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Abstract 

Background:  Unstructured text in medical records, such as Electronic Health Records, 
contain an enormous amount of valuable information for research; however, it is dif-
ficult to extract and structure important information because of frequent typographi-
cal errors. Therefore, improving the quality of data with errors for text analysis is an 
essential task. To date, few prior studies have been conducted addressing this. Here, we 
propose a new methodology for extracting important information from unstructured 
medical texts by overcoming the typographical problem in surgical pathology records 
related to lung cancer.

Methods:  We propose a typo correction model that considers context, based on the 
Masked Language Model, to solve the problem of typographical errors in real-world 
medical data. In addition, a word dictionary was used for the typo correction model 
based on PubMed abstracts. After refining the data through typo correction, fine 
tuning was performed on pre-trained BERT model. Next, deep learning-based Named 
Entity Recognition (NER) was performed. By solving the quality problem of medical 
data, we sought to improve the accuracy of information extraction in unstructured text 
data.

Results:  We compared the performance of the proposed typo correction model 
based on contextual information with an existing SymSpell model. We confirmed 
that our proposed model outperformed the existing model in a typographical cor-
rection task. The F1-score of the model improved by approximately 5% and 9% when 
compared with the model without contextual information in the NCBI-disease and 
surgical pathology record datasets, respectively. In addition, the F1-score of NER after 
typo correction increased by 2% in the NCBI-disease dataset. There was a significant 
performance difference of approximately 25% between the before and after typo cor-
rection in the Surgical pathology record dataset. This confirmed that typos influenced 
the information extraction of the unstructured text.

Conclusion:  We verified that typographical errors in unstructured text negatively 
affect the performance of natural language processing tasks. The proposed method of 
a typo correction model outperformed the existing SymSpell model. This study shows 
that the proposed model is robust and can be applied in real-world environments by 
focusing on the typos that cause difficulties in analyzing unstructured medical text.
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Background
Data digitization driven by the technological development of data collection and analysis 
methods has led to major changes in many fields and many text mining studies that extract 
and utilize meaningful information these data have been conducted [1–8]. In particular, 
Electronic Health Records (EHRs), which collect and manage patient health information in 
the form of electronic documents, are integrated with the hospital system and make it pos-
sible to utilize data in different medical fields [9]. EHRs contain a large amount of data and 
can be used as real-world evidence through appropriate analysis methods. However, the 
use of large-scale data of uncertain quality can lead to inaccurate or unreliable results [10].

Hersh et al. [11] and Zhou et al. [12] have shown that errors occur more frequently in text 
written quickly, such as in EHR (constitute approximately 5–17% of the total data). In the 
medical field, information accuracy is an important issue that is directly related to patient 
safety and efficient communication. For example, an error in a breast imaging report 
resulted in the exchange of incorrect information and affected a patient’s treatment [13]. 
Additionally, drugs with similar names can cause confusion and lead to erroneous drug 
prescriptions [14].

Typos appearing in these clinical data affect the performance of natural language pro-
cessing (NLP) tasks in the medical field, such as part-of-speech (POS) tagging, information 
extraction, and information retrieval. Even a small number of typos have a negative effect 
on information retrieval tasks [15]. Especially in the task of extracting meaningful infor-
mation from descriptively written unstructured text, such as Named Entity Recognition 
(NER), typo affects the extraction of important information from clinical data; therefore, 
handling typos is a necessary task before extracting information through NER [16]. How-
ever, few studies have been conducted to improve the quality of unstructured text data in 
the medical field [17].

Therefore, this study focused on the problems that hinder the accuracy of information 
and performance of text-based analysis in the medical field. Additionally, we identified how 
improvements in the quality of these data affect the performance of a natural language 
processing task for unstructured text. In particular, we evaluated our model and verified 
whether it was applicable to real data by extracting key diagnostic information from data 
in a real medical environment. Through this study, we sought to prevent medical accidents 
related to patient safety directly and increase the use of unstructured data by solving the 
problem of low-quality data from frequently represented typing errors.

The rest of the paper is organized as follows. We describe the proposed method in the 
Methods section. We evaluate the performance of typo correction with context and NER 
through data quality improvement in the "Experimental results" section. Finally, we con-
clude the research and suggest future work in the "Conclusions" section.

Related work
Typo correction in the medical field

The types of typos occurring in text are mainly divided into two types: ‘non-word typo 
errors’ and ‘context-sensitive typo errors.’ Non-word typo errors can be corrected in a 
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simpler way than correcting context-sensitive typo errors. This study focuses on con-
text-sensitive typo errors.

Correcting context-sensitive typo errors is a complex task because they require con-
sideration of the relationship between the word to be corrected and the surrounding 
words. Context-sensitive typo errors can be classified into four types: homophone, 
typographical, grammatical, and spacing [18]. An example of each error is shown in 
Table  1. Studies using frequency-based, statistical-based, and deep learning-based 
methods have been conducted to solve context-sensitive typo errors. The frequency-
based method works by assessing which word is most likely to appear in a sentence 
based on how often a word appears within that sentence. By contrast, the statistical-
based method can correct typos based on context. Furthermore, deep learning-based 
typo correction studies can correct errors by considering the meaning of the context 
in a high dimensional embedding space.

Studies on typo correction in medical fields have been conducted for document 
accuracy. Senger et al. [19] have conducted a study to correct typos that occur when 
searching for drugs through electronic drug information systems in which infor-
mation is digitized. By applying GNU Aspell, based on the Metaphone and Double 
Metaphone algorithms, candidate words were created and typos were corrected by 
ordering them based on the edit distance. The system that did not apply typo correc-
tion missed approximately 17.5% of the search results. By contrast, the system opti-
mized with search auto-correction that applied a typo correction algorithm reduced 
noise when searching for drugs, thereby reducing the search time delay.

The National Library of Medicine (NLM) has a system to receive health question-
naires from users. Kilicoglu et al. [20] have applied a typo correction algorithm based 
on a phonetic algorithm and an edit distance algorithm to consumer health question-
naires collected from NLM. A group of candidate words for typo correction was gen-
erated based on a dictionary search, and word similarity, pronunciation similarity, 
and similarities calculating the number of matching words at the beginning and end 
of a word were used.

Workman et al. [21] have applied a typo correction algorithm to surgical pathology 
reports and emergency department progress and visit notes. To remove unnecessary 
words in the document, SPECIALIST Lexicon was used. This is a large-scale biomedi-
cal vocabulary corpus. Additionally, Word2Vec, a word embedding model, was used 
to embed the sentences. Typos were corrected by comparing the group of candidate 
words and typos by using the Levenshtein edit distance.

Table 1  Types of errors and examples in context [18]

Error type Cause of error Example

Homophone error Words that sound the same but are spelled differently Peace/piece

Typographical error Striking an incorrect key on a keyboard From/form

Grammatical error The user did not know exactly what the difference between 
grammars

Among/between

Spacing error Wrong blank between words Maybe/may be
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Language models and named entity recognition

Language models can be divided into statistical-based methods and methods using arti-
ficial neural networks. The statistical-based language models find the word with the 
highest probability of appearing at a specific position based on previous words in the 
sentence through conditional probability. This probability is obtained from the corpus of 
a specific domain; therefore, it has a dependency on a specific domain. Moreover, there 
is the problem of long-term dependency as the length of the sentence increases. In addi-
tion, there is the problem of scarcity because a word that does not exist in the corpus 
has a probability of 0 even though it may be an appropriate word in that given sentence. 
In this case, the performance of the language model differs depending on the size of the 
corpus and how many different words the corpus contains.

Recently, transformer-based language models that use artificial neural networks [22], 
such as Bi-directional Encoder Representations from Transformers (BERT) and Gen-
erative Pre-trained Transformer (GPT), are showing the best performance. Since many 
texts are pre-trained in these models, they are domain-independent and can compensate 
for the scarcity problem that appears in existing language models. In addition, they are 
contextual language models that learn contextual information within a sentence.

The BERT process is divided into two tasks: pre-training and fine-tuning [23]. In the 
pre-training process, language modeling is conducted, and in the fine-tuning process, 
additional natural language is learned for the pre-trained model. Through this, BERT 
showed significantly better performance than the existing 11 natural language process-
ing tasks.

Unlike existing word embedding models, such as Word2Vec [24], fastText [25], and 
GloVe [26], BERT embeds words by considering contextual information. In existing 
embedding models, each word has a fixed vector value. In BERT, information about 
homonyms (words that have the same spelling or pronunciation but have different 
meanings) cannot be considered depending on the context. BERT expresses a sentence 
as the sum of three embeddings: token, segment, and position. This reflects the con-
textual characteristics of a word. Token embedding uses the Word Piece embedding 
method to treat words that appear frequently in the document as a single word unit and 
divides words that rarely appear into sub-words. In an embedding model such as Word-
2Vec with a fixed vector, an out-of-vocabulary (OOV) problem occurs because a specific 
word does not exist in the word set. In the case of BERT, the OOV problem can be effec-
tively dealt with by dividing rarely used words in the document into sub-words. Seg-
ment embedding divides sentences to predict the next sentence and position embedding 
embeds positional information from 1 to the maximum sequence length as a learned 
vector.

The Masked Language Model (MLM) is similar to the learning method of Word2Vec’s 
CBOW model by covering some words in a sentence and predicting the hidden words 
based on context information. P(si|s1, s2, . . . , si−1, [MASK ], si+1, . . . st) is obtained when 
the i-th of a sentence S consisting of t words are masked. In general, previous language 
models learn unidirectional context and predict entire words, whereas MLM learns con-
text information bidirectionally (from left to right and right to left) and predicts only the 
masked part of words. The [MASK] token for masking words is used during pre-training 
to learn contextual information in sentences while matching the correct answer to the 
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masked part. These [MASK] tokens are not used during fine tuning, which creates a gap 
between the pre-training and fine-tuning processes. To reduce this gap, when randomly 
masking 15% of the total words, 80% of them are covered with [MASK] tokens, 10% are 
randomly replaced with other words, and 10% are kept as they are.

NER is an NLP task that recognizes the named entity of a word or phrase with a 
specific meaning in the corpus. There are many types of entity according to different 
domains. For example, country, organization, and person are defined as entity names, 
which are extracted from within the corpus. NER is used for the preprocessing of major 
natural language processing tasks, such as chatbots and information retrieval. Unlike the 
general classification problem that outputs one value, it is a sequence labeling problem 
that receives an input sequence and outputs a sequence of the same length as the input 
sequence. The Begin, Inside, and Outside (BIO) format is used to recognize the object 
name. An example is shown in Fig. 1.

NER has been studied for text-based information extraction in various domains. In 
the medical fields, many studies have been conducted to recognize individual names, 
such as diseases, drugs, and DNA, and to extract information. An artificial neural net-
work-based LSTM-CRF model has shown good performance, and recently, a pre-trained 
BERT-based model has shown the highest performance in NER.

Research with clinical NER has been applied from machine learning approaches to 
deep learning models. An active learning (AL) algorithm to minimize the annotation 
process has been proposed, which showed a performance of the F1-measure of 0.8 [27]. 
Recent NER studies based on clinical data have focused on neural word embeddings in 
the unlabeled clinical NER corpus [28], studies applying deep learning models [29], and 
transformer-based models [30] to extract clinical concepts and evaluate the performance 
of the clinical NER system.

Methods
In this section, we describe the dataset, error generation, typo correction, MLM-
based candidate word selection, and deep learning-based NER extraction. We 
examined whether low-quality data with many typos affected the performance of 
information extraction. To this end, two processes were performed to extract key 
information from low-quality data. First, we corrected typos in two datasets: NCBI-
disease data and surgical pathology records (SPRs). Second, we identified NER after 

Fig. 1  Example of named entity recognition. An example of sequence labeling to find most probable 
labeling of a sequence using BIO tagging for the entity extraction
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these data were refined through typo correction. Figure 2 illustrates the structure of 
the overall model. Detailed descriptions of each method are provided in the following 
subsections.

Dataset and preprocessing

Dataset

To examine the effect of improving the quality of real-world medical data on the per-
formance of the NLP task such as typo correction and NER, we used two datasets, 
NCBI-disease [31] and SPRs.

The NCBI-disease dataset [31] is used as a benchmarking dataset for NER in the 
medical domain. These data consist of 793 PubMed abstracts manually annotated 
with disease mentions and concepts from Medical Subject Headings (MeSH) or 
Online Mendelian Inheritance in Man (OMIM).

The SPR dataset used to classify lung cancer staging. It was newly provided by the 
Asan Medical Center [32] with permission to conduct this study. Annotation was 
conducted for 3 months (from March 2020 to May 2020) by two medical experts from 
Asan Medical Center. After annotating a total of 47,180 data individually, 40,443 data 
with matching results were used as experimental data. The intra-annotator agreement 
was 85.72%. In total, 40,443 diagnosis results were composed of five columns, includ-
ing the date and time of the prescription, test code, and text of the test result. We 
extracted the type of test, test institution, test location, result, and size of cancer from 
the text of the test result. Types of tests included Proliferating Cell Nuclear Antigen 
(PCNA), needle biopsy, bronchial washing, and pleural fluid. While the name of the 
test written in the text of the test result may be the same, there were some author-
related differences in descriptions and terms. Figure 3 shows an example of the text of 
the test results, which is the input data of the model.

Fig. 2  Research overflow. Two datasets, such as NCBI-disease and SPR, were used to extract important 
information from the unstructured data of a medical dataset. Two processes, such as spelling error correction 
and NER, were performed and verified to identify whether low-quality data with many typos affected the 
performance of information extraction
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Random error generation

There is no benchmark dataset for evaluating typo correction-related studies in the 
medical field; therefore, most studies have used a method of randomly generating and 
evaluating typos for evaluation. For example, Lai et al. [17] have analyzed the types of 
typos in medical text and classified them into insertions, deletions, substitutions, and 
transpositions, and conducted experiments based on these four types. In addition, 
Workman et al. [21] have categorized spelling error types of surgical pathology notes 
to insertion, omission, transposition, wrong letter, or mixed/multiple error types. 
Among them, the multiple/mixed error types appeared in a very small proportion. 
Lee et  al. [18] have defined seven error types, such as omission of a letter, addition 
of a letter, single letter instead of double letter, double letter instead of single letter, 
substitution of one letter, interchange of two adjacent letters, and two or more of the 
same type or of different types. Based on these previous studies [16, 18, 21], we first 
defined four types of common typo that occurred frequently (Table 2).

We split each word into two strings to create candidate words. For example, the 
word ‘random’ is made up of seven string combinations: [(‘’, ‘random’), (‘r’, ‘andom’), 
(‘ra’, ‘ndom’), (‘ran’, ‘dom’), (‘rand’, ‘om’), (‘rando’, ‘m’), (‘random’, ‘’)]. If the length of 
the string was less than one, such as (‘’, ‘random’), (‘random’, ‘’), they were excluded 
from the candidate group. One of the five remaining candidate groups was randomly 
selected to generate one of four error types. In the case of insert and replace, one of 
the alphabets A-Z, a-z was randomly selected and inserted or replaced between two 
strings. In the delete case, the first character of the right string was removed. The 
order of the first and second character of the right string was changed in the trans-
pose case. Table 2 shows the typos generated according to the error generation proce-
dure of each error type when the string (‘rand’, ‘om’) was selected.

Fig. 3  Example of the contents of the test result in the SPR dataset. The first part is the name of the organ, 
location, operation name, histology diagnosis, tumor size, and invasion of lymph node in order. We excluded 
invasion of lymph node from the range of information extraction for our work
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Table 3 shows the sizes of training and test data in two datasets each. In SPRs, one line 
of the text content of the test result in excel file was defined as one sentence and used as 
the input of the model.

For NER experiments, the annotation of the SPR dataset was performed in two steps. 
First, the rules were composed and labeled by the researchers. Two experts in the lung 
cancer field from Asan Medical Hospital [32], who provided the dataset, cross-checked 
and performed secondary verification. Finally, cases where both experts were tagged 
with the same entity were set as named entities.

Candidate word generation

In this study, the candidate group of words to be corrected was selected using the Edit 
distance algorithm. The typo was corrected by scoring each word candidate group in 
consideration of the frequency of words in the dictionary and the context within the sen-
tence. The SymSpell algorithm was used to generate a candidate group of words to be 
modified [33]. In general, four types of text correction processes were performed to cre-
ate a word candidate group based on the Edit distance: delete, transpose, replace, and 
insert. However, the SymSpell algorithm reduced computation amount by using only 
the delete approach. Therefore, we trained the model using PubMed abstracts (approxi-
mately 25.4GB of literature updated in December 2019) to optimize the SymSpell algo-
rithm for the medical domain. In addition, word dictionary was created that summarized 
words and their frequency using the PubMed abstracts. If the frequency of any word was 
< 20 in the entire collection, then it was excluded from the word dictionary. As a result, 
2,370,526 words were included in the dictionary. A group of word candidates was gener-
ated using the SymSpell algorithm based on this generated word dictionary.

Table 2  Type of Errors and Examples

Four representative error types suggested in previous studies on typo correction, such as insert, delete, replace, and 
transpose. Example typos of the word ‘random’. The ‘example’ column shows typos generated of each error type when the 
string (‘rand’, ‘om’) is randomly selected.

Error type Example

Insert Randcom

Delete randm

Replace randcm

Transpose randmo

Table 3  Data specification

Two datasets were divided into training and test data to evaluate the performance of typo correction and NER. The total 
number of sentences and tokens in the NCBI-disease dataset were 7287 and 184,167, respectively. The total number of 
sentences and tokens in SPR dataset were 40,443 and 2,099,793, respectively. The proportions of training data in each 
dataset were 87% and 98%, respectively.

Datasets Train/Test data Sentences Tokens

NCBI-disease Train 6347 159,670

Test 940 24,497

SPRs Train 39,443 2,050,125

Test 1000 49,668
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Spelling error correction

Masked language model‑based candidate selection

We used a score that combines a frequency-based and context-based scores to find an 
appropriate word to correct any typo among the generated word candidates. The for-
mula is as follows:

Using the MLM method, scores were obtained in consideration of the context within 
the sentence. In particular, a BERT-based pre-trained MLM model was used. By adding 
a dense layer to the pre-trained model, we calculated the probability of a specific word 
in the masked part of the input sentence and used it as a score for the context. Table 4 
shows the structure of the model added to the pre-trained BERT model.

Figure 4 shows an example of the process of finding an appropriate cored word from 
the generated candidate word group from our SPR dataset.

Deep learning‑based named entity recognition extraction

We performed fine-tuning by adding a dense layer to the pre-trained BERT to extract 
key information from medical data. The hyper-parameters used for fine tuning are 
shown in Table 5. The output value yi of the model equals the probability that the input 
value xi belongs to n tags of each dataset. It has a vector of (1, n). The softmax function 

(FinalScore) = � FrequencyScore + (1− �)(ContextSensitiveScore)

Table 4  Structure of the candidate word selection model

We added a dense layer of (768, 768) to the pre-trained BERT model to consider context of text using MLM. Input layer is 
(None, None, 768), Output layer is (None, None, 30,552), and Layer Normalization is (768,) to modify inputs for the next layer.

Layer Output shape

Input (None, None, 768)

Dense (768, 768)

Layer normalization (768,)

Output (None, None, 30,522)

Fig. 4  Example of the candidate word selection process. The word ‘righ’ in  (a) should be corrected to ‘right.’ 
(b) shows the generation of candidate word to correct typos through the optimized SymSpell algorithm. In 
(c) and (d), the part where the typo appears is masked and replaced with a candidate word. The probability of 
the word entering a specific position in the sentence is calculated through the MLM model
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was used to learn the probability that the model belongs to j tags. When ak is the prob-
ability value of the k th tag among n tags, the probability that the k th tag is correct is yk . 
The formula of softmax function is as follows:

As a result of the model, each word was tagged as one of [B-Disease, I-Disease, O] for 
the NCBI-disease dataset, and [B-ORGAN, I-ORGAN, B-LOCATION, I-LOCATION, 
B-OPNAME, I-OPNAME, B-HISTOLOGIC DIAGNOSIS, I-HISTOLOGIC DIAGNO-
SIS, B-TUMOR_SIZE] for the SPR dataset. Through this, it was possible to extract the 
key information from the SPRs, such as organ, location, operation name, histology diag-
nosis, and tumor size.

Experimental results
Validation of context‑based typo correction

We evaluated the SymSpell algorithm optimized for medical data and the context-based 
typo correction model with the NCBI-disease and SPR datasets. We compared the per-
formance of the SymSpell algorithm and typo correction models when contextual infor-
mation was included. Since a word with a typo among all words appeared with a very 
low probability compared with a word without a typo; therefore, the number of values 
corresponding to each class was unbalanced. Hence, an F1-score was used for quantita-
tive performance evaluation.

Typos were randomly generated approximately in 16% and 7% of words in the NCBI-
disease and SPR datasets, respectively. The number of tokens in each dataset differed 
more than twice; therefore, the error ratio was adjusted to match the number of four 
error types. Table 6 shows the number of typos of the four error types created in the 
NCBI-disease and the SPR datasets. The performance of the typo correction model was 
assessed in the generated sentences containing typos.

Table  7 shows the typo correction performance for each dataset. Assessment of the 
typo correction model was performed in the generated sentences containing typos. In 
the two datasets, the F1-scores marked in bold were 0.72 and 0.73, which improved per-
formance approximately 5% and 9% in the model considering contextual information 
when compared with cases where contextual information was not included.

yk = exp(ak)/

n
∑

i=1

(exp(ai))

Table 5  hyper parameters

Information of fine-tuning process using pre-trained BERT, such as learning rate, epochs, max sequence length, batch size, 
optimizer, and activation function

Hyperparameter Value

Learning rate 3e-5

Epochs 3

Max sequence length 178

Batch size 16

Optimizer Adam

Activation function Softmax
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Figure  5 shows an example of correcting typos in the SPR dataset. If there was a 
typo in the part containing important information, it was confirmed that the word 
was corrected through the model.

Validation of named object recognition through data quality enhancement

We showed the effect of typos on the performance of NER by randomly generat-
ing 5–15% of typos in the NCBI-disease dataset. In well-refined data without typos, 
the F1-score was 0.89. Interestingly, the F1-score was reduced to 0.85 when 5% of 
typos were included, 0.82 when 10% were included, and 0.77 when 15% were included 
(Fig. 6).

Table 6  Error type and number per dataset

The total number of tokens was 24,497 in the NCBI-disease dataset. the total number of tokens with four error types was 
3944, accounting for 16.10% of words. The total number of tokens without error (No typo) was 20,553, accounting for 
83.91% of words. The total number of tokens was 49,668 in the SPR dataset. The total number tokens with four error types 
was 3617, accounting for 7.28% of words. The total number of tokens without error was 46,051, accounting for 92.72% 
words.

Datasets Type of typo No Typo Total

Replace Delete Transpose Insert

NCBI-disease 1014 1073 911 946 20,553 24,497

SPRs 965 948 877 827 46,051 49,668

Table 7  Typo correction performance in the NCBI-disease and SPR datasets

The occurrences of each type of word. ‘support’ means the number of words in the data. The performance of the proposed 
model was improved by 5% and 9% for each dataset, respectively.

Datasets Algorithms Precision Recall f1-score Support

NCBI-disease SymSpell 0.62 0.7 0.67 3944

Proposed model 0.65 0.81 0.72
SPR SymSpell 0.59 0.7 0.64 3671

Proposed model 0.70 0.76 0.73

Fig. 5  Example of typo correction through each model. In the case of (a), ‘lmyph’ is originally ‘lymph,’ which 
was corrected through the model. In the case of (b), ‘lug’ and ‘wedgoe’ mean ‘lung’ and ‘wedge,’ which were 
the body organs and test names, respectively. Both words were corrected
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When 16% of typos were included in the NCBI-disease dataset, the average F1-score 
for NER marked in bold was 0.77. After the typo correction model was applied, the per-
formance was improved by approximately 2% (F1 = 0.79). The detailed performance 
evaluation results in each case are shown in Table 8.

In the SPR dataset, the performance of NER was evaluated when 7% of typos were 
included. As shown in Table 9, the average F1-score marked in bold was 0.6 when typos 
were included. The NER performance increased to 0.85 after correcting the typos (15% 
improvement). This confirmed that typos had a significant effect on extracting informa-
tion from the unstructured text.

Discussion
In this study, we focused on the problems that deteriorate the accuracy of entity 
extraction and the performance of text-based analysis in the medical field. Typos fre-
quently appear in unstructured texts and have a negative effect on the performance of 

Fig. 6  NER performance by error rate in the NCBI-disease dataset. The x-axis represents the error rate (%) and 
the y-axis represents the F1-score in NCBI-disease dataset. As the error rate increases, the F1-score tends to 
decrease

Table 8  NER performance before and after typo correction in the NCBI-disease dataset

Dataset included 16% errors. The two tagged values, B-Disease and I-Disease, appeared 960 and 1087 times, respectively.

NER Precision Recall f1-score Support

Typos Typo correction Typos Typo correction Typos Typo correction

B-Disease 0.96 0.95 0.73 0.74 0.83 0.84 960

I-Disease 0.97 0.97 0.66 0.71 0.79 0.82 1087

Typos Typo correction

Accuracy 0.70 0.72 2047

f1-score 0.77 0.79
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text-based information extraction. Therefore, we sought to improve the performance 
of extracting important information from unstructured medical texts by resolving the 
typo problem in unrefined text. We verified that typos occurring in text have a neg-
ative effect on the performance of natural language processing tasks. Moreover, we 
showed an improvement in NER performance after typo correction.

Interestingly, there was a difference in NER improvement between the NCBI-dis-
ease and SPR datasets. The F1-score of NER detection increased by 25% in the SPR 
dataset following the typo correction model, whereas detection in the NCBI-disease 
dataset increased only by 2%. The NER is a sequence labeling process; therefore, rec-
ognition is affected according to the preceding and following words. This means that 
recognition of long entity names will be less affected by typos when compared with 
short entity names.

Figure 7 compares the entity proportion by length in the two datasets. The ratio of 
a single word entity occupied half of the total entities in the SPR dataset; more than 
90% of entities had a maximum length of 3. By contrast, entities with a length of 4 
or more occupied approximately 20% of the words in the NCBI-disease dataset. This 
may be why the NCBI-disease dataset showed little difference in performance before 
and after typo correction. In addition, these characteristics differed depending on the 
entity name existing in the SPR dataset. For example, there are five entity names in 
SPR dataset, such as ORGAN, LOCATION, OPNAME, HISTOLOGIC DIAGNOSIS, 
and TUMOR_SIZE. Among them, HISTOLOGIC DIAGNOSIS is the longest entity 
with an average length 6. The F1-score of this entity name increased by 8% for Begin 
and 5% for Inside after correcting for typos. Hence, this entity was less affected by 
typos than the other, shorter entities.

We confirmed that the typographical correction model proposed in this study helps 
extract accurate information from unstructured data. We also reviewed that some 

Table 9  NER performance before and after typo correction in the SPR dataset

Dataset included 7% typos. There are total seven tag values. Among them, four entity types, such as ORGAN, LOCATION, 
OPNAME, and HISTOLOGIC DIAGNOSIS, were located both in B and I, respectively. TUMOR_SIZE was located only in the B 
format.

NER Precision Recall f1-score Support

Typos Typo correction Typos Typo correction Typos Typo correction

B-ORGAN 0.97 1.00 0.31 0.82 0.47 0.90 1022

I-ORGAN 1.00 1.00 0.37 0.73 0.54 0.84 196

B-LOCATION 1.00 1.00 0.25 0.79 0.41 0.88 625

I-LOCATION 1.00 1.00 0.26 0.81 0.41 0.89 1338

B-OPNAME 0.90 0.98 0.54 0.97 0.68 0.97 822

I-OPNAME 1.00 1.00 0.46 0.96 0.63 0.98 803

B-HISTOLOGIC 
DIAGNOSIS

1.00 1.00 0.83 0.99 0.91 0.99 70

I-HISTOLOGIC 
DIAGNOSIS

1.00 1.00 0.90 1.00 0.95 1.00 114

B-TUMOR_SIZE 1.00 1.00 0.99 0.99 1.00 1.00 222

Typos Typo correction

Accuracy 0.40 0.87 2047

f1-score 0.60 0.85
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exceptional cases that may occur infrequently in our real-world dataset. For exam-
ple, in cases reporting the size of cancer, the contents written as ‘2.1 × 1.3 × 1  cm’, 
the largest value ‘2.1’ should be extracted. In most cases, this entity was written in 
the form of ‘Number × Number × Number;’ however, sometimes it was written in 
a different way, for example as ‘1.2 cm IN GREATEST DIMENSION.’ Although this 
case occupies a small proportion of the total data, a rule must be created that consid-
ers the number of all cases to apply a rule-based model. This task is labor intensive 
and inefficient because when a new exception appears, it is not possible to extract 
information from the existing rules. Therefore, rules ought to be modified again. We 
supplemented the limitation of rule-based information extraction by applying the 
BERT-based NER model to unstructured text in real-world medical fields. In this way, 
the proposed typo correction model can contribute to accurate information extrac-
tion from unstructured data.

Studies of pre-trained BERT were conducted based on data from various domains. 
There are representative models, such as BioBERT [34] and ClinicalBERT [35], for 
the medical domain. In particular, Med-BERT [36] is pre-trained on more than 
2,800 structured EHR dataset. The BERT-base model used in this study was trained 
with Wikipedia and BookCorpus, not domain dependent data; therefore, additional 
verification is needed to determine its suitability for the medical domain. A future 
study will select an appropriate pre-trained model by comparing the performance of 
BioBERT [34], ClinicalBERT [35], and Med-BERT [36] when correcting typos in real-
world medical data. In addition, it is expected that the performance of typo correc-
tion will be improved by constructing a word dictionary based on a corpus related 
to clinical data, such as the MIMIC-III Clinical Database rather than the scientific 
literature PubMed abstracts.

Fig. 7  Comparison of entity ratio by entity length in NCBI-disease and SPR datasets. The x-axis represents the 
entity length, and the y-axis represents the proportion. The blue and orange bars represent the NCBI-disease 
and SPR dataset, respectively
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Conclusion
Data digitization has led to vast amounts of patient data being accumulated daily, such 
as EHRs in real-world medical fields. Together with changes in technology, there is an 
active movement to build and analyze accumulated data platforms in medical fields. In 
particular, a large proportion of EHR data is written descriptively without a standard pat-
tern. Extracting information, for example to judge a patient’s lung cancer staging from 
unstructured text, is necessary in real-world medical environments. However, the use 
of delimiters or abbreviations in text differ depending on the record writer. This neces-
sitates the application of a robust methodology to resolve these exceptions. In addition, 
it is difficult to extract and structure important information because of frequent typos.

The purpose of this study was to propose a robust model that extracts the necessary 
information, even in undefined exceptions and typo situations, that can be applied 
to real-world medical fields. To this end, two tasks were performed: correcting typos 
in the data and extracting information by utilizing NER in the corrected text. Taken 
together, the results showed an effective model that can be applied to real world envi-
ronment by focusing on problems that cause difficulties in analysis. In addition, our 
experiments showed that typos occurring in text data have a negative effect on the 
performance of natural language processing tasks.
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