarithm of retention factor from HPLCHSA
log k/PSA logarithm of retention factor from HPLCHSA/polar surface area
log k/PB logarithm of retention factor from HPLCHSA/protein binding value

log k/logP logarithm of retention factor from HPLCHSA/partition coefficient

log k/B2 logarithm of retention factor from HPLCHSA/computational parameter
B2, describes the bioavailability in the central nervous system

2. Results
2.1. HPLCHSA Column Chromatography Model

In this study, we examined the retention factor (log k) and all derivatives related to the
physicochemical properties of the tested APIs. A correlation matrix of all chromatographic
variables was created and the level of plasma protein binding (PBabn) was calculated. In
this group, the drugs of bases (b), acids (a) and neutral (n) character were tested. The log k
values demonstrated a significant correlation with PBabn: R = 0.56 (number of examined
cases: nabn = 128). The interactions between the remaining log k derivatives were observed
in terms of their mutual correlations. The introduction of all unrelated variables (log k,
log k/B2 and log k/PSA) into the multiple linear regression (MLR) analysis did not increase
the correlation with the PBabn (R = 0.57, nabn = 129). This result is much less satisfactory
than expected.
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For the acidic APIs (a), the analysis showed significant dependencies. The values
of log k and its derivatives were found to be directly proportional to the level of protein
binding. The correlations were high, especially for log k (R = 0.58) and log k/PB (R = 0.63)
(na = 28). It was not possible to construct a single mathematical model built on more
than one independent variable due to the very strong relationships between the variables.
The acidic group was also characterized by a small number of cases, and the significant
correlations of chromatographic variables observed here may depend on the polar nature
of acidic drugs (log k and log k/PSA).

The group of neutral APIs (n) consisted of 63 cases. The correlation matrix showed no
mutual associations between the chromatographic variables (except log k and log k/PB)
but showed a fairly high correlation between log k and PBn (R = 0.58, nn = 63). MLR
analysis, performed using the progressive stepwise method, did not improve the result.
The combined cases (a) and (n) constituted a larger group, with the number of cases nan = 91.
Such structures were most often bound by human serum albumin. This increase in the
number of cases did not reduce the correlation between PBan and the independent variable
log k: R = 0.57 (nan = 91), and even increased it very slightly. The dependence of PBan on
log k/PB: R = 0.57 (nan = 91) also increased. Log and log k/PB remained strongly related,
and the subsequent independent variables did not show mutual correlations. This allowed
for an attempt to establish multiple regression. Two independent variables appeared in the
resulting MLR equation: log k, log k/B2. This model explained 33% of the total variability
of the PBan index (R = 0.58).

Chromatographic data from the HPLCHSA column of base APIs (b) were also analyzed.
This group consisted of 34 cases (nb = 34). The relationship between the chromatographic
data and the level of protein binding was similar to the previous groups, but it seemed
more favorable. All independent variables were directly proportional to the PBb value. As
no significant correlations were found between the independent variables, they appeared
useful. This time, the correlation between log k/PB and PBb was very weak and amounted
to only 0.22. The correlation between PBb and the independent variable log k increased
to R = 0.63 (nb = 34). This single variable explained 40% of the total variance of PBb. The
MLR equation, containing log k and log k/PSA, explained 41% of the variation in PBb
(R = 0.64, nb = 34). Increasing the group of bases (b) with neutral drugs (n) caused another
change in the observed relationships. The number of cases increased to 100, but the level of
correlation with the PBbn index did not change significantly. The chromatographic data and
their derivatives were not related to each other. The MLR model built with all independent
variables was no better than the correlation between PBbn and log k. The equation was
statistically significant, but the result was not satisfactory (R = 0.57, nbn = 100).

2.2. NP and RP Thin-Layer Chromatography Models

The prognostic value of the obtained parameters (variables) were tested in the NP
system. The analysis included 129 acid, base and neutral APIs in total, and six independent
variables. The correlation matrix indicated no visible relationships between the indepen-
dent variables. Hence, an MLR mathematical model was created to test the dependence
of the PB on the established chromatographic parameters of NP-TLC. MLR analysis was
performed using the stepwise method. The model included the following variables: NP,
NP/C, NP/PSA and NP/PB. All variables were statistically significant. The correlation for
the dependent variable was high (R = 0.90, nabn = 129). The model explained 81% of the
total variability of PBabn—Equation (1)—in the group of all tested drugs (a, b, n).

PBabn = 1.23(±0.28) − 0.27(±0.01) NP/PB + 0.58(±0.06) NP + 0.02(±0.008) NP/PSA − 0.61(±0.29) NP/C

R= 0.90; R2 = 0.81 F(4,124) = 136.12; p < 0.0000; s = 0.12549; nabn = 129 (1)

Q2
LOO = 0.70, SDEP= 0.1569, PRESS =3.1970, SPRESS = 0.1568, Q2

LMO = 0.63

A good representation of drug protein binding can be seen in the scatter plot of
predicted PB versus observed PB given below (Figure 1).



Pharmaceuticals 2021, 14, 202 4 of 13

Pharmaceuticals 2021, 14, 202 4 of 14 
 

 

PBabn = 1.23(±0.28) − 0.27(±0.01) NP/PB + 0.58(±0.06) NP + 0.02(±0.008) NP/PSA − 0.61(±0.29) NP/C 

R= 0.90; R2 = 0.81 F(4,124) = 136.12; p < 0.0000; s = 0.12549; nabn = 129 

Q2LOO = 0.70, SDEP= 0.1569, PRESS =3.1970, SPRESS = 0.1568, Q2LMO = 0.63 

(1)

A good representation of drug protein binding can be seen in the scatter plot of pre-
dicted PB versus observed PB given below (Figure 1). 

 
Figure 1. Predicted vs. observed values for the multiple linear regression (MLR) model using NP 
TLC retention data. Dependent variable: PBabn. 

Chromatographic data, in the form of RM values and their derivatives, showed lower 
correlation with PBabn. The most important parameter was RMNP (R = 0.26, nabn = 129), 
which was inversely proportional to protein binding. The attempt to use all independent 
variables for the MLR analysis confirmed a significantly worse fit of PBabn and RMNP − R 
= 0.41, nabn = 129. 

Further analyses were performed using the cases (a), (b) a d (n); the results for each 
group are presented in Table 2.  

Table 2. MLR models for acidic (a), basic (b) and neutral (n) active pharmaceutical ingredients (APIs) using NP TLC 
retention data. 

No of Cases Stepwise Multivariate Linear Regression Model MLR Model Parameters 

a 
na = 29 

PBa = −2.99(±1.23) + 0.48(±0.10) NP + 3.53(±1.26) NP/C 
+ 0.15(±0.04) NP/PSA − 0.21(±0.02) NP/PB 

R = 0.95; R2 = 0.91; F(4,24) = 57.434; p < 0.0000; s = 
0.09925 

Q2LOO = 0.81, SDEP = 0.1308, PRESS = 0.5376, SPRESS 
= 0.1362, Q2LMO = 0.81 

b 
nb = 34 

PBb = 0.76(±0.054) + 0.88(±0.11) NP − 0.54(±0.03) 
NP/PB 

R = 0.96; R2 = 0.91; F(2,31) = 160.74; p <0.0000; s = 
0.09437 

Q2LOO = 0.88, SDEP= 0.1063, PRESS = 0.3636, SPRESS 
= 0.1034, Q2LMO = 0.86 

n 
nn = 66 PBn = 0.80(±0.05) + 0.44(±0.06) NP − 0.29(±0.02) NP/PB 

R= 0.90; R2 = 0.81; F(2,64) = 133.29; p < 0.0000; s = 
0.11958 

Q2LOO = 0.77, SDEP = 0.1298, PRESS = 1.0890, SPRESS 
= 0.1285, Q2LMO = 0.76 

Very good results were obtained for the cases from the group of acids (a), with na = 
29. The correlation matrix showed a good fit of all variables to PBa and no mutual rela-

Figure 1. Predicted vs. observed values for the multiple linear regression (MLR) model using NP
TLC retention data. Dependent variable: PBabn.

Chromatographic data, in the form of RM values and their derivatives, showed lower
correlation with PBabn. The most important parameter was RMNP (R = 0.26, nabn = 129),
which was inversely proportional to protein binding. The attempt to use all indepen-
dent variables for the MLR analysis confirmed a significantly worse fit of PBabn and
RMNP − R = 0.41, nabn = 129.

Further analyses were performed using the cases (a), (b) and (n); the results for each
group are presented in Table 2.

Table 2. MLR models for acidic (a), basic (b) and neutral (n) active pharmaceutical ingredients (APIs) using NP TLC
retention data.

No of Cases Stepwise Multivariate Linear Regression Model MLR Model Parameters

a
na = 29

PBa = −2.99(±1.23) + 0.48(±0.10) NP + 3.53(±1.26)
NP/C + 0.15(±0.04) NP/PSA − 0.21(±0.02)

NP/PB

R = 0.95; R2 = 0.91; F(4,24) = 57.434; p < 0.0000; s = 0.09925
Q2

LOO = 0.81, SDEP = 0.1308, PRESS = 0.5376,
SPRESS = 0.1362, Q2

LMO = 0.81

b
nb = 34

PBb = 0.76(±0.054) + 0.88(±0.11) NP − 0.54(±0.03)
NP/PB

R = 0.96; R2 = 0.91; F(2,31) = 160.74; p <0.0000; s = 0.09437
Q2

LOO = 0.88, SDEP= 0.1063, PRESS = 0.3636,
SPRESS = 0.1034, Q2

LMO = 0.86

n
nn = 66

PBn = 0.80(±0.05) + 0.44(±0.06) NP − 0.29(±0.02)
NP/PB

R= 0.90; R2 = 0.81; F(2,64) = 133.29; p < 0.0000; s = 0.11958
Q2

LOO = 0.77, SDEP = 0.1298, PRESS = 1.0890,
SPRESS = 0.1285, Q2

LMO = 0.76

Very good results were obtained for the cases from the group of acids (a), with na = 29.
The correlation matrix showed a good fit of all variables to PBa and no mutual relationship
was found between the independent variables. The NP correlation value increased to
R = 0.48. The mathematical model based on the MLR stepwise analysis explained 91% of
the total variability in PB in the (a) group. The equation was statistically significant and
despite the small number of cases, the result can be considered very good: R = 0.95, na = 29.

Good results were also recorded for basic drugs (b). MLR analysis explained over 91%
of the total variation in PBb. The equation was statistically significant and despite a small
group of cases, the result can be considered very good: R = 0.96, nb = 34. Scatter plots for
PBa, PBb and PBn are given in Appendix A (Figures A1–A3). Results with RM parameters
for (a), (b) and (n) were significantly lower and they are not presented here.

MLR analysis was then performed in the combined groups (ab), (an) and (bn) (Table 3).
Alkaline and neutral (bn) compounds account for the largest proportion of all cases, i.e.,
100 cases. A mathematical model (Figure 2) was developed for this large group of drugs,
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which was found to account for 79% of protein binding (R = 0.89, nbn = 100). Thus, the
obtained result had a very similar prognostic value to the study of the entire group of cases
together. Regarding the calculated RM parameters for this group, the highest correlation
with the PBbn index was obtained for RMNP/C (R = 0.24, nbn = 100). After introducing the
variables RMNP/C, RMNP/PSA and RMNP/logP, the mathematical model explained only
11% of the variability of PB (R = 0.33, nbn = 100).

Table 3. MLR models for combined groups of APIs: (bn), (an) and (ab) using NP TLC retention data.

No of Cases Stepwise Multivariate Linear Regression Model MLR Model Parameters

bn
nbn = 100

PBbn = 0.74(±0.037) + 0.56(±0.06)
NP − 0.34(±0.02) NP/PB

R= 0.88; R2 = 0.78, F(2,97) = 174.29; p < 0.0000; s = 0.1339
Q2

LOO = 0.75, SDEP = 0.1420, PRESS = 1.9875,
SPRESS = 0.1410, Q2

LMO = 0.75

an
nan = 95

PBan = 0.74(±0.05) + 0.49(±0.05) NP − 0.26(±0.01)
NP/PB + 0.01(±0.00) NP/B2

R= 0.89; R2 = 0.76, F(3,91) = 111.21; p <0.0000; s = 0.13042
Q2

LOO = 0.70, SDEP = 0.1504, PRESS =2.2123,
SPRESS = 0.1526, Q2

LMO = 0.69

ab
nab = 63

PBab = 1.39(±0.41) + 0.80(±0.09) NP − 0.30(±0.02)
NP/PB + 0.01(±0.00) NP/B2 + 0.03(±0.01)

NP/PSA − 0.89(±0.43) NP/C

R= 0.89; R2 = 0.80, F(5,57) = 44.235; p < 0.0000; s = 0.14432
Q2

LOO = 0.63, SDEP = 0.1883, PRESS = 2.6723,
SPRESS = 0.2060, Q2

LMO = 0.63
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The chemicals tested in the two experiments described above were subjected to RP
TLC analysis. All cases examined in this experiment comprised a group of 129 compounds.
The correlation matrix revealed no relationship between the chromatographic variables
of Rf. The independent variables in the model were not related to each other. The model
(Equation (2); Figure 3) explained 76% of the variability of the PB index. However, the
model yielded a worse result than in the case of the BSA-modified NP stationary phase
chromatographic experiment (see Equation (1)). Furthermore, protein binding studies for
the entire group of cases with RMRP variables were not conclusive.

PBabn = 0.76(±0.05) + 0.41(±0.07) RP − 0.22(±0.01) RP/PB + 0.004(±0.002) RP/B2

R= 0.87; R2 = 0.76; F(3,125) = 132.78; p < 0.0000; s = 0.14191; nabn = 129 (2)

Q2
LOO = 0.72, SDEP = 0.1514, PRESS = 2.9392, SPRESS = 0.1509, Q2

LMO = 0.72
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As before, the statistical analysis was repeated for all three types of cases (a, b, n)
and in mixed groups (an, bn, ab). The best MLR results—achieved for (a) and (ab)—are
gathered in Table 4.

Table 4. MLR models for acidic drugs (a) and combined group of APIs (ab) using RP TLC retention data.

No of Cases Stepwise Multivariate Linear Regression Model MLR Model Parameters

a
na = 29

PBa = 0.68(±0.09) + 0.43(±0.12) RP −
0.23(±0.02) RP/PB + 0.01(±0.00)

RP/B2 + 0.10(±0.04) RP/PSA

R= 0.93; R2 = 0.86; F(4,24) = 36.4743; p < 0.0000; s = 0.1213
Q2

LOO = 0.74, SDEP = 0.1541, PRESS = 0.8425, SPRESS = 0.1704,
Q2

LMO = 0.74

ab
nab = 63

PBab = 0.71(±0.07) + 0.46(±0.10) RP −
0.21(±0.02) RP/PB

R= 0.85; R2 = 0.73; F(2,60) = 80.471; p < 0.00000; s = 0.16193
Q2

LOO = 0.67, SDEP = 0.1772, PRESS = 1.9589, SPRESS = 0.1763,
Q2

LMO = 0.62

3. Discussion

The log k variable appears to play a key role in predicting drug-protein binding based
on HPLCHSA chromatographic data. This parameter is strongly and directly proportionally
correlated with PB. This correlation was observed in the acidic, neutral and basic groups,
and in all combinations between them. However, the degree of the correlation changes
very slightly for groups of different sizes, with R values within 0.56–0.63 for the number
of cases between 27 and 128. The highest value (0.63) was observed for basic drugs
(nb = 34). Analysis of the HPLCHSA data also showed that the creation of an independent
chromatographic variable containing a PB value (log k/PB) did not directly increase the
correlation with the dependent variable PB in any group of cases.

For all groups of cases examined by NP TLC, the chromatographic parameters describe
the ability of drugs to bind to proteins, both high (for the observation of Rf data) and low (for
RM). This ability was similar for all groups, regardless of significant differences in structure,
acid-base character and the group size, i.e., 129, 100, 95, 63, 34 or 29. The correlation
coefficient ranged from 0.89 to 0.96. Mathematical models with the participation of Rf
variables explained 79–91% of the variability of PB in groups; these most often contained
NP, NP/B2 and NP/PB as independent variables. BSA-modified NP TLC analysis appears
to provide data (Rf and derivatives) on protein binding for any drug class. RM variables,
unfortunately, can be considered of little use in predicting the level of PB. Interestingly,
the scatter plot of the observed and predicted PB values highlighted three groups of cases:
one with a high level of plasma protein binding, i.e., from 85% to 100%; a medium level of
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binding, i.e., from 25% to 85%; and a low level, i.e., from 0% to 25%. Reducing the affinity
to proteins is also associated with the distance between their predicted values and the
trend line.

In the RP TLC analysis, the Rf-related variables were more efficient. These were
found to highly correlated with the dependent variable PBb−R = 0.86 (nb = 34), but the
equation was not statistically significant. There were three independent variables in the
model: RP/C, RP/PSA and RP/PB. The intercept of this equation was also not statistically
significant, which proves that such a model cannot be applied. The group of neutral
compounds was twice the size (nn = 66); therefore, it was possible to construct an MLR
model for the PBn using three RP variables RP/PB, RP/C and RP/logP. The obtained result
was good: R = 0.92, coefficient of determination R2 = 0.84. Unfortunately, the intercept
in the resulting equation had the wrong parameters, it was not statistically significant
and the standard error was 100 times its value. Therefore it cannot be used to predict the
dependent variable.

After the RMRP dataset and their derivatives were introduced into the analysis of PBa,
PBb and PBn, numerous interrelationships of the independent variables appeared. This
significantly reduced the possibilities of the analysis.

When the acidic and neutral drug groups were combined (PBan), the intercept in the
resulting equation had the wrong parameters, was not statistically significant and the
standard error was equal to its value. Such an equation cannot be used to predict the
dependent variable. The use of RMRP data yielded a model with a lower value. The model
included only the RMRP/PSA and RMRP2/PB variables. The intercept was not statistically
significant, and the equation explained 45% of the total variability of the PBan.

The scatter plots (from the Rf variables) in each of the independent case groups—
a, b, and n—in the TLC experiments show a very similar, non-linear shape of the case
distribution. The dispersion characteristic is also a representation of the dispersion of all
considered cases together (see Figure 1). This distribution causes poorer predictions for
drugs with moderate PB values, between 0.4 and 0.7. This suggests that the dependent
variable can be mathematically transformed to better fit the model.

An accurate analytical model of the drug in a living organism allows APIs of different
structure and properties to be tested. The result should also be resistant to the size of the
studied group of cases. A comparison of subsequent analytical models is presented below
(Table 5). The research included the entire group of 129 originally tested APIs, (abn), (a), (b),
(n), plus 38 external cases (structures and data available in the Supplementary Materials,
Tables S5 and S9). APIs from the external group were also divided into acidic (na = 6), basic
(nb = 16) and neutral groups (nn = 16) and were subjected to chromatographic experiments
under the same conditions.

Table 5. Correlation of chromatographic parameters (log k and Rf from NP and RP TLC) with protein
binding values. Relations were made for originally tested APIs (129 drugs) and for enlarged groups
with external cases (+38 drugs).

Group n log k *** NP *** RP ***

a Tested * 29 0.63 0.48 0.09
+external ** 35 0.49 0.56 0.16

n tested 65 0.60 0.09 −0.32
+external 80 0.67 0.07 −0.24

b
tested 34 0.67 0.22 −0.37

+external 50 0.63 0.03 −0.45

bn
tested 99 0.56 0.17 −0.28

+external 131 0.63 0.09 −0.28
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Table 5. Cont.

Group n log k *** NP *** RP ***

an tested 94 0.59 0.21 −0.15
+external 115 0.58 0.22 −0.09

ab
tested 63 0.61 0.37 −0.05

+external 85 0.54 0.31 −0.01

abn
tested 129 0.58 0.24 −0.16

+external 165 0.57 0.20 −0.16
*—originally tested APIs. **—originally tested APIs + external drugs. ***—correlation with PB.

Fluctuations in the size of the studied groups of cases did not affect the correlations
with the dependent variable. All chromatographic experiments with plasma proteins as
part of the stationary phase yielded analytical models that were resistant to changes in
group size. The best correlation results were obtained with the HPLCHSA experiment.
Such a result is obvious because the data of the dependent variable (PB) obtained from
the literature concern the binding of drugs to human serum albumin, which is part of the
construction of the stationary phase of the HSA column. The remaining experiments were
performed with bovine serum albumin. The problem with HPLC data are the poor results
of the MLR models, which cannot be used in predicting PB.

4. Materials and Methods

The chromatographic experiments and the methods of data collection are described in
detail in Appendix B.

Statistical Modeling and Stepwise Multiple Linear Regression

The goal of multiple linear regression is to quantify the relationship between multiple
independent (explanatory) variables and the dependent variable. The protein binding (PB)
values were used as dependent variables [10]. Physicochemical properties PSA and log
P were calculated in HyperChem (HyperChem for Windows Release 7.02, HyperCube
Inc, 2002) and later used to modify the retention data. Computational descriptor B2,
which describes the bioavailability in the central nervous system, was calculated from the
equation log bb = 0.547 − 0.016 PSA [13]. Acid-base properties were collected from the
literature [14].

MLR was performed in stepwise mode, in STATISTICA 13.1 (TIBCO Software Inc.)
software. Validation of regression models was performed using general internal cross-
validation procedures: “leave-one-out” (LOO) and “leave-many-out” (LMO). In the LOO
validation, one case is removed from the dataset and used to verify the model built
with the remaining elements; the procedure is then repeated with other elements. In
the LMO approach, the dataset is divided into two subsets (25% and 75%), used for
model construction and its evaluation, respectively. The prediction power of the models
was estimated using the cross-validated squared correlation coefficient (Q2

LOO), predicted
residual sum of squares (PRESS), standard deviation based on PRESS (SPRESS) and standard
deviation of the error of prediction (SDEP). The suggested criteria for predicting the
accuracy of MLR models [15] are R2 > 0.6 and Q2

LO(M)O > 0.5; R2 ≥ Q2
LO(M)O and

Q2
LOO ≈ Q2

LMO.

5. Conclusions

The great influence of drug–protein binding on pharmacotherapy has resulted in
the development of many methods for its evaluation and determination. Such analytical
models for the investigation of drug–protein binding in the body can be based on simple
laboratory analyses such as TLC or HPLC.

Our findings demonstrate the value of chromatographic data in plasma protein bind-
ing studies in general, and for acidic (a), neutral (n) and basic (b) compounds. The
correlations observed for the PBabn models, i.e., for all tested compounds together, did
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not differ significantly from those observed for narrowed groups (a), (b) and (n), despite a
much larger number of cases. Additionally, the analytical models were found to be resistant
to random effects, which can be noticed while increasing the number of cases in all groups
(a, b, n, abn). Interestingly, the drug lipophilicity value (log P) was very small. Log P is
considered to be one of the most important determinants of protein binding; however, it
was found to be important only for basic compounds (b), which can demonstrate unspecific
BSA binding. Of greater importance is the PSA value, related to the ionization of the
compounds, and the B2 value, describing penetration into the central nervous system.

Chromatographic data can be important independent variables in mathematical mod-
els, especially in combination with physicochemical drug descriptors relevant to PB. How-
ever, the main aim of this work was to determine the predicted levels of drug protein
binding by comparing different affinity chromatography environments. The best analytical
models were obtained using NP TLC with BSA-modified plates, with Rf values and their
derivatives. The results were significantly better than those obtained from HPLC using
a commercial column with immobilized HSA. In addition, NP TLC, with its relative sim-
plicity and low cost of analysis, can be a useful method for protein binding analysis. In
addition, stationary phase modification may provide new options for TLC experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/3/202/s1.
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Appendix B

Appendix B.1. High-Performance Liquid Chromatography with HSA Column

The HPLC column was purchased from Daicel (CHIRALPAK®HSA, 5 µm; 4 × 10 mm).
HPLC analysis was performed on a Perkin Elmer Series 200 apparatus with a UV-VIS spec-
trometer for detection with an analytical wavelength of 210 nm. The mobile phase consisted
of an acetate buffer with pH 7.4:acetonitrile:methanol, 85:10:5 (v/v/v). All solvents used—
water, methanol and acetonitrile—were purchased from J.T. Baker (HPLC gradient class).
The acetate buffer (10 mM) was prepared by dissolving 0.77 g of ammonium acetate in 1 L
of distilled water. The pH was then adjusted with a concentrated ammonia solution.

API solutions in methanol (1 mg/mL, volume of injection: 10 µL) were injected into
the HSA column using an automatic autosampler. The flow rate of the mobile phase was
0.9 mL/min. Since the column could not be thermostated, the room temperature was kept
constant at 25 degrees Celsius by air conditioning. Chromatographic data (retention factor k
and derivative: log k) were obtained for 129 APIs using the TotalChrom software connected
to HPLC. Factor k, which is the ratio between the amount of analyte in the stationary
phase to the amount in the mobile phase, was obtained from the equation k = (tR − tM)/tM
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where tR is retention time and tM is void time. The experiment was then repeated, and the
collected retention factors (k) were means values from both series.
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Appendix B.2. Thin-Layer Chromatography in NP and RP Systems

TLC was performed in normal and reversed phase (NP and RP) systems. Aluminum
plates with silica gel (Merck, TLC Silica gel 60 F254) were used in the NP system and
aluminum plates with silanized silica gel—RP (Merck, TLC Silica gel 60 RP-2 F254, silanized)
were used in the RP system. The stationary phase surface modifying protein was bovine
serum albumin. A 2-mg/mL solution of BSA (Sigma Aldrich, Bovine serum albumin
lyophilised powder) in distilled water was applied on the surface using Desaga Sprayer
SG 1 and air-dried.

Drug solutions in methanol (1 mg/mL) were applied on the plates with the Desaga
HPTLC-Applicator AS 30, then the plates were developed in the mobile phase composed of
acetonitrile, acetate buffer pH 7.4 and methanol, 60:20:20 (v/v/v). All solvents used—water,
methanol and acetonitrile—were purchased from J.T. Baker (HPLC Gradient Grade). The
acetate buffer (20mM) was prepared by dissolving 1.54 g of ammonium acetate in 1 L of
distilled water. The pH was then adjusted with concentrated ammonia solution.

The mobility of the compounds was initially determined on NP and RP plates without
the participation of the protein modifier. These were labeled as controls (C). The obtained
retardation factor (Rf) values could be used to determine the composition of the mobile
phase, as well as the specific effect of the protein modifier on the mobility of the APIs.
The MLR models also used the Rf/C parameter—the ratio of the Rf value on the plates
modified with albumin to the Rf value on the plates without albumin. This parameter
better reflects the effect of the modifier on the chromatography of each API.

Subsequently, all protein-impregnated and control plates were scanned with a De-
saga Densitometer CD 60 and the retardation factor values (Rf) were collected. The an-
alytical wavelength was selected by means of a multi-wavelength scan (values varied
between 200 and 300 nm). Another TLC parameter used in analyses was RM, related to
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Rf:RM = log(1/Rf − 1).Chromatographic data were obtained for 129 drugs in NP and RP
TLC experiments (parameters Rf and RM).
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Appendix B.3. Data Transformation

The log k, Rf and RM values were then transformed by dividing them by the following
molecular descriptors—B2, the ability of the drug to penetrate the blood-brain barrier [13];
PSA, the drug’s polar surface area; logP, the drug’s lipophilicity; PB, the percentage of the
drug fraction associated with the protein. The datasets and API structures are available in
the Supplementary Materials (Tables S1–S4 and S6–S8). Chromatographic parameters and
their derivatives were used in analyses as independent variables (Table 1).
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