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Rapidly sequence-controlled electrosynthesis of
organometallic polymers
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Single rich-stimuli-responsive organometallic polymers are considered to be the candidate for

ultrahigh information storage and anti-counterfeiting security. However, their controllable

synthesis has been an unsolved challenge. Here, we report the rapidly sequence-controlled

electrosynthesis of organometallic polymers with exquisite insertion of multiple and distinct

monomers. Electrosynthesis relies on the use of oxidative and reductive C–C couplings with

the respective reaction time of 1 min. Single-monomer-precision propagation does not need

protecting and deprotecting steps used in solid-phase synthesis, while enabling the uniform

synthesis and sequence-defined possibilities monitored by both UV–vis spectra and cyclic

voltammetry. Highly efficient electrosynthesis possessing potentially automated production

can incorporate an amount of available metal and ligand species into a single organometallic

polymer with complex architectures and functional versatility, which is proposed to have

ultrahigh information storage and anti-counterfeiting security with low-cost coding and

decoding processes at the single organometallic polymer level.
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Precise insertion of multiple and distinct monomers into an
artificial single polymer according to a desirable pattern is
one of the biggest challenges for the synthesis of digital

macromolecules1–8. Ideal synthesis should be reproducible, gen-
eral, and low cost to provide the polymers with highly exquisite
control over the insertion of multiple monomers9. Iterative
synthesis, as a truly sequence-controlled polymerization of mul-
tiple monomers, can be divided into liquid-phase and solid-phase
synthesis7. Each monomer is added at a time to the end of a
growing macromolecular chain, then reaction debris is separated
from the chain. These steps are repeated for next monomer in the
sequence. Liquid-phase synthesis allows straightforward sampling
for analysis with requirement of tedious chromatographic pur-
ification and time-consuming solution evaporation10,11. Solid-
phase synthesis12 plays an irreplaceable role as one of the most
successful methods because of its simple purification and easy
automation13. However, solid-phase synthesis has been hampered
by overall efficiency and poor atom economy10,14–17. Though the
liquid-phase and solid-phase synthesis can theoretically be
extended to many kinds of monomers, this approach remains
extremely difficult in making complex molecular architectures
and tuning functional versatility, and precludes itself for synthesis
and applications of materials. Making the connection in opposite
direction between organic synthesis and electrochemistry has
been realized to hold significant potential in both areas18. For
example, the oxidative and reductive reactions in general organic
synthesis are incompatible in identical solution, but electro-
chemical stimuli can enable switchable oxidative and reductive
reactions to take place at the interface of identical electrode. The
reaction at solid–liquid interface can be accelerated by controlling
potential and current intensities, while the electrochemistry can
simplify the purification and post-treatment processes19,20.

In this paper, we describe the marriage of solid-phase synthesis
with electrochemistry to rapidly generate uniform and sequence-
controlled organometallic polymers with exquisite control over
the composition and sequence of polymer backbone. Selected
reactions of iterative electrosynthesis are oxidative self-coupling
of N-phenyl carbazolyls and reductive self-coupling of vinyls on
pyridines coordinated with metal cores between two monomers
(Fig. 1a). Electrosynthesis initiates by the oxidative coupling of
carbazyolyls between the monomer in solution and pendant of
complex self-assembled on ITO coated glass (Supplementary
Figs. 1–4), and propagates via switching reductive and oxidative
couplings in alternative solutions containing the same or different
monomers (Fig. 1b). For ideal synthesis in single-monomer
precision, precluding the possible coupling reaction of organo-
metallic polymers with the dimer existed in solution from self-
coupling of monomers, the oxidative and reductive reactions of
identical monomer should be conducted in their individual
solution. Rapid iterative electrosynthesis requires only 1 min or
less time for each addition of monomers. Multinary monomers
can be subsequently encrypted into sequence-controlled organo-
metallic polymers.

Results
Iterative electrosynthesis of homo-organometallic polymers.
For iterative electrosynthesis of organometallic polymers (Fig. 2,
Supplementary Figs. 5–6), on MIIPX self-assembled ITO (indium
tin oxide) coated glass, coupling reactions of carbazolyls and
vinyls in 0.5 mM MIIXY after optimizing experimental condition
were conducted by cyclic voltammetry (CV) at oxidative potential
range (E=−0.50–1.0 V, 50 mV s−1, 1 cycle, 1 min) and reductive
potential range (E=−0.50 to −1.8 V, 50 mV s−1, 1 cycle, 52 s),
respectively. Both reactions were well studied by Bard’s21, our22

and worldwide groups23–25. The real-time optical and

electrochemical monitoring can be used to ensure completely
coupling proceed of each addition of monomer. As shown in
Fig. 2a–d, the organometallic polymers grow in single-monomer
precision, demonstrated by single-monomer-dependent absorp-
tion intensities (at 505 and 680 nm) and current intensities of
redox peaks (Os2+/3+, E1/2= 0.56 V vs. Ag/Ag+), according to
single-monomer self-assembled. As the number of Os units
increases with respect to single-monomer self-assembled, the
absorption values and current intensities of organometallic
polymers, based on random data of UV–vis spectra and statistical
data of CV measurements on entire substrate, increase regularly
and exhibit an excellent linear relationship (R2= 0.991–0.998)
with switching times of oxidative and reductive reactions, indi-
cating the polydispersity of organometallic polymers could be
ignored. Thus, the single-monomer addition and the length of
organometallic polymers can be well controlled towards quanti-
tative and uniform synthesis. Here, the electrochemical cell was
open to air with simple argon bubble, and this synthesis of
organometallic polymers could be further optimized by the
reaction time and frequency for each step towards further ideal
synthesis. Electrosynthesis is rapid (1 min for each addition), and
possibly independent of metal species and organic ligands of
complexes, thus they provide significantly high controllability
toward uniform synthesis, compared to well-known method
based on coordination chemistry. To date, the iterative synthesis
of organometallic polymers were mostly achieved by the metal
coordination between almost Fe2+ and terpyridine on solid
substrate, which took up to 24 h for each addition of single
monomer at room temperature26–28. Absorption laying at 505 nm
is attributed to metal-to-ligand [OsII(dπ) to tpy(π*)] charge
transfer (MLCT) transition, while the additional band at 680 nm
seems to be owing to spin-forbidden MLCT transition from
1[OsII(dπ)6] to 3[OsII(dπ)5tpy(π*)1]29. Iterative reaction for tenth
addition of monomers becomes time consuming because the
length of organometallic polymers standing on the electrode
surface has reached the width of the electric double layer, which is
generally considered to have the thickness of ~20 nm from the
surface of electrode. As auxiliary evidence, the resulting organo-
metallic polymers on electrode have a thickness of 19.7 nm
(Supplementary Fig. 7), which is in good agreement with the
theoretical value of 20.3 nm in the extended state of organome-
tallic polymer. Height differences of organometallic polymers
observed in AFM images during iterative synthesis are less than
length of 2.0 nm monomer (Supplementary Fig. 8), in good
agreement with iterative addition in single-monomer precision.
Long polymers with over 10 units could be synthesized and grow
along the ITO surface without the limitation of electric double
layer if the organometallic polymers were well separated into
isolated state lying on the ITO surface.

This real-time monitoring, uniform and reproducible synthesis
enables these organometallic polymers with good electrochemical
stability (Supplementary Fig. 9) to be reliable for digital storage
and reading of molecular information. In the first proof of
concept, organometallic polymers containing various lengths and
species of metal cores with distinguished optical and electric
properties permit to express their own message, which can be
easily deciphered by the X-axis position (metal species) and the
Y-axis intensities (number of metal cores) of UV–vis absorption
peaks and CV (Fig. 2). In principle, a wide species of metal cores
and organic ligands with electrochemically stable C-metal and N-
metal coordination bonds can be incorporated into organo-
homo-metallic polymers to vary the molecular information with
desirably electrochemical and optical features at area-selective
positions with nano- or micro-scale of patterned electrodes,
which could individually work as area-selective devices30.
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Iterative electrosynthesis of heter-organometallic polymers.
Iterative synthesis of M1

IIXY on M2
IIPX (M2 ≠M1) monolayer

self-assembled on ITO glass was also feasible (Fig. 3, Supple-
mentary Fig. 10), indicating X–X and Y–Y couplings are inde-
pendent on species of metal cores of MIIXY. Three binary
sequence-coded organometallic polymers of Os and Fe were
synthesized (Fig. 3, Supplementary Figs. 11–12). As shown in
Fig. 3a–d, the absorption peaks at 576 nm (metal-to-ligand [FeII

(dπ) to tpy(π*)] charge transfer (MLCT) transition)31 and cur-
rent intensities of redox peaks (p1 and p2) rise up regularly as the
function of switching times of oxidative and reductive reactions,
indicating a successful iterative synthesis. The increase in
absorption intensities at 505 nm can be also observed owing to
iterative addition of shoulder absorption intensities of Fe units.
Each iterative addition is easily observed in Fig. 3d that the
current intensities are jumping up with the increase of Os or Fe
units, while the current intensities of Fe or Os units remain stable.
The single-monomer changes of current intensities can be easily
distinguished, indicating a reliably sequence-controlled alter-
native addition in single-monomer precision. These observations
can be also obtained in other binary (Fig. 3e–h) and ternary
(Fig. 4, Supplementary Figs. 13–16) sequence-controlled orga-
nometallic polymers. Therefore, in the second proof of concept of
molecular information storage, the coding of organometallic
polymers can be also recognized by redox peaks of metal number
and species in corresponding polymers. In these cases, the
organometallic polymers with possibly different structures as
impurities during iterative can be ignored. Importantly, the

similar current densities (or cover area) of redox peaks (p1 and
p2) of binary and ternary organometallic polymers in Fig. 3c, and
Supplementary Figs. 11c, 12c should significantly indicate the
same iterative additions of two species of metal cores. It implies
that the coupling conversion does not have obvious change
during iterative synthesis of different monomers. Compared to p1
and p2, the p3 shows a large redox peak because of the partial
overlap with redox peak of 3,3′-bicarbazolyl units. The structural
characterizations of organometallic polymers assembled on solid
surface have been a challenge32,33. We found that the dimer
already got worse solubility with time and gradually precipitated
from the solution (Supplementary Figs. 17–19), these organo-
metallic polymers with molecular weight of 7–13 kDa and length
of 20 nm are difficult to be examined by solution processed NMR,
Mass and GPC because the sample of 5 mg for structural char-
acterizations does need the electrode of 5000 cm2. Here the partial
fragments of organometallic polymers can be found by Mass
spectra on ITO surfaces (Supplementary Figs. 20–28). We have
tried to obtain STEM image to analyze a periodically atomic
structure in single organometallic polymer. Finally, the dark and
bright atomic clusters of Os and Ru were observed. The difficulty
of this experiment is sample preparation and transfer, while the
structural formation change of film after sample preparation
remains unknown (Supplementary Fig. 29). Usual chemical
coordination for synthesis of organometallic wires26–28 requires
the high-quality solvents without external ions for synthesis and
purification, and its controllability and reproducibility still remain
stagnant and challenge in general metal and ligand species, and
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Fig. 1 Rapidly sequence-controlled electrosynthesis of organometallic polymers. a Illustrations of electrochemical oxidative and reductive couplings for
iterative synthesis at 1.0 V and −1.8 V, respectively, on ITO coated glass. b Illustration of iterative synthesis of sequence-controlled organometallic
polymers by switching oxidative and reductive reactions of distinct monomers.
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following coordination types for further sequence-controlled
synthesis. Each addition of monomer for stepwise chemical
coordination generally took very long time up to 24 h, which
could cause the depolymerization and exchange of ligands and
metal cores during the synthesis of organometallic polymers34.
Here electrosynthesis not only shows the rapid synthesis and
general potential for a lot of types of complexes with different
species of metals and organic ligands, but also provides a high
controllability in sequence-controlled synthesis of organometallic
polymers.

As shown in Fig. 5a–c, a series of absorption spectra were
collected from homo- and hetero-organometallic polymers with
different compositions and sequences at potentials ranging from
0.55 to 1.05 V vs. Ag/Ag+. Absorption peak of OsII homo-
organometallic polymer at 495 nm changes at applied potentials
from 0.55 to 0.75 V because of conversion of OsII to OsIII, and
remains stable while applied potential climbs over 0.75 V. For
hetero-organometallic polymers of OsII and FeII, the absorption
peaks at 576 nm attributed to Fe complex units slightly drop
down from 0.55 to 0.75 V, and dramatically decrease at applied
potentials of >0.75 V because of conversion of FeII to FeIII. The
absorption change of hetero-organometallic polymers at 576 nm
between 0.55 and 0.75 V could be considered from the absorption
shoulder change of OsII complex units. Thus, beside individual
UV–vis spectra or CV measurement, the in situ optoelectro-
chemical data also enables us to read the number and species of
metal cores of organometallic polymers, which could work in
electrochromic devices.

Sequence decoding of organometallic polymers. Regarding the
sequence decoding of organometallic polymers, establishing a
library of spectra database of organometallic polymers with dif-
ferent sequences could help, because three binary and three
ternary organometallic polymers can be recognized on detailed

comparisons of their UV–vis and fluorescence spectra (Fig. 5d, e).
Photoluminescence from ligands excited by 310 nm shows the
change from shoulder companied peak to sharp peak probably
owing to the change of metal cores at two ends of ligands. It is
well known that the absorption peak and redox peak of complex
can be altered by modifying or changing organic ligands of
complexes. As an alternative method for sequence decoding of
organometallic polymers in future, the sequence decoding will
become easy if 10 kinds of complexes containing the identical
metal core and different organic ligands with their own optical
and electric features were used for first to tenth particular posi-
tions in single organometallic polymer during iterative synthesis.
Therefore, the sequence decoding of organometallic polymers will
be possible via the further design of monomers used in this study.
In this case, the sequence decoding of ternary organometallic
polymers needs 30 kinds of monomers.

Information storage and anti-counterfeiting security. The
highly controlled optical properties by sequencing organometallic
polymers (Fig. 5d, e) offer a truly opportunity to determine
quantitative structure-property relationships for designing mate-
rials. In principle, an amount of available metal cores in periodic
table of elements including Co (Supplementary Fig. 30), Ir,
etc.35,36 could be incorporated into organometallic polymers.
Generally, every monomer in digital polymer expresses 0- or 1-
bit, and polymer with eight monomers gives a letter in ASCII
(American Standard Code for Information Interchange)37. In this
paper, every monomer (metal core) can express one or two (c.a.
Ru for r or ru) letters, and single organometallic polymer could
express a word or sentence because of a number of available
ligands and metal species with rich-responsive states by electric
or/and optical stimuli. Therefore, these organometallic polymers
theoretically have the ultrahigh information storage with expo-
nential enhancement compared with single kind of metal cores38.
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Fig. 2 Electrosynthesis of homo-organometallic polymers. a, b Illustrations of UV–vis absorbance and intensities as a function of switching times during
iterative synthesis. c, d Illustrations of CV and its intensities of redox peaks as a function of switching times during iterative synthesis.
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Ten and twenty kinds of monomers in single organometallic
polymers containing 10 units with different electrochemical and
optical features have the sequences of over 3.6×106 and 6.7×1011.
This large library of sequences with difficultly structural char-
acterization ensures these organometallic polymers to have
ultrahigh anti-counterfeiting security. The electrochemistry and
UV–vis spectra are considered to be the convenient and low-cost
coding and decoding processes for practical applications in both
liquid solution and solid states compared to other techniques
such as NMR and Mass spectra. In addition, this uniform
synthesis facilitates thickness controlled fabrications in single-
monomer precision on large area compared to conventional
electropolymerization (Supplementary Fig. 31).

Discussion
We have successfully demonstrated a rapid, general and low-cost
production of uniform and sequence-controlled organometallic
polymers with exquisite insertion of multiple and distinct
monomers using bottom-up iterative electrosynthesis via stable
C–C couplings. This sequence-controlled electrosynthesis offers a
true opportunity to determine quantitative structure-property
relationships for designing materials. Highly efficient reactions,
simple washing purification and real-time monitoring ideally lend
them to a potentially mechanized and automated process through
the integration of computer controls to take the desirable mole-
cular structures of a desired product and output39–42. The
advances of organometallic polymers with tailored organic ligand,
metal species and number have been further proposed for
ultrahigh-density molecular coding with decoding solutions.
Further potential applications may not necessarily require long

organometallic polymers. The possible electrodes can be metals
(c.a. gold), some metallic oxides (c.a. fluorine-tin oxide, titanium
dioxide) and carbon43,44. We envisage that these organometallic
polymers with highly tunable structures, functions, and rich-
stimuli-responsive switch as an excellent molecular platform will
also hold great promise in applications, such as catalysis45, elec-
trochromics46, molecular electronics47, capacitances48, etc. Stu-
dies toward these applications are currently taking place in our
laboratory.

Methods
Materials and syntheses. Materials and reagents used in this study were pur-
chased and used without further purification. Solvents for chemical synthesis and
electrochemical measurements were purified by distillation. All aqueous electrolyte
solutions and water washings were performed with reagent grade deionized water.
The synthetic routes and structural characterizations of the monomers are pre-
sented in supplementary Figs. 32–60.

Fabrication of self-assembled monolayer. Self-assembled monolayers used in
this study were prepared by immersing freshly cleaned ITO coated glass in 0.1 mM
methanol solution of RuIIXP and OsIIXP for 12 h in darkness, followed by soni-
cation cleaning in ethanol bath, then washed with CH2Cl2 and dried under N2 flow.

Electrochemical synthesis. Electrochemical measurements were performed using
a typical one-compartment, three-electrode setup. Supporting electrolytes Bu4NPF6
(tetrabutylammonium hexafluorophosphate) and Bu4NClO4 (tetrabutylammonium
perchlorate) were dried for 24 h at 80 oC under vacuum before use. Ag/Ag+ or Ag/
AgCl (an AgCl coated Ag wire) were used as reference in organic and aqueous
systems, respectively. ITO (8–12Ω per□) and glassy carbon were used for working
electrode. Pt wire served as counter electrode in all cases. Prior to electrochemical
assembly, N2 was purged to solution for 20 min. Iterative synthesis was conducted
on self-assembled monolayers modified ITO as working electrode (working area:
1.0 cm2) by alternatively applying positive and negative potential.
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Data availability
The source data underlying Figs. 2–5 and Supplementary Figs. 1, 3–5, 9–16, 30, 31 are
provided as a Source Data file. All data are available from the corresponding author upon
reasonable request.
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