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A B S T R A C T

Background: Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey
matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique
opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement.
Methods: A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients
with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were
conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology.
Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesence-
phalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile
of each study group and region-of-interest morphometry was used to evaluate focal density alterations.
Results: ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls.
Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be
detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy
controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density re-
ductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease
controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients.
Conclus: ions: Computational brainstem imaging captures the degeneration of both white and grey matter components
in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of
quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is
an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy.
Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
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1. Introduction

Motor neuron diseases (MND) encompass a range of clinically hetero-
geneous conditions which typically affect young adults, are relentlessly
progressive and have no effective disease-modifying therapies
(Chipika et al., 2019). Some of the barriers to the development of effective
pharmacological interventions include the considerable clinical hetero-
geneity of the condition, lack of validated biomarkers and late recruitment
into pharmacological trials (Mitsumoto et al., 2014; Schuster et al., 2015;
Hardiman et al., 2016). The majority of imaging studies in MND focus on
cortical grey matter atrophy (Omer et al., 2017; Bede et al., 2013a), corti-
cospinal tract degeneration (Schuster et al., 2016a), corpus callosum pa-
thology (Filippini et al., 2010; Bede et al., 2015) and spinal cord degen-
eration (Bede et al., 2012; El Mendili et al., 2019; Lebouteux et al., 2014).
With the recognition of extra-motor deficits in MND (Burke, 2017;
Elamin et al., 2017; Burke et al., 2016; Christidi et al., 2018; Finegan et al.,
2019a) the frontotemporal (Nasseroleslami et al., 2019; Iyer, 2017), basal
ganglia (Feron et al., 2018; Christidi et al., 2019) and cerebellar (Abidi et al.,
2019) profiles of MNDs have also been gradually characterised (Bede et al.,
2018a), but there remains a striking lack of dedicated brainstem studies.
Brainstem pathology is a hallmark feature of the disease and has been as-
sociated with the condition since its earliest descriptions (Clarke and
Jackson, 1867). In one of the first pathologically supported reports, Lock-
hart Clarke eloquently describes progressive bulbar involvement in a patient
with ALS: “September 1865; Her voice changed; she did not pronounce
words as usual…Her deglutition now became difficult… The tongue is
protruded badly; about a quarter of an inch beyond the lower teeth. It is
atrophied on each side, and in folds, reminding one of cerebral convolu-
tions. Her talking is nearly unintelligible; to me it is generally quite unin-
telligible, but the nurse can usually manage to make out what the patient
says.” This moving description from over 150 years ago illustrates the
bulbar symptoms in ALS which continue to affect patients today
(Yunusova et al., 2019). Following his clinical description, Clarke comments
on post mortem brainstem changes; “The medulla oblongata was below the
average size. It was not, however, softer than usual, nor was it anywhere
damaged by disintegration of tissue; but many of its nerve-cells, particularly
about the floor of the fourth ventricle and calamus scriptorius, were in
different stages of degeneration.” Despite historical descriptions of brain-
stem atrophy, it remains surprisingly understudied in vivo, in spite of con-
siderable advances in ALS neuroimaging (Bede and Hardiman, 2014).
Moreover, brainstem pathology is regarded as ‘stage 1’ of a recently pro-
posed four-stage pathological staging system based on pathological TDP-43
burden patterns (Brettschneider et al., 2013). Furthermore, brainstem pa-
thology is not unique to ALS, it is a unifying feature of most motor neuron
diseases (ALS, PLS, SBMA) affecting the descending pyramidal tracts,
brainstem nuclei or both, depending on the phenotype (Brettschneider et al.,
2013; Querin et al., 2018a; Li et al., 1998; Finegan et al., 2019b; Geser et al.,
2011). So, while brainstem degeneration is a pathognomonic feature of
most MNDs, it is seldom evaluated specifically in dedicated imaging studies.
This is a missed opportunity at a time when wet and dry biomarkers are
urgently sought to inform clinical trial outcomes (Devos et al., 2019;
Blasco et al., 2018). Accordingly, our main objective is the systematic
characterisation of brainstem involvement in ALS and PLS, using both
healthy- and disease controls in a prospective longitudinal study design.
Based on the extensive post mortem literature of the disease
(Brettschneider et al., 2013; Geser et al., 2011), we hypothesise that
brainstem pathology can not only be detected in vivo, but it exhibits pro-
gressive changes over time.

2. Methods

2.1. Ethics statement

The study protocol, recruitment, and data management procedures
were approved by our institutional ethics committee (Beaumont
Hospital, Dublin, Ireland), in accordance with the 1964 Helsinki

declaration and its later amendments. All participants provided in-
formed consent and data was handled in accordance with the relevant
EU regulations (GDPR).

2.2. Participants

A total of 100 ALS patients, 33 patients with PLS, 30 patients with
FTD, and 100 healthy controls were included. Exclusion criteria in-
cluded prior traumatic brain injury, prior cerebrovascular events,
space-occupying intracranial findings, and inability to undergo MRI
scanning due to implanted metallic devices (baclofen pumps, pace-
makers), claustrophobia, or orthopnoea. Participating ALS patients had
‘probable’ or ‘definite’ ALS according to the El Escorial criteria
(Brooks et al., 2000), PLS patients were diagnosed based on the Gordon
criteria (Gordon et al., 2006) and FTD patients diagnosed in accordance
with the Rascovsky criteria (Rascovsky et al., 2011). ALS patients were
scanned twice with a follow-up interval of 4 months. Healthy controls
had no known neurological or psychiatric conditions, previous head
injuries or established vascular risk factors and no family history of
neurodegenerative conditions.

2.3. Neuroimaging methods

T1-weighted images were acquired on a 3 Tesla Philips Achieva
system using an 8-channel receive-only head coil using a 3D Inversion
Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) sequence
with the following settings; spatial resolution: 1 mm3, field-of-view
(FOV): 256 × 256 × 160 mm, TR/TE = 8.5/3.9 ms, TI = =1060 ms,
flip angle = 8°, SENSE factor = 1.5, acquisition time: 7 min 30 s. A
multimodal approach was undertaken to comprehensively characterise
brainstem degeneration in MND. First, total intracranial volumes (TIV)
were estimated and a model-based approach utilised to estimate the
volume of the entire brainstem. Subsequently, a Bayesian segmentation
algorithm was used to estimate the volumes of the medulla oblongata,
pons, and midbrain. Brainstem atrophy patterns in ALS were evaluated
with reference to healthy controls, disease controls and PLS patients
using vertex analyses. Finally, region of interest morphometry analyses
were carried out to evaluate focal brain stem alterations in the study
groups.

2.4. TIV and total brainstem volumes

Total intracranial volume (TIV) was calculated for each study par-
ticipant to be used as a covariate for subsequent volumetric compar-
isons. The FMRIB Software Library (FSL) was used for TIV estimations.
Each subject's skull-stripped brain was linearly aligned to the standard
MNI152 brain image, the inverse of the determinant of the affine re-
gistration matrix was calculated and multiplied by the size of the
template. FSL-FLIRT was used for registration to template
(Jenkinson and Smith, 2001), and tissue type segmentation was per-
formed using FSL-FAST (Zhang et al., 2001). For the estimation of total
brain stem volume the model-based approach of FSL-FIRST was im-
plemented. As described previously (Bede et al., 2018b), FSL-FIRST
(Patenaude et al., 2011) uses a two-stage affine registration approach to
register raw T1 data sets to the Montreal Neurological Institute 152
(MNI152) standard space first and then a model-based method is im-
plemented for the segmentation of subcortical structures.

2.5. Brainstem segmentation

A Bayesian segmentation algorithm was used for the segmentation
of the brainstem into the medulla oblongata, pons and midbrain. The
protocol relies on a probabilistic atlas of the brainstem and its neigh-
bouring anatomical structures generated based on 49 scans
(Iglesias et al., 2015). The FreeSurfer image analysis suite (Fischl, 2012)
was used for the pre-processing of T1-wieghted data which included the
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removal of non-brain tissue, segmentation of the subcortical white
matter and deep grey matter structures, intensity normalization, tes-
sellation of the grey matter-white matter boundary, and automated
topology correction. Subsequent to pre-processing and brainstem seg-
mentation, raw volumetric values were retrieved for each study parti-
cipant at each timepoint for statistical interpretation with the appro-
priate covariates.

2.6. Vertex analyses

In order to characterise anatomical patterns of degenerative change
in the brainstem beyond overall volume reductions, shape analyses
were performed between the relevant study groups. FMRIB's subcortical
segmentation and registration tool FIRST (Patenaude et al., 2011) was
used for vertex analyses to generate quantitative, surface-projected
information about focal brainstem involvement. Vertex locations of
individual participants were projected on the surface of an average
template shape as scalar values, positive value being outside the surface
and negative values inside. Permutation based non-parametric statistics
were used for group comparisons, design matrices included age, gender
and education (Winkler et al., 2014), probability maps were corrected
for multiple comparisons, and a statistical threshold of p < .05 FWE
was considered significant.

2.7. Region of interest morphometry

In order to detect focal density alterations within the brain stem,
region-of-interest morphometry was performed to complement the
vertex analyses. The FMRIB Software Library (FSL) was used for brain
extraction and tissue-type segmentation, following which grey-matter
partial volume images were aligned to the MNI152 standard space
using affine registration. Subsequently, a study specific template was
created, to which the grey matter images from each subject were non-
linearly coregistered. A voxelwise generalized linear model and per-
mutation-based non-parametric testing was used to highlight density
alterations in a merged brainstem mask accounting for age, gender and
education (Winkler et al., 2014; Nichols and Holmes, 2002). The labels
of the Harvard-Oxford probabilistic structural atlas (Desikan et al.,
2006) and the labels of the Talairach probabilistic (Lancaster et al.,
2000) atlas were used to generate a merged brainstem mask in-
corporating the medulla oblongata, pons and midbrain.

2.8. Genetics

Of the 100 ALS patients, C9orf72 repeat expansion status was de-
termined in 97 patients (Byrne et al., 2012). DNA samples from patients
were tested for the presence of the pathogenic GGGGCC hexanucleotide
repeat expansion in C9orf72 by repeat-primed PCR using the Applied
Biosystems (Foster City, CA, USA) 3130xl Genetic Analyser and visua-
lised using GeneMapper version 4.0 as described previously
(Byrne et al., 2012; Bede et al., 2013b). Patients carrying more than 30
hexanucleotide repeats were considered positive for the expansion.
Whole-genome sequence data were available for 44 ALS patients
(Project Min, 2018) and targeted DNA sequence data for a further 27
ALS patients (Kenna et al., 2013). Whole exome sequence data were
available for 29 of the 33 PLS patients (Finegan et al., 2019a). Putative

variants were defined as protein altering variants in the exons and
splice sites of 33 genes linked to ALS on the ALS online database
(Abel et al., 2013) and 70 genes linked to HSP (Klebe et al., 2015).
C9orf72 hexanucleotide repeat expansion status in the PLS cohort was
also determined using repeat-primed polymerase chain reaction (PCR).

2.9. Statistics

Analyses of covariance (ANCOVA) were performed to evaluate in-
tergroup differences in brainstem volumes. Assumptions of normality,
linearity and homogeneity of variances were verified. Brainstem vo-
lumes were included as dependent variables, and study group allocation
as the categorical independent variable. TIV, age, education, and
gender were included as covariates (Bede et al., 2013c). Summary ta-
bles were generated to present the estimated marginal means of
brainstem volumes, standard error, between-group ANCOVA sig-
nificance and p-values for Bonferroni-corrected post hoc testing. Esti-
mated marginal means of volumes were plotted with confidence in-
tervals to illustrate the volumetric profile of each study group. To
demonstrate the divergent subcortical profiles of ALS, PLS and FTD
percentage volume reductions were calculated with reference to the
estimated marginal means of healthy controls and plotted on a radar
(spider) chart. Differences in longitudinal change between C9orf72
hexanucleotide carriers and those without the repeat expansions were
evaluated with mixed effect models.

3. Results

Study participants were matched for age, gender, handedness and
education. Despite the comparable demographic profile of the study
groups, each statistical model of our imaging analyses included age,
gender, education and total intracranial volumes as covariates Table 1.

3.1. Volumetric analyses

The volumetric analyses of brainstem regions revealed considerable
multisegmental brainstem atrophy in both ALS and PLS with medullar
predominance. ALS patients at their second timepoint exhibited statis-
tically significant volume reductions in both the medulla and pons
compared to healthy controls. Total brainstem volume reductions in
ALS did not reach statistical significance with reference to controls,
suggestive of selective medullar and pontine involvement. In the PLS
cohort, brainstem atrophy was detectable in all three regions and me-
dullar atrophy was not only apparent in comparison to healthy-, but
also with reference to disease controls. PLS patients also had sig-
nificantly lower medullar, pontine and mesencephalic volumes com-
pared to ALS patients. Across the two time points ALS patients exhibited
progressive volume loss in all three brainstem segments but long-
itudinal changes did not reach statistical significance. ALS patients
showed a trend of medullar atrophy compared to healthy controls at
their first time point which has reached significance by their second
timepoint. Similarly, while pontine differences were not significant
between healthy controls and ALS patients at the first time point, due to
progressive pontine volume loss, ALS patients at the their second time
point exhibited statistically significant pontine changes (Table 2 and
Fig. 1).

Table 1
The clinical and demographic profile of the study cohorts.

ALS T1 n= 100 ALS T2 n= 100 PLS n= 33 FTD n= 30 HC n= 100 p value

Age 59.83 (11.155) 60.21 (11.235) 60.48 (10.488) 63.97 (14.571) 59.65 (11.876) 0.484
Gender (male) 62 (62%) 62 (62%) 19 (58%) 13 (43%) 54 (54%) 0.332
Education (years) 13.45 (3.176) 13.45 (3.176) 12.88 (3.380) 12.80 (3.210) 12.47 (3.383) 0.171
Handedness (right) 90 (90%) 90 (90%) 29 (88%) 27 (90%) 94 (94%) .784
ALSFRS-r 36.62 (7.470) 35.40 (7.335) 34.36 (5.337) N/a N/a 0.23
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3.2. Vertex analyses

Focal shape deformations were detected at the second timepoint of
ALS patients compared to both disease- and healthy controls following
the appropriate statistical corrections. Considerable symmetric medul-
lary pyramid atrophy was detected in comparison to healthy controls.
In contrast to disease controls, an asymmetric pattern of anterolateral
medullary atrophy was detected which centred on the right pyramid
but incorporated the right olivary nuclei. In contrast to PLS, ALS pa-
tients exhibited widespread anterior and posterior pontine shape de-
formations including atrophy of the floor of the fourth ventricle.

3.3. Brainstem morphometry

Morphometric analyses revealed density reductions in the ALS co-
hort compared to healthy controls in the mesencephalic crura. The ALS
FTD contrast highlighted anterior medullar and central pontine atrophy
at the second timepoint of ALS patients compared to disease controls.
Compared to PLS patients, the ALS cohort exhibited peri-aqueduct
mesencephalic, central pontine and posterior pontine density reduc-
tions. No statistically significant morphometric changes were detected
between the two timepoints following the appropriate corrections in
the ALS cohort.

3.4. Genetics

Eleven ALS patients and none of the PLS patients carried the
GGGGCC hexanucleotide repeat expansion in C9orf72. ALS patients
tested negative for other genes previously implicated in ALS. No PLS
patients carried ALS or HSP associated mutations. In the ALS cohort, no
brainstem differences were identified between hexanucleotide repeat
carriers and those without the C9orf72 mutation at baseline or on
follow-up. Moreover, patients with repeat expansions have not shown
increased volume loss over time compared to C9orf72 negative ALS
patients.

4. Discussion

Our study provides evidence of focal and progressive brainstem
pathology in ALS and highlights that brainstem alterations can be
characterised in vivo using routine MRI sequences. While volumetric
analyses provide an overall indication of atrophy, the characterisation
of shape deformations and focal density reduction enables the identi-
fication of the most vulnerable brainstem regions.

Our data indicate that total brainstem volume reductions are pri-
marily driven by medulla oblongata pathology, but pontine changes
also contribute to brainstem atrophy. PLS which is an upper motor
neuron disorder (Finegan et al., 2019b) exhibits marked medullar,
pontine and mesencephalic atrophy compared to ALS, suggesting that
volume reductions are primarily caused by upper motor neuron de-
generation. Furthermore, the medullar atrophy observed in PLS was not
only confirmed with reference to healthy controls but also in contrast to
disease controls. It is also noteworthy that using only a 4-month follow-
up interval progressive volume loss can be detected in all three brain-
stem segments. Our morphometric analyses revealed focal density re-
ductions in ALS compared to healthy controls in the bilateral me-
sencephalic crura where the descending corticospinal and
corticonuclear tracts run. This further supports the notion the UMN
degeneration contributes to brainstem volume reductions. This is
echoed by the ALS FTD contrast which revealed focal changes in the
medullar pyramids. The ALS PLS morphometric comparison is parti-
cularly interesting as both conditions are associated with widespread
UMN degeneration. This contrast revealed widespread peri-aqueduct
mesencephalic, central and posterior pontine grey matter changes.

Our vertex analyses also confirmed the symmetric involvement of
the medullary pyramids in ALS. In contrast to PLS, ALS patients also
exhibited widespread posterior pontine shape deformations including
atrophy of the floor of the fourth ventricle as historically described by
Clarke in 1867 (Clarke and Jackson, 1867). The widespread pontine
shape deformations detected in ALS in contrast to PLS raises important
questions about central brainstem involvement in ALS. As vertex ana-
lyses are essentially surface-projected representations of atrophy, the

Table 2
Brainstem volumes in healthy controls (HC), patients with frontotemporal dementia (FTD), patients with amyotrophic lateral sclerosis (ALS) and primary lateral
sclerosis (PLS). Estimated marginal means and standard error are adjusted for age, gender, education and total intracranial volume (TIV) (Covariates appearing in the
model are evaluated at the following values: Age = 59.59, Gender = 1.43, Edu = 13.63, TIV = 1435355.28) Pairwise post hoc comparisons are Bonferroni
corrected. Significant intergroup differences are flagged with asterisks ‘*’. Statistical trends are flagged with superscript ‘t’. ALS_T1: ALS patients first time point,
ALS_T2: ALS patients second time point, FTD: patients with frontotemporal dementia, HC: healthy controls, PLS: patients with primary lateral sclerosis.

Structure Study group Estimated marginal means(adjusted for age, gender, education and TIV) Standard error ANCOVA Sig. (p) Post-hoc comparisons
(Bonferroni-corrected)

Medulla <0.001 ALS T1 vs HC p = .061t

ALS T1 vs PLSp = .002*
ALS T2 vs HC p < .001*
ALS T2 vs PLS p= = .057 t

FTD vs PLS p = .001*
HC vs PLSp < .001*

HC 4808.641 4714.924
ALS T1 4623.070 47.012
ALS T2 4530.937 47.023
FTD 4747.986 86.610
PLS 4268.433 81.904

Pons <0.001 ALS T1 vs PLS p = .003*
ALS T2 vs HC p = .017*
ALS T2 vs PLS p = .014*
HC vs PLS p < .001*

HC 15410.591 159.537
ALS T1 14829.294 157.394
ALS T2 14699.411 157.433
FTD 14670.462 289.969
PLS 13682.707 274.212

Midbrain 0.004 ALS T1 vs PLS p = .073 t

HC vs PLS p = .02*HC 6173.757 49.524
ALS T1 6071.860 48.859
ALS T2 6002.527 48.871
FTD 5994.261 90.014
PLS 5807.431 85.122

Whole Brainstem < 0.001 ALS T1 vs PLS p < .001*
ALS T2 vs PLS p = .002*
FTD vs PLS p = .058 t

HC vs PLS p < .001*

HC 22694.377 202.067
ALS T1 22326.919 199.353
ALS T2 22038.915 199.402
FTD 21956.655 367.272
PLS 20556.064 347.314
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circumferential, anterior-posterior-lateral deformation detected in ALS
compared to PLS (Fig. 2(C)) is likely to be driven by central volume
reductions i.e. grey matter degeneration. This would not only be con-
sistent with the differential grey matter (LMN / CNN) involvement in
ALS compared to PLS clinically, but also consistent with our morpho-
metric findings, where central pontine and mesencephalic density re-
ductions were also detected in ALS compared to PLS (Fig. 3(C)). The
integrative interpretation of the shape and morphometric alterations in
ALS compared to PLS, which is a pure UMN condition, suggest that
brainstem grey matter degeneration can be detected in vivo. In sum-
mary, while overall volume reductions are more prominent in PLS
(Fig. 1) vertex and voxelwise analyses capture central brainstem pa-
thology in ALS (Figs. 2(C) and 3(C)).

Surprisingly few human imaging studies have specifically evaluated
brain stem structures in ALS, but some whole brains studies have
commented on infratentorial changes. Diffusion tensor imaging studies
have been inconsistent in detecting pyramidal tract degeneration at
medullar or pontine levels. Some studies readily detected inferior brain
stem diffusivity changes (Schuster et al., 2016a; Bede et al., 2015;
Iwata et al., 2008) while others only captured mesencephalic pyramidal
tract alterations (Yin et al., 2004). Brainstem FA reductions based on
pooled multisite data have been linked to stage 2 of a recently proposed
pathological staging system (Muller et al., 2016). The findings of

functional studies in ALS are even more conflicting (Proudfoot et al.,
2018; Bede, 2017). Several PET studies have shown increased pontine
metabolism (Cistaro et al., 2012) which was interpreted as reactive
astrocytosis (Johansson et al., 2007). Hypermetabolism in the brain-
stem has been linked to bulbar onset (Cistaro et al., 2012) and C9orf72
hexanucleotide repeats (Cistaro et al., 2014; Floeter and
Gendron, 2018). Some spectroscopy studies however have detected
decreased Naa/Cr ratios in the brainstem (Pioro et al., 1999;
Bradley et al., 1999) while other did not (Sivak et al., 2010;
Kalra, 2019). Animal imaging studies enable the histological inter-
pretation of radiological changes (Evans et al., 2012; Bede, 2019) and
high-field SOD1 transgenic mouse models showed T2 weighted hyper-
intensities in the nucleus ambiguus, facial nucleus, trigeminal motor
nucleus, rostroventrolateral reticular nucleus, lateral para-
gigantocellular nucleus and the substantia nigra with associated neu-
ronal loss of histological evaluation (Zang et al., 2004). Our morpho-
metric and vertex analyses captured central pontine and inferior
mesencephalic changes in ALS compared to PLS. Few imaging studies
have evaluated lower motor neuron pathology to date in ALS, and
without exception, these were advanced, quantitative spinal cord
imaging studies, where the accurate segmentation of white and grey
matter components is possible (Querin et al., 2018b,2019a).

The benefit of using standard T1-weighted sequences and

Fig. 1. The volumetric profile of the brainstem in ALS, PLS, disease and healthy controls. Corners: Estimate marginal means of the medulla, pons, midbrain are plotted
for each study group adjusted for age, gender, education and total intracranial volumes. Centre: Percentage volumetric change is plotted with reference to healthy
controls. ALS_T1: ALS patients first time point, ALS_T2: ALS patients second time point, FTD: patients with frontotemporal dementia, HC: healthy controls, PLS:
patients with primary lateral sclerosis.
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morphometric analyses is that high resolution 3D T1W sequences are
typically already part of clinical protocols and are readily available on
any imaging platform irrespective of manufacturer or field strength.
Morphometric brain stem measures could therefore be easily integrated
in clinical trial protocols and data acquisition could be harmonised
across multiple centres (Muller et al., 2016; Turner et al., 2012). The
brainstem measures derived from T1-weighted data are therefore re-
latively attractive candidate biomarkers as they can be acquired non-
invasively without special sequences, the acquisition time is typically
short (<10 min), the measures discriminate patients from disease
controls, and the derived metrics exhibit progressive change over time.

The identification of imaging measures which readily discriminate
ALS patients from healthy and disease controls is hugely relevant for
emerging machine learning applications (Bede et al., 2018a) and sur-
vival prediction (Schuster et al., 2017). ALS is associated with strikingly
focal anatomical vulnerability profiles (Bede et al., 2016) which enable
disease-specific feature selection for classification algorithms
(Grollemund et al., 2019; Schuster et al., 2016b). Classification models
enable the categorisation of blinded datasets into diagnostic, pheno-
typic or prognostic categories and the incorporation of the

discriminatory brain regions such as the brainstem is likely to increase
the accuracy of such models further (Querin et al., 2018b; Bede et al.,
2017).

Longitudinal imaging in ALS is typically limited by high attrition
rates (Chipika et al., 2019) and relatively few large presymptomatic
studies have been published to date (Schuster et al., 2015; Eisen et al.,
2014; Querin et al., 2019b). Despite the challenges of longitudinal
imaging, a number of multi-timepoint studies have now been published
(Menke et al., 2018; Bede and Hardiman, 2018) which suggest early
white matter degeneration with a ceiling effect and progressive grey
mater degeneration. From a biomarker point of view, the ability to
track progressive changes in the later stages of the disease is essential;
as indices exhibiting early ceiling effects are not suitable for mon-
itoring.

Despite a number of pioneering studies, relatively little is known of
the imaging profile of PLS and existing studies suffer from considerable
sample size limitations. Furthermore, most PLS studies report over-
lapping imaging patterns with ALS (Müller et al., 2018; Van Weehaeghe
et al., 2016), highlighting motor cortex (Butman and Floeter, 2007;
Schuster et al., 2013), pyramidal tract (Müller et al., 2018; Iwata et al.,

Fig. 2. Anatomical patterns of brainstem pathology based on vertex analyses correcting for age, gender, education and total intracranial volumes. Shape deformation
in ALS are shown compared to healthy controls (A), disease controls (B) and PLS patients (C). 3D brainstem mesh is presented in blue (A), green (B) and pink (C).
Patterns of atrophy is illustrated in orange with respect to healthy controls (A), in red with reference to disease controls (B) and blue in comparison to PLS patients
(C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2011), and corpus callosum pathology (Unrath et al., 2010;
Agosta et al., 2014) and very few PLS studies highlight distinctive
imaging features (Finegan et al., 2019a, b; Clark et al., 2018). Our data
indicate that brainstem atrophy is particularly marked in PLS and the
differences between the ALS and PLS cohort are statistically significant.
The description of features which discriminate PLS and ALS may have
implications for the categorisation of UMN predominant patients and
‘suspected PLS’ patients who don't fulfil current diagnostic criteria
(Gordon et al., 20062009).

The presented study has several limitations. No post-mortem data
are available to validate our imaging findings which would be of par-
ticular interest in the PLS where patterns of pTDP-43 burden are poorly
characterised. The longitudinal arm of the study is a two-time point
design which precludes commenting on linear versus exponential
longitudinal changes. While we intentionally used T1-weighted data
alone in the various analysis streams, novel diffusion sequences such as
HARDI, Q-ball imaging or NODDI (Barritt et al., 2018; Broad et al.,
2018) may have been particularly useful in characterising crossing fibre

integrity in the brainstem. Notwithstanding these limitations, our study
provides evidence that standard T1-weighted data can be used to detect
global and focal brainstem pathology in motor neuron diseases in
contrast to both healthy and disease controls.

5. Conclusions

Progressive brainstem pathology can be detected in ALS in vivo and
brainstem measures may have a biomarker role in diagnostic, mon-
itoring and prognostic applications.
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