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Abstract: The use of plastics has spanned across almost all aspects of day to day life. Although
their uses are invaluable, they contribute to the generation of a lot of waste products that end up in
the environment and end up polluting natural habitats such as forests and the ocean. By treating
low-density polyethylene (LDPE) samples with non-thermal plasma in ambient air and with an
addition of ≈4% CO2, the biodegradation of the samples can be increased due to an increase in
oxidative species causing better cell adhesion and acceptance on the polymer sample surface. It was,
however, found that the use of this slight addition of CO2 aided in the biodegradation of the LDPE
samples more than with solely ambient air as the carbon bonds measured from Raman spectroscopy
were seen to decrease even more with this change in gas composition and chemistry. The results
show that the largest increase of polymer degradation occurs when a voltage of 32 kV is applied over
300 s and with a mixture of ambient air and CO2 in the ratio 25:1.

Keywords: non-thermal plasma; biodegradation; polymers; optical emission spectroscopy; optical
absorption spectroscopy; plasma treatment

1. Introduction

Fossil fuels have been extensively used to fabricate various polymers that span uses from the
medical to food industry and permeate multiple facets of day-to-day life. The current infrastructure of
material creation allows different polymers to be fabricated through processes that give fine control
of material properties and gives rise to versatile approaches to tailor these materials for multiple
needs [1–3]. However, although they are invaluable due to their durability and ease of application
to multiple areas, plastics made from fossil fuels are highly resistant to many natural processes of
degradation [4]. Due to this, certain problems arise from the improper disposal of plastic waste, litter,
and their long lifetime. Such issues include: (i) pollution of oceans, (ii) ingestion of plastics by animals
causing contamination in the food cycle, (iii) endangerment of different species due to environmental
impacts, (iv) soil contamination, and (v) introduction into water systems that feed into lines for human
consumption [5–10]. The areas impacted by plastic waste and pollution will continue to suffer as the
population increases and puts more demand on their generation, which ultimately puts more stress on
the environment. Some of the most widely used polymers to date include low density polyethylene
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(LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET), polypropylene (PP),
and polyvinyl chloride (PVC). These, and more, can be seen in Table 1. The percentages seen in
Table 1 define how much each listed plastic contributes to the total amount of plastic pollution that
currently exists. The five polymers listed (PET, LDPE, HDPE, PP, and PVC) in Table 1 contribute to
a combined total of 81.5% of known plastic pollution with the remaining 18.5% coming from other
plastics. Currently, the methods of plastic disposal and recycling are not able to facilitate the amount
of plastic waste being created, most of which comes from plastics that have short use times (less than a
year). It is reported that around 79% of plastic waste ends up in landfills or the natural environment
and by 2050, there will be an estimated 12 billion tons of plastic waste existing between landfills and
the natural environment [8]. From this, it is easy to see that, although plastics are well established
in our daily lives and their manufacturing infrastructure is well imbedded in the industrial sector,
there needs to be a serious change for a more sustainable method or alternative of plastic generation
and disposal.

With the large quantity of plastics being introduced into the environment, new developments
have been made to stem the quantity that remains in it by utilizing materials that have much
shorter lifetimes and can still function in the place of classic plastic materials. This has led to the
development and implementation of plastics and polymers that can degrade through the introduction
of biological media and different environmental conditions. These are known as biodegradable
polymers [11,12]. Interest in biodegradable polymers has increased in recent times to replace other
synthetic polymers. Some biodegradable polymers that have come to the forefront include polylactic
acid (PLA), polyglycolic acid (PGA), polyvinyl acetate (PVA), polycaprolactone (PCL), and polymers
with fibrous blends that consist of biomaterials such as starch [13]. Methods that can be used
to fabricate biodegradable polymers include the use of microorganism growths and plant matter
extracts [13]. As of late, more methods have been developed in order to create biopolymers and create
polymer blends in order to achieve better results for applications such as medical implantation, tissue
growth, replacements for other plastic fiber resins, and food packaging [14,15]. Although the use of
biodegradable polymers will help to eliminate many negative aftereffects of fossil fuel-based polymer
waste, research is still needed to fully understand and optimize their generation for specific uses to
better advance various applications.

Published works have shown that the current-state-of-art plasma systems can be used to aid
in the abatement and destruction of volatile organic compounds (VOCs) as well as aiding in the
degradation of polymeric materials. The use of packed bed non-thermal plasma (NTP) reactors, as well
as pre-treatment of VOCs before introduction to a biotrickling filtration (BTF) stage, has shown that
the removal of 95%+ of VOCs can be achieved [28–30]. The use of packed bed NTP reactors has been
shown to be of use to increase the efficiency of plasma discharge as the introduction of ferroelectric
materials (BaTIO3, NaNO2, TiO4) aids in the generation of a stronger electric field via polarization.
Furthermore, this gives rise to the formation of higher energy electrons within the NTP discharge
region. From this, a higher rate of energy transfer can arise and form more reaction pathways for VOC
breakdown [29]. From these reaction mechanisms, the VOCs may dissociate into smaller constituent
parts that are less harmful. These smaller constituent parts of VOCs can then be filtered through zeolite
screening or BTF in order to further increase the system’s VOC degradation efficiency [29]. The use of
BTF post-NTP treatment allows biodegradation to occur. This helps in the further breakdown of VOCs
and also helps to trap and degrade harmful compounds formed from the breakdown of the VOCs
after NTP treatment [29–32]. Some of the VOCs that these systems have been shown to help degrade
include styrene, toluene, benzene, PLA, and polyolefins. Current work strongly indicates that the use
of BTF systems are a step forward in purification processes and that they can be further improved
upon by introducing an NTP treatment stage [28–34].

Being able to modify and functionalize biodegradable polymers to tailor specific properties and
characteristics is a very important step in the research of alternative material selections to increase and
improve the quality of more natural and greener products. This also extends to knowing how to best
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tackle the existing pollution to try and decrease it and to potentially create a modification process to
functionalize polymers, such as PET, PP, and LDPE, to reduce their lifetimes in landfills and oceans.
Current processes that are already installed to produce classically non-biodegradable polymers may
be difficult to change quickly, and so an alternative may be needed that can be implemented into these
industrial manufacturing processes to achieve a reduction in waste production while maintaining
high quality of the produced materials for their intended uses. One such method to do this may be to
implement installations of non-thermal plasma (NTP) systems. It has been shown that the colonization
of polymer surfaces by microorganisms depends on the functional groups present on the polymer
surface, but it is also generally accepted that samples with higher hydrophilicity may give rise to an
easier colonization process for these microorganisms [17]. For LDPE and HDPE, it has been found that
oxidized groups on the sample surface are easier for microorganisms to degrade and that the adhesion
of microorganisms can be increased by creating a more oxidized and hydrophilic surface [16,17,35–37].

Table 1. Information to compare plastic polymers that are resistant to biodegradation and those that
are more readily able to degrade through natural means [13–27].

Polymer Uses Structure
Contribution

to Plastic
Pollution %

Means of Degradation

Low/no
biodegradability

PET
Clothing fibers, food and

liquid containers,
engineering resins.

[C10H9O4]n 12.8 UV exposure, thermal oxidation,
Ideonella sakaiensis.

LDPE Lab equipment, plastic bags,
food packaging. [C2H4]n 23.9

UV exposure, oxidising solvents,
Lysinibacillus xylanilyticus,

Pseudomonas, and Aspergillus niger

HDPE
Plastic bottles, food containers,

corrosion protectors, 3-D
printing filament.

[C2H4]n 17.6 UV exposure, oxidative
solvents, hydrolysis.

PP
Dielectric sheets, medical

implantations, piping
systems, hinges.

[C3H6]n 24.3 UV exposure, microbial
communities mixed with starch.

PVC Electrical cables, flooring,
window insulation. [C2H3Cl]n 2.9

UV exposure, Phanerochaete
chrysosporium, Lentinus tigrinus,

Aspergillus niger, Aspergillus sydowi

Biodegradable

PLA Medical implants, packaging
material, injection molding. [C3H4O2]n Amycolatopsis and Saccharotrix.

PGA Medical suture, food
packaging, tissue engineering. [C2H2O2]n Hydrolysis.

PVA Wood glue, nonwoven binder,
primer, adhesive. [C4H6O2]n

Filamentous fungi, bacterial,
fungal species, algae.

PCL
Tissue repair scaffold, targeted

drug delivery, dentistry,
herbicide containers.

[C6H10O2]n Penicillium and Aspergillus.

2. Results and Discussion

Characterizing the NTP treatment system was carried out by implementing optical diagnostics
as described in Section 3.4. By utilizing the non-intrusive nature of optical measurements, the gas
chemistry along the profile of the sample treatment area was determined for the use of ambient air and
ambient air with a CO2 admixture at a ratio of 25:1 (ambient air:CO2). By using the optical emission
spectroscopy (OES) and optical absorption spectroscopy (OAS) results from the optical measurement
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and comparing them with the changes seen in the Raman spectra, the optimum parameter setting to
induce the greatest amount of biodegradation of LDPE can be ascertained.

2.1. Optical Diagnostics

From the measurements of the plasma discharge at each power setting and with the use of solely
ambient air, as well as with the introduction of CO2, there were many common emission species
and ozone was detected very clearly. However, the use of just ambient air led to the formation of
excited atomic nitrogen (N I), and with CO2 as an admixture with ambient air, the generation of C2

was detected. The formation of these reactive species, and the others detected in this work, could be
inferred through the use of the electron energy distribution function (EEDF) obtained from the line
ratio of (N2-337/N2

+-391) [38]. From this, the most likely paths for reaction mechanisms could be
highlighted and the energetics that occur at the sample’s surface during treatment give rise to a better
understanding of possible surface modifications.

The first set of results to be compared are the average spatial densities of O3 that were measured
throughout the treatment area as well as temporally to show the evolution of this powerful oxidant.
Figure 1a–c shows the spatial and temporal evolution of ozone for the three applied voltages and
demonstrates the potential to have an amount of it remain to interact with the sample surface even
after plasma generation has been stopped. From each graph of Figure 1, it can be seen that at the very
beginning, the average density of O3 increases relatively the same for each setting. However, when a
higher voltage was applied, there was a larger difference between each set of values and the values
from measurements that were more central in the system have higher maximum values compared to
the edge areas. This was due to species such as O2, OH, and H2O having longer residence times within
the applied electrical field, which allowed them to aid in more reaction mechanisms that create O3 as
the energetics were larger here due to their residence time in the direct electrical field. The possible
reaction mechanisms can be seen below in Equations (1)–(3), where M is a third body atom or molecule
such as O, N2*, or OH [38–40].

O2 + e f ast → •O + •O + eslow (1)

•O + H2O+ ↔ 2OH (2)

•O + O2 + M∗ → •O3 + M (3)

Figure 2a–c shows the average spatial density of O3 when CO2 was introduced as a slight
admixture into the ambient air being used. By having a CO2 additive in the plasma discharge,
the formation of O3 was higher than when solely ambient air is used. Setting the flow rate of ambient
air to 1 L min−1 with the introduction of CO2 being set at 0.04 L min−1 impacted the creation of O3

through Reactions (4) and (5) that could then go on to aid in Reaction (3) and the formation of O3 [40].
From these results, it can already be seen that the tailoring of the plasma system to generate more of a
certain reactive species is possible. From the optical absorption spectroscopy (OAS) results, it can be
seen that the formation of a highly oxidative species was maximized by simply introducing a slight
amount of an additive gas, CO2 in this case. The formation of O3 was important for this study as it
could help to form a more polar sample surface during plasma treatment, and as previously stated, it is
generally taken that the more polar a sample surface, the better cell adhesion will be. For this study,
and indeed for many other applications, this is an important note to take into consideration when
forming new technologies and methods for sample processing. Optical diagnostics are also of great
importance to form a better understanding of the gas chemistry that is induced. From here, the optical
emission spectroscopy (OES), optical absorption spectroscopy (OAS), and Raman spectroscopy must
be looked at to form a more concrete conclusion as to what gas chemistry is most desirable for polymer
degradation in this study.

CO2 + e f ast → CO (a′3Σ ) + •O + eslow (4)
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CO2 + e f ast → CO (A2Π ) + •O + eslow (5)
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Figure 1. Average spatial density profile of O3 at 253.7 nm when ambient air was the only gas present 
for plasma discharge. The line divides values at the point when the plasma system was set to stop 
generating plasma. (a–c) show the changes of O3 average spatial density with respect to voltage. 

Figure 1. Average spatial density profile of O3 at 253.7 nm when ambient air was the only gas present
for plasma discharge. The line divides values at the point when the plasma system was set to stop
generating plasma. (a–c) show the changes of O3 average spatial density with respect to voltage.
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Figure 2. Average spatial density profile of O3 when CO2 was introduced to the plasma discharge. 
The line divides values at the point when the plasma system was set to stop generating plasma. (a–c) 
show the changes of O3 average spatial density with respect to the change of voltage settings. 

The EEDF results from the use of ambient air in the central regions (25–75 mm) show that, over 
time, the electron energies began to dissipate while the edges of the system (0 mm and 100 mm) 
maintained their values. This can be described as the same reasoning for the formation of O3 over 
time. Due to the increased residence time within the system, the excited nitrogen species became 

Figure 2. Average spatial density profile of O3 when CO2 was introduced to the plasma discharge.
The line divides values at the point when the plasma system was set to stop generating plasma.
(a–c) show the changes of O3 average spatial density with respect to the change of voltage settings.
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The EEDF results from the use of ambient air in the central regions (25–75 mm) show that,
over time, the electron energies began to dissipate while the edges of the system (0 mm and 100 mm)
maintained their values. This can be described as the same reasoning for the formation of O3 over
time. Due to the increased residence time within the system, the excited nitrogen species became
saturated and underwent a temporal evolution of excitation and deexcitation processes, while the
edges of the system had more consistent populations of ground state N2 to interact with that did
not alter the spatial evolution as much. From Figure 3, it can then be seen that the electron energies
were distributed more towards the low energy with increases in voltage. These changes in electron
energetics are very important to understand the formation of other species within the plasma and how
they alter the sample for degradation purposes.
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Figure 3. The line ratio of (N2-337/N2+-391) to give the EEDF when using ambient air. This portrays 
how the electron energies were altered with the different parameter settings, most importantly the 
variation of working gas composition. (a–c) represent discharge at 27, 29.6, and 32 kV, respectively. 
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to the system, the EEDF was much more inclined to be sensitive to the impact of low energy electrons. 
As can be seen, the values for the EEDF were much higher when CO2 was introduced, even as a small 
percentage of the total working gas used. However, there was a greater spread of energetics for the 
air: CO2 mixture compared to that of just ambient air. As can be seen, the spread of values for ambient 
air when 27 kV, 29.6 kV, and 32 kV were applied was 1.93, 5.66, and 5.28, respectively. As CO2 was 
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Figure 3. The line ratio of (N2-337/N2
+-391) to give the EEDF when using ambient air. This portrays

how the electron energies were altered with the different parameter settings, most importantly the
variation of working gas composition. (a–c) represent discharge at 27, 29.6, and 32 kV, respectively.

With an addition of CO2 at ≈3.8% to the system, a drastic change in the electron energies was
incurred. By using the same line ratio method and spectral line profiles (N2-337/N2

+-391) that were
used for the EEDF of ambient air, a comparison could be easily drawn between the two experimental
setups and easily diagnose the energetics of the use of the different gases. When CO2 was introduced
to the system, the EEDF was much more inclined to be sensitive to the impact of low energy electrons.
As can be seen, the values for the EEDF were much higher when CO2 was introduced, even as a
small percentage of the total working gas used. However, there was a greater spread of energetics for
the air: CO2 mixture compared to that of just ambient air. As can be seen, the spread of values for
ambient air when 27 kV, 29.6 kV, and 32 kV were applied was 1.93, 5.66, and 5.28, respectively. As CO2

was introduced, the spread became 4.48, 9.90, and 6.50 for 27 kV, 29.6 kV, and 32 kV, respectively.
This fluctuation can be seen in Figure 4a–c below and occurred with a distribution of higher values
from the center of the system out to the edges, showing that lower energetics were detected at this
point. This was due the quenching mechanisms of N2* by CO2. From Equations (3)–(5), it can be seen
that energetic electrons dissociate CO2 into CO and O, which aid in the formation of O3. Since we



Materials 2018, 11, 1925 7 of 20

saw a much higher generation of O3 with the introduction of CO2, it is good to assume that CO2

was dissociated through electron impact. Given that the excitation cross-section and electronegativity
of CO2 is higher than that of N2, any energetic electrons that were generated were more likely to
interact with CO2 over N2, causing an indirect quenching of N2

+. From this, it can be understood
how the electron energetics were kept at a relatively low level as they did not have the necessary
time to undergo more interactions with the applied electric field as they imparted their energies for
dissociative mechanisms.
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Figure 4. Shows the line ratio of (N2-337/N2+-391) when using ambient air with ≈3.8% CO2. This 
portrays how the electron energies were altered with the different parameter settings, most 
importantly the variation of working gas composition. (a–c) represent discharge at 27, 29.6, and 32 
kV, respectively. 
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Figure 4. Shows the line ratio of (N2-337/N2
+-391) when using ambient air with ≈3.8% CO2.

This portrays how the electron energies were altered with the different parameter settings, most
importantly the variation of working gas composition. (a–c) represent discharge at 27, 29.6,
and 32 kV, respectively.

Knowing that there were oxidative species being generated within the system is important, as it
was suspected that these may aid in the adhesion and biodegradation of the LDPE samples being
treated. For this, there was a focus on reactive species containing oxygen, and through the use of
OES, atomic oxygen (O I) was found at 777 nm and OH was found at 309 nm. Figure 5a–c shows
the generation of OH with the use of ambient air for the different applied voltages. It can be seen
that an appreciable amount of OH was generated throughout the system, but there are points that
show higher generation over others. As the voltage increased, the generation of OH became more
prevalent throughout the entirety of the system, but there was still a decrease in OH emissions over
time, which indicates that there was a saturation event that blocked the formation of any new OH.
From what we found with the generation of O3 and from what can be seen of O I in Figure 6a–c,
there may have been a reduction in the production of OH due to recombination effects of OH back to
H2O, which allowed more O I to become available over time, as described in Equation (2). This can
be seen as the fluctuation of O I seen in Figure 6a–c would have represented changes in available
pathways and over time, this would have been influenced by O3 dissociation and the recombination of
2OH back into H2O + O.
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Figure 5. The above shows the spatial and temporal evolution of OH when using ambient air as the 
sole working gas in the plasma system. (a–c) represent 27 kV, 29.6 kV, and 32 kV, respectively. 
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Figure 5. The above shows the spatial and temporal evolution of OH when using ambient air as the
sole working gas in the plasma system. (a–c) represent 27 kV, 29.6 kV, and 32 kV, respectively.
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Figure 6. The evolution of O I with respect to the spatial and temporal profile of the ambient air plasma
discharge is shown here with an applied voltage of 27 kV, 29.6 kV, and 32 kV, shown in (a–c) respectively.

The generation of OH and O I when CO2 was introduced to the system during plasma discharge
both increased appreciably. This can be seen in Figures 7a–c and 8a–c below. From the previous results
of the EEDF line ratio in Figure 4a–c, it can be seen that the electron energies were more distributed
throughout the lower energy portion for the plasma being generated when CO2 was introduced,
and as previously stated, this was due to the dissociation of CO2 into CO + O from more appropriately
energized electrons through collisional processes that decreases the potential energy that the electrons
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can reach. This aided in a higher formation of O I species, which in turn took part in the formation of
OH and O3. However, there was a much larger increase of OH compared to the increase of O I due to
recombination mechanisms that transformed CO back into CO2, as well as the continuous increase of
O3 that was present at much higher levels compared to those measured with solely ambient air.

Materials 2018, 11, x FOR PEER REVIEW  9 of 19 

Figure 6. The evolution of O I with respect to the spatial and temporal profile of the ambient air 
plasma discharge is shown here with an applied voltage of 27 kV, 29.6 kV, and 32 kV, shown in (a–c) 
respectively. 

0 50 100 150 200 250 300
0

20

40

60

80

100

P
os

iti
on

 (m
m

)

Time (s)

520.0
675.6
831.3
986.9
1143
1298
1454
1609
1765

0 50 100 150 200 250 300
0

20

40

60

80

100

P
os

iti
on

 (m
m

)

Time (s)

720.0
1580
2440
3300
4160
5020
5880
6740
7600

0 50 100 150 200 250 300
0

20

40

60

80

100

P
os

iti
on

 (m
m

)

Time (s)

1000
1625
2250
2875
3500
4125
4750
5375
6000

 

 

(a)

(A.U.)

(b) (A.U.)

(c)

(A.U.)

 

Figure 7. The formation of OH as detected by OES when the ambient air introduced to the system 
contained ≈3.8% CO2. (a–c) represent voltages 27 kV, 29.6 kV, and 32 kV, respectively. 

0 50 100 150 200 250 300
0

20

40

60

80

100
(A.U.)

P
os

iti
on

 (m
m

)

708.0
819.8
931.5
1043
1155
1267
1379
1490
1602

Time (s)

(c)

(A.U.)

0 50 100 150 200 250 300
0

20

40

60

80

100

818.0
901.0
984.0
1067
1150
1233
1316
1399
1482

Time (s)

P
os

iti
on

 (m
m

)

(b) (A.U.)

0 50 100 150 200 250 300
0

20

40

60

80

100

P
os

iti
on

 (m
m

)

Time (s)

650.0
721.5
793.0
864.5
936.0
1008
1079
1151
1222

(a)

 

 

Figure 7. The formation of OH as detected by OES when the ambient air introduced to the system
contained ≈3.8% CO2. (a–c) represent voltages 27 kV, 29.6 kV, and 32 kV, respectively.
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Figure 8. The formation of O I when the ambient air introduced to the system contained ≈3.8% CO2.
(a–c) represent the applied voltages of 27 kV, 29.6 kV, and 32 kV respectively.
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2.2. Weight Loss and Raman Spectroscopy

From the results obtained from the OES and OAS measurements, it can be seen that the
introduction of CO2, even at small quantities, aided in the formation of reactive species. These oxidative
species were specifically targeted as they can help to functionalize a sample’s surface to become more
polar, and therefore more accepting of cell adhesion for various cultures. This was thought to support
the biodegradation of the treated samples as the cells should more readily bind to the sample surface
and begin decomposition of the carbon bonds that make up the polymer. In order to determine the
amount of degradation that the treated samples underwent, the samples were weighed after plasma
treatment and after introduction to the bacteria Ps. aeruginosa. The results of the weight loss method
for degradation detection can be seen in Figures 9a–c and 10a–c. As can be seen from these results,
the only sample that consistently lost weight was the reference sample, which was sterilized and
untreated LDPE. The other samples showed sporadic losses and gains in weight with no discernible
pattern or trend. There is a possibility that the samples that were treated could gain more weight over
the degradation time, but this was difficult to ascertain without more data on this. From this, it could
not be discerned whether there was any degradation present or not. So, in order to determine what
was occurring and whether or not the introduction of the bacteria after plasma treatment had any
significant impact, Raman spectroscopy measurements were carried out to monitor any changes in the
bonds of the samples. Most importantly, it was of great interest to measure any changes in the carbon
bonds of the sample to show that the samples were being degraded from the bacteria using carbon as
an energy source for growth and proliferation.
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Figure 9. Percentage weight change of LDPE when introduced to the bacterial broth of Ps. aeruginosa 
for 10, 20, 30, and 40 days. These represent the percentage weight change in LDPE after degradation 
with plasma treatment times of 30, 120, and 300 s (a) shows changes for the different times at 27 kV 
(b) shows changes for the different times at 29.6 kV (c) shows changes for the different times at 32 kV. 

Figure 9. Percentage weight change of LDPE when introduced to the bacterial broth of Ps. aeruginosa
for 10, 20, 30, and 40 days. These represent the percentage weight change in LDPE after degradation
with plasma treatment times of 30, 120, and 300 s (a) shows changes for the different times at 27 kV
(b) shows changes for the different times at 29.6 kV (c) shows changes for the different times at 32 kV.
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Figure 10. Percentage weight change of LDPE when introduced to the bacterial broth of Ps. aeruginosa 
for 10, 20, 30, and 40 days after being treated with plasma discharge containing ≈4% CO2 in ambient 
air. These represent the percentage weight change in LDPE after degradation with plasma treatment 
times of 30, 120, and 300 s (a) shows changes for the different times at 27 kV (b) shows changes for 
the different times at 29.6 kV (c) shows changes for the different times at 32 kV 

Shown in Figure 11 is a reference sample of LDPE that was sterilized but not introduced to the 
bacterial broth for degradation, as well as degraded reference samples that were introduced to the 
bacterial broth medium without any plasma treatment. This shows the bonds that were of interest 
for our study and how they were important to measure in order to determine the changes in the 
carbon groups of the polymer as a function of degradation time. If there were decreases seen from 
these measurements, then this could be taken as a better sign of biodegradation compared to the 
weighing of the samples. Figure 11 sets the baseline for how much degradation may occur without 
any extra treatments and sets the standard for degradation after plasma treatment and whether or 
not it could be increased. 

After taking the measurements of all samples with the Raman spectrometer, the reason as to 
why there were sporadic changes in the weight of treated samples was found. When carrying out the 
Raman measurements, there was a noticeable difference in the spectra. At either end, there was a 
large curve that continued to skew the results. It was more dominant from 2250 cm−1 to 1000 cm−1 and 
can be seen in Figure 12 with the untreated sample added as a comparison. The reason for this 
deviation is fluorescence. Fluorescence can occur for many reasons and may be associated with a 
contaminated sample, but it can also be due to biological matter being on a sample. Given the use of 
bacterial cells for degradation of the LDPE samples, and with their handling being the same as every 
other sample, it is safe to assume that the fluorescence seen in their spectra is due to the presence of 
organic matter that was a residual of the bacterial cells. By taking this into account, it can be seen why 
the results from weighing the samples was so sporadic and created an unreliable method to 
determine the degradation of the samples. Given this, it could be determined that there was much 
better cell adhesion on the sample surface, which agreed with previous assumptions and validates 
the use of plasma to optimize the grafting of bacterial cells to the LDPE samples as a step towards 

Figure 10. Percentage weight change of LDPE when introduced to the bacterial broth of Ps. aeruginosa
for 10, 20, 30, and 40 days after being treated with plasma discharge containing ≈4% CO2 in ambient
air. These represent the percentage weight change in LDPE after degradation with plasma treatment
times of 30, 120, and 300 s (a) shows changes for the different times at 27 kV (b) shows changes for the
different times at 29.6 kV (c) shows changes for the different times at 32 kV

Shown in Figure 11 is a reference sample of LDPE that was sterilized but not introduced to the
bacterial broth for degradation, as well as degraded reference samples that were introduced to the
bacterial broth medium without any plasma treatment. This shows the bonds that were of interest for
our study and how they were important to measure in order to determine the changes in the carbon
groups of the polymer as a function of degradation time. If there were decreases seen from these
measurements, then this could be taken as a better sign of biodegradation compared to the weighing
of the samples. Figure 11 sets the baseline for how much degradation may occur without any extra
treatments and sets the standard for degradation after plasma treatment and whether or not it could
be increased.

After taking the measurements of all samples with the Raman spectrometer, the reason as to
why there were sporadic changes in the weight of treated samples was found. When carrying out
the Raman measurements, there was a noticeable difference in the spectra. At either end, there was a
large curve that continued to skew the results. It was more dominant from 2250 cm−1 to 1000 cm−1

and can be seen in Figure 12 with the untreated sample added as a comparison. The reason for this
deviation is fluorescence. Fluorescence can occur for many reasons and may be associated with a
contaminated sample, but it can also be due to biological matter being on a sample. Given the use of
bacterial cells for degradation of the LDPE samples, and with their handling being the same as every
other sample, it is safe to assume that the fluorescence seen in their spectra is due to the presence of
organic matter that was a residual of the bacterial cells. By taking this into account, it can be seen why
the results from weighing the samples was so sporadic and created an unreliable method to determine
the degradation of the samples. Given this, it could be determined that there was much better cell
adhesion on the sample surface, which agreed with previous assumptions and validates the use of
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plasma to optimize the grafting of bacterial cells to the LDPE samples as a step towards optimized
biodegradation. The comparison of fluorescence seen in treated samples compared to the reference
sample can be seen in Figure 12.
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Figure 12. Comparison of treated samples to an untreated sample that have undergone 10 days of
degradation to show the presence of fluorescence due to organic matter adhesion on the sample surface
after plasma treatment with ambient air.

After taking into consideration the presence of fluorescence in the treated LDPE samples to
explain the weight gains seen in Figures 9 and 10, the ability to discern the degradation of the polymer
samples comes down to the measurement of the carbon bonds highlighted in Figure 11. It can be seen
that there was an issue that occurred from the measured fluorescence, and that is an offset of each
peak that needed correction to properly identify the changes that may have arisen from degradation
within the bacterial broth. A polynomial fit was applied to each spectra in order to subtract the best fit
baseline in order to analyze the peaks’ presence for any changes that they underwent. The full set of
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Raman measurements for ambient air plasma discharge can be seen in Figure 13, and the impact on
biodegradation when ≈3.8% CO2 was introduced can be seen in Figure 14.

From the results obtained with Raman spectroscopy, it can be seen that there was degradation
occurring for each sample. This shows that, even though the weighing of the samples proved ineffective
at determining the degradation of the LDPE samples due to the excess bacterial cells adhered onto
the polymer surface, the use of Raman spectroscopy highlighted the decrease in the carbon bonds
of the polymer strips. This shows that with plasma treatment, there was a mixture of good cell
grafting onto the samples’ surfaces without negatively impacting the degradation of the samples.
From Figure 13, the change in treatment time allowed for higher biodegradation, as does an increase
in voltage. However, there was also a beneficial impact on the biodegradation of LDPE when treating
the polymer with a working gas containing CO2, as the samples treated with ≈3.8% CO2 in ambient
air showed slightly more biodegradation compared to the samples treated with solely ambient air.
Interestingly, it seems that there was a selectivity in which carbon bonds the bacteria broke down.
This is put forward as the peaks associated with carbon bonds did not seem to decrease at the same
rate. There was some proportionality to these changes, but the bacteria may have broken down and
processed more loosely bound and weaker bonds first, which could have given rise to a slightly uneven
degradation process across the sample.
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Figure 13. Raman spectroscopy measurements of plasma treated LDPE after their introduction into 
the bacterial broth to obtain biodegradation. The operating gas for plasma discharge was ambient air. 
(a–i) show how exposure time and applied voltage during plasma treatment impact the degradation 
process of LDPE. (a–c), (d–f), and (g–i) show how the changes in voltage impact the degradation of 

Figure 13. Raman spectroscopy measurements of plasma treated LDPE after their introduction into
the bacterial broth to obtain biodegradation. The operating gas for plasma discharge was ambient air.
(a–i) show how exposure time and applied voltage during plasma treatment impact the degradation
process of LDPE. (a–c), (d–f), and (g–i) show how the changes in voltage impact the degradation of
LDPE while maintaining a constant treatment time. (a,d,g), (b,e,h), and (c,f,i) show how the changes in
treatment time impact the degradation of LDPE while maintaining a constant applied voltage.
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Figure 14. Raman spectroscopy measurements of LDPE after their introduction into the bacterial 
broth to obtain biodegradation to determine the impact ≈4% CO2 had in the plasma discharge. (a–i) 
show how exposure time and applied voltage during plasma treatment impact the degradation 
process of LDPE. (a–c), (d–f), and (g–i) show how the changes in voltage impact the degradation of 
LDPE while maintaining a constant treatment time. (a,d,g), (b,e,h), and (c,f,i) show how the changes 
in treatment time impact the degradation of LDPE while maintaining a constant applied voltage. 
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Figure 14. Raman spectroscopy measurements of LDPE after their introduction into the bacterial broth
to obtain biodegradation to determine the impact ≈4% CO2 had in the plasma discharge. (a–i) show
how exposure time and applied voltage during plasma treatment impact the degradation process of
LDPE. (a–c), (d–f), and (g–i) show how the changes in voltage impact the degradation of LDPE while
maintaining a constant treatment time. (a,d,g), (b,e,h), and (c,f,i) show how the changes in treatment
time impact the degradation of LDPE while maintaining a constant applied voltage.

3. Methods and Materials

3.1. Non-Thermal Plasma Treatment

The use of a novel dielectric barrier discharge (DBD) NTP system was employed to treat the
samples of LDPE. This DBD system utilizes a newly developed pin design that allows for the generation
of NTP with an AC power supply without the use of any insulating material placed between the
electrodes as a dielectric material. Although no solid material was used (plastic sheet, insulating cover,
etc.), the gases used would act as a dielectric to an extent to hinder electrical arcing from one plate
to another before plasma discharge could occur. The system itself uses two steel plates as electrodes,
the ground electrode being flat and the high voltage electrode having an array of optimally placed pins.
The pins on the high voltage electrode were initially tested with them all being placed so their points
would sit on the same plane, but this produced a non-homogenous discharge and generally created
plasma along the edge of the system rather than the full way through. To optimize this, the pins
were then arranged in a convex pattern that had the central pins down closer to the ground electrode
with the distance from pin to ground plate decreasing slightly as they were placed further from the
center. This caused plasma discharge to occur throughout the entire system as the applied electric
field was not focused along the edge points of the high voltage electrode and was spread out more
homogeneously between the electrodes. For this experiment, the distance from one plate to another
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was 10 cm, but from the central pin tip to the ground electrode, it was 7 cm. The system can be seen
in Figure 15. The power supply was able to generate plasma discharge with a resonant frequency
of 52 kHz and voltages of 27, 29.6, and 32 kV. The duty cycle was kept at 118 µs with a discharge
frequency of 1 kHz. The power at these parameter settings were 3.74, 5.66, and 7.67 W for 27, 29.6,
and 32 kV, respectively.

Materials 2018, 11, x FOR PEER REVIEW  15 of 19 

placed further from the center. This caused plasma discharge to occur throughout the entire system 
as the applied electric field was not focused along the edge points of the high voltage electrode and 
was spread out more homogeneously between the electrodes. For this experiment, the distance from 
one plate to another was 10 cm, but from the central pin tip to the ground electrode, it was 7 cm. The 
system can be seen in Figure 15. The power supply was able to generate plasma discharge with a 
resonant frequency of 52 kHz and voltages of 27, 29.6, and 32 kV. The duty cycle was kept at 118 μs 
with a discharge frequency of 1 kHz. The power at these parameter settings were 3.74, 5.66, and 7.67 
W for 27, 29.6, and 32 kV, respectively. 

Covering the system was a plastic container that had holes bored into it to allow for optical 
studies, gas input, contain reactive species and reduce loss through diffusion, to allow ambient air to 
pervade through the system, and to allow excess build-up of gas during the introduction of the 
ambient air:CO2 mixture to escape so as not to cause any unequal distribution of the gases. The LDPE 
samples were placed on the ground electrode of the system after it was cleaned with ethanol and 
allowed to dry in order to sterilize the surface and decrease the risk of contamination of the samples. 
The samples were treated on both sides, so for the treatment of 30 s, the sample was treated on both 
sides for 30 s to try to modify the total surface area of the LDPE strips. When using the gas mixture 
of ambient air and CO2, the gas was given time to fill up the container so as to make sure there was 
an equal gas distribution throughout the system. After plasma treatment on both sides, the samples 
were left inside the container to allow any post-discharge species to interact with and modify them 
(i.e., O3). 

 
Figure 15. The NTP pin system that was used. Not seen is the plastic box that was used to cover the 
system during treatments and optical measurements. LDPE samples were placed within the plasma 
discharge for the duration of their treatment. Shown is plasma discharge in ambient air. 

3.2. LDPE Sterilization and Bacterial Broth 

The use of LDPE for this experiment was to try and determine the impact that NTP treatment 
has on the biodegradation of classically non-biodegradable polymers. However, it has been found 
that some bacteria may degrade certain polymers by using the polymer as a carbon source for 
consumption to gain energy for cell growth. However, even before treating the LDPE samples, they 
needed to be prepped. Sheets of LDPE were washed with a mix of 30% deionized water and 70% 
ethanol [41,42]. After this wash, they were oven dried at 50 °C. After they were successfully dried, 
they were then brought to the NTP system for treatment. They were placed into the system after the 
ground electrode was cleaned with 100% ethanol and air dried. The sterilized sheets were then 
treated for 30, 120, and 300 s at voltages of 27. 29.6, and 32 kV in ambient air and a 25:1 mix of ambient 
air to CO2. The treatments consisted of treating the sterilized samples on both sides to ensure total 
surface area interaction with the plasma discharge. After being treated, the samples were cut into 1 × 
5 cm strips and placed into a broth media that contained the bacteria Ps. aeruginosa for incubation for 
periods of 10, 20, 30, and 40 days to investigate the effect of biodegradation. After incubation, the 
plastic strips were placed in a 10 mL solution of 0.9% NaCl for 2 h and then vortexed for 10 min. This 
was to remove the biofilm layer and measure the density of it, which was found to be between 1.1 × 

Figure 15. The NTP pin system that was used. Not seen is the plastic box that was used to cover the
system during treatments and optical measurements. LDPE samples were placed within the plasma
discharge for the duration of their treatment. Shown is plasma discharge in ambient air.

Covering the system was a plastic container that had holes bored into it to allow for optical
studies, gas input, contain reactive species and reduce loss through diffusion, to allow ambient air
to pervade through the system, and to allow excess build-up of gas during the introduction of the
ambient air:CO2 mixture to escape so as not to cause any unequal distribution of the gases. The LDPE
samples were placed on the ground electrode of the system after it was cleaned with ethanol and
allowed to dry in order to sterilize the surface and decrease the risk of contamination of the samples.
The samples were treated on both sides, so for the treatment of 30 s, the sample was treated on both
sides for 30 s to try to modify the total surface area of the LDPE strips. When using the gas mixture of
ambient air and CO2, the gas was given time to fill up the container so as to make sure there was an
equal gas distribution throughout the system. After plasma treatment on both sides, the samples were
left inside the container to allow any post-discharge species to interact with and modify them (i.e., O3).

3.2. LDPE Sterilization and Bacterial Broth

The use of LDPE for this experiment was to try and determine the impact that NTP treatment has
on the biodegradation of classically non-biodegradable polymers. However, it has been found that
some bacteria may degrade certain polymers by using the polymer as a carbon source for consumption
to gain energy for cell growth. However, even before treating the LDPE samples, they needed to be
prepped. Sheets of LDPE were washed with a mix of 30% deionized water and 70% ethanol [41,42].
After this wash, they were oven dried at 50 ◦C. After they were successfully dried, they were then
brought to the NTP system for treatment. They were placed into the system after the ground electrode
was cleaned with 100% ethanol and air dried. The sterilized sheets were then treated for 30, 120,
and 300 s at voltages of 27. 29.6, and 32 kV in ambient air and a 25:1 mix of ambient air to CO2.
The treatments consisted of treating the sterilized samples on both sides to ensure total surface area
interaction with the plasma discharge. After being treated, the samples were cut into 1 × 5 cm strips
and placed into a broth media that contained the bacteria Ps. aeruginosa for incubation for periods
of 10, 20, 30, and 40 days to investigate the effect of biodegradation. After incubation, the plastic
strips were placed in a 10 mL solution of 0.9% NaCl for 2 h and then vortexed for 10 min. This was to
remove the biofilm layer and measure the density of it, which was found to be between 1.1 × 106 and
1.5 × 106 CFU. Slight fluctuations were found to occur, but this was assumed to be due to remnants
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of the cell growth remaining on the samples even after washing, as shown in Figure 12. The growth
medium, a nutrient basal media, was also tested to ascertain the concentration of cells within it.
The growth medium concentration was consistently found to be 2.7 × 107 CFU.

Cultivating the bacteria Ps. aeruginosa was done according to work carried out by Kyaw et al. [41].
The broth media that was made to incubate the bacteria and samples was made from the following:
12.5 g/L K2HPO4, 43.8 g/L KH2PO4, 1.0 g/L (NH4)SO4, 0.1 g/L MgSO4·7H2O with 5 mL of trace
elements solution: 0.232 g/L H3BO3, 0.174 g/L ZnSO4·7H2O, 0.116 g/L FeSO4(NH4)2SO4·6H2O,
0.096 g/L CoSO4·7H2O, 0.022 g/L ((NH4)6Mo7)24·4H2O, 0.008 g/L CuSO4·5H2O, and 0.008 g/L
MnSO4·4H2O. Inoculation and incubation was carried out under sterile conditions. A total of 30 mL of
nutrient basal media was added to a falcon tube. After this, 10 strips of LDPE were added to the tube.
A total of 0.6 mL of bacterium in 0.85% saline solution were added to tube; the initial concentration for
each incubation was kept at 0.5 McFarland Standard. Incubation was maintained at 37 ◦C and tubes
were placed in a rotary shaker at 120 rpm. The tests were performed in triplicate and the tubes were
regularly tested for cell growth and made sure that there was no contamination present. When the
incubation of the LDPE strip in the media was over, they were removed and washed with a 2% sodium
dodecyl solution (SDS) for 4 h and dried. After this, they were placed back into tubes containing
deionized water and washed in a sonic bath for 30 min to remove any excess residue that may have
been present. When this was finished, the strips were then dried overnight in an oven at 50 ◦C.
Once dried, the samples were placed on a weighing scales to determine if there was any measurable
loss after degradation in the bacterial broth. This gravimetric method did not give the results that
were expected as there was no consistent pattern or trend in the values obtained for the weights of
each batch of samples. The results that were obtained showed very small loss values and also showed
higher weights compared to the values they gave before introduction to the bacterial broth. This was
found to be due to fluctuations in organic matter being adhered to the sample surface as is shown
in Figure 12.

3.3. Optical Emission and Absorption

The OES and OAS both used an Edmund Optics CCD spectrometer (Edmund Optics Inc.,
Barrington, NJ, USA) that has a wavelength dependent resolution of 0.6–1.8 nm. Because of this,
some of the peaks that were measured were in fact an amalgamation of multiple species. An example
of this is can be seen at 777 nm, which was in fact an overlapping of three peaks that could not be fully
resolved with the spectrometer used. These three emission peaks would be from O I with λ = 777.194,
777.417, and 777.539 nm and transitions of 3S

5So
2–3p

5P1,2,3, respectively, and an upper energy level
of 10.47 eV [43]. For this experiment, however, the total intensity measured at 777 nm was sufficient
as this included all O I emission lines of interest. When taking the OES measurements of the plasma
discharge, the acquisition time was 1.2 s with a delay of 3.8 s and a total of 61 acquisitions. This was to
cover the fill 300 s of plasma discharge that was used for the maximum treatment time of the LDPE
samples. These measurements were carried out over three voltages (27 kV, 29.6 kV, and 32 kV) for
ambient air and ambient air:CO2 at a 25:1 mixture ratio at five different points along the treatment area
of the sample. The points of measurement were at 0, 25, 50, 75, and 100 mm from the left most section
of the plasma discharge to the right most side.

OAS measurements were taken along the same positions as the OES measurements and also
used the same acquisition time and delay settings, but were measured for a period of 415 s to gain
information on the changes in O3 post-discharge. Overall there were 84 spectra recorded for the
OAS measurement of each parameter setting. Although the same spectrometer as was used in the
OES measurements, a UV/Vis/NIR light source was used as a reference to detect changes in light
intensity and thus determine the average spatial density of O3. The light source used was a BDS130
deuterium/tungsten lamp (B&W Tek, Newark, DE, USA) with a spectral output of 190–2500 nm.
The optical path used when recording the OAS data was 29 cm. After recording the data from the OAS
experiment, Equation (6) was used to determine the average spatial density of O3, where D(t) is the
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density (cm−3), L is the optical path (cm), I(0) is the reference intensity with no plasma discharge, I(t) is
the measured intensity during and after plasma discharge, and σ(λ) is the wavelength dependent
absorption cross-section for the species of interest. For O3 at 253.7 nm, the absorption cross-section
is 1.154 × 10−17 cm2. For OAS, the power supply timer was set to 300 s so it would automatically
shut off while the measurements were still being taken in order to show the changes in O3 over time
during post-discharge.

D(t) =
1

σ(λ) L
ln

I(0)
I(t)

(6)

3.4. Raman Spectroscopy

In order to determine the changes in carbon bonds to detect signs of biodegradation, Raman
spectroscopy was implemented. In order to carry out these measurements, the DXR SmartRaman
Spectrometer from Thermo Fisher Scientific Ltd (Waltham, MA, USA) was used. The chemical structure
of LDPE consists of C–C, CH2, CH–CH2, and CH2–CH2 bonds. Throughout the structure, there are no
polar groups, and since the change in carbon bonds is of interest, Raman spectroscopy is suitable as the
bonds that are sought after tend to have strong signals compared to infrared measurement. A 780 nm
diode laser at 120 mW was used to carry out the measurements and detect the chemical groups within
the polymer. The setup utilized a CCD and a universal sampling accessory with a 50 µm slit aperture.
The measurements that each sample underwent consisted of 10 exposures with each exposure lasting
15 s. This was done at three random sampling points for each sample to obtain a better averaging of
the measured spectra for analysis. Once the spectra were obtained, it was necessary to process the data
using a polynomial fit baseline as there was a high amount of fluorescence that distorted the peaks of
the spectra. This baseline procedure was carried out in Origin Pro 8TM (8, OriginLab, Northampton,
MA, USA). After this baseline procedure was carried out, an averaging of the data from the three
random sampling points was carried out for each sample and then plotted.

4. Conclusions

It has been found that the use of NTP discharge for the treatment of LDPE strips leads to an
increase of its biodegradation in a bacterial broth media containing Ps. aeruginosa. The premise of this
experiment was to try to optimize a treatment procedure in which biodegradation can be increased.
It is well known that NTP discharges in ambient air can generate multiple oxygen containing particles
and that these can alter the surface of a sample to have it become more polar. From this, the addition
of a slight amount of CO2 would increase the amount of oxygen containing particles to further the
amount of polar functional groups that may form on a treated samples surface. From the results
obtained via OES and OAS, this was found to be the case with an increase in O I, OH, and O3 being
obtained when the ambient air contained ≈4% CO2. From this, and comparing the results from
the Raman measurements, it was found that this increase in oxidative species in the discharge and
polar groups on the sample surface leads to an increase in biodegradation compared to an untreated
sample for all treated samples. However, the introduction of CO2 increased the biodegradation further
compared to solely ambient air plasma discharge treated samples which highlights the importance of
optical diagnostics in determining the gas chemistry to optimize the application of NTP systems to
various areas.
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