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Abstract: In recent years, with rapid industrialization and massive energy consumption, ground-level
ozone (O3) has become one of the most severe air pollutants. In this paper, we propose a functional
spatio-temporal statistical model to analyze air quality data. Firstly, since the pollutant data from
the monitoring network usually have a strong spatial and temporal correlation, the spatio-temporal
statistical model is a reasonable method to reveal spatial correlation structure and temporal
dynamic mechanism in data. Secondly, effects from the covariates are introduced to explore the
formation mechanism of ozone pollution. Thirdly, considering the obvious diurnal pattern of ozone
data, we explore the diurnal cycle of O3 pollution using the functional data analysis approach.
The spatio-temporal model shows great applicational potential by comparison with other models.
With application to O3 pollution data of 36 stations in Beijing, China, we give explanations of
the covariate effects on ozone pollution, such as other pollutants and meteorological variables,
and meanwhile we discuss the diurnal cycle of ozone pollution.

Keywords: spatio-temporal statistical model; functional data analysis; O3 pollution

1. Introduction

As one of the major pollutants, ground-level ozone (O3) has received a lot of public attention.
Lots of studies have shown that O3 could have detrimental effects on human health, including
exacerbation of cardiovascular and respiratory dysfunction, and even premature mortality [1,2].
Additionally, tropospheric ozone, as a greenhouse gas, plays an important role in climate change,
and further affects, for example, agricultural crop production [3,4]. In recent years, as the consequence
of rapid industrialization and alarmingly increasing energy consumption, China has encountered
severe air pollution [5–8]. Particularly, ozone becomes one of the serious and worsening pollutants
in major areas of China, such as Beijing–Tianjin–Hebei urban agglomeration, and the Pearl River
delta [9,10]. With a population of over 20 million, Beijing is one of the world’s largest mega cities.
Due to coal burning, fugitive dust, and more recently a rapid increase in vehicular emissions, Beijing
faces serious air pollution problems, and especially, studies regarding photochemical ozone pollution
are attracting more and more attention [11,12].

The Chinese government identifies the urgency for air quality assessment and emission control,
and has built a large monitoring network since 2013. Now, there are over 1500 national pollution
monitoring stations in over 300 cities. Hourly readings of air pollutants are regularly recorded and
directly transferred to China National Environmental Monitoring Center (CNEMC). The real-time
observation and recording of the air pollution data provide a solid basis for studying the dynamic
changes of pollutants and the underlying causes. Air quality data are collected over space and
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time; thus, the amount of data are large, and the analysis is complex. One important and common
statistical characteristic of such data worthy of our notice is that the nearby (both in space and
time) observations tend to be more alike than those far apart. Consequently, an assumption that
spatio-temporal data follows the “independent and identically distributed” (iid) statistical paradigm
should typically be avoided. Based on the underlying spatio-temporal structure of the pollution data,
spatio-temporal statistical model, which simultaneously considers both the spatial covariance and
temporal dependence, is thus a sensible and reasonable choice [13]. Moreover, O3 data show a clear
diurnal cycle. It peaks during the day and reaches a minimum at night. Since ozone data are sampled
at a high frequency in time, it provides an overview of the daily cycle of pollutant concentrations.

A spatio-temporal statistical model is powerful to reveal spatial correlation structure and temporal
dynamic mechanism in data. Huang and Cressie (1996) [14] introduced a dynamic random field
with a separable spatio-temporal covariance structure, which is widely used in the environmental
field. When the spatio-temporal dependencies become complicated, the power of the hierarchical
statistical modeling (HM), which is capable of decomposing an uncertainty source of data, becomes
apparent. The HM’s strength is well discussed in Cressie et al. [15]. Moreover, the daily pattern of
ozone pollution needs more exploration. To do this, we divided the collection time into two parts,
one related to intra-day fluctuations and the other related to intra-day changes. Geographic space
is defined by latitude and longitude, with the date being the third dimension, and the intra-day
hour is regarded as the fourth dimension, which gives a four-dimensional representation of the
data. In this way, the functional data analysis (FDA) approach [16] is used to model the intra-day
variation of the measurement data, and the remaining dimensions are processed according to the
classic spatio-temporal data modeling. To summarize, in addition to the dynamic random field and
the hierarchical modeling, the third building block is based on the functional representation of daily
profiles of atmospheric pollution through a functional data analysis approach, which is the main
innovation of the method.

In the present study, we propose a functional spatio-temporal statistical model, which is also a
two-level hierarchical spatio-temporal model. A fruitful approach is based on the representation of
random functional objects as linear combinations of the basis functions with Gaussian random coefficients.
This allows for representing a functional model as a random components model and inheriting the
related inferential machinery, e.g., Wood [17]. Based on the Kalman filter and expectation–maximization
(EM) algorithm, a model inference for parameter estimates is implemented [18,19]. In addition, from the
marginal likelihood function, an information matrix is obtained to measure the uncertainty of the model
parameters [20]. The proposed model has the following advantages: (i) the dynamic random field is
used to describe the spatio-temporal characterization of emissions of air pollution; (ii) and covariate
effects are incorporated to analyze the underlying formation mechanism of atmospheric pollutants;
(iii) in addition, the main innovation is the introduction of the functional data analysis approach, which
is performed to explore the daily pattern of pollutants. In the paper, we show the capability of the
model by using O3 pollution data from 36 pollution monitoring stations in Beijing, China.

The paper is organized as follows. In Section 2, we describe the data in the study region, and introduce
the Fourier basis functions, and the functional spatio-temporal statistical model, including the
implementation of model estimation and cross-validation. In Section 3, we first show the selection
of covariates and basis numbers. After comparing our model with others, we show the outstanding
model capability, and finally give a comprehensive interpretation of the results. Conclusions are
in Section 4.

2. Material and Methods

In this section, we first describe the data in the study region. Then, we introduce the Fourier basis
function, and describe the functional spatio-temporal statistical model. In particular, model equations,
model estimation, and cross-validation are discussed.
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2.1. Data Description

The World Health Organization (WHO) set a guideline of 100 µg/m3 for a maximum daily 8-h
average exposure to ground-level O3; otherwise, adverse impacts on human health may occur [21].
Considering the increasing public concern on ozone, we attempt to analyze the effects from other
pollutants and meteorological variables on ozone pollution, and provide some insight into the diurnal
cycle of O3, which peaks in the mid-day and reaches minimum at night-time.

In this study, we collect hourly concentration of the ground-level ozone in spring, summer,
and autumn of year 2017, from thirty-six pollution monitoring stations in Beijing, China, which are
directly managed by the Ministry of Environment and Protection (MEP). We also collect four other
pollutant gases—particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon
monoxide (CO). All of the pollutant gases are measured in µg/m3. The oxides of nitrogen (NOx) and
the volatile organic components (VOC) constitute are known to be the important precursors of the
ground ozone generation [22]. However, components of VOC are not measured by the air quality
monitoring network.

We also collect meteorological data: barometric pressure (PRES, in hectopascal), air temperature
(TEMP, in degree celsius), dew point temperature (DEWP, in degree celsius), integrated rainfall
(IRAIN, in millimeter), and integrated wind speed (Iws, in meter per second) from nine weather
stations of China Meteorological Administration (CMA). All the measurements are recorded hourly.
We match between air quality stations and meteorological stations by the geodesic distance.
Figure 1 displays the spatial locations of the air quality stations with red dots as well as the
meteorological stations with blue triangles [23]. In addition to these meteorological variables,
ultraviolet radiation is also a significant meteorological factor that influences O3 generation. Therefore,
we download the data of UVB (in J/m2) with wavelengths between 200 and 440 nanometers from the
European Centre for Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu).
The UVB data are provided at a grid size of 0.25◦ × 0.25◦ at hourly frequency available over the study
region. Since the UVB data vary greatly during the day and night, we take their log-transform before
adding to the model. Note that the integrated rainfall and integrated wind speed are respectively
calculated by:

IWSt =

{
WSt, WDt ! = WDt−1,

IWSt−1 + WSt, WDt == WDt−1.
(1)

IRAINt =

{
RAINt, RAINt = 0,

IRAINt−1 + RAINt, RAINt ! = 0.
(2)

Figure 1. Thirty-six air quality monitoring stations with red dots and nine meteorological stations with
blue triangles.

https://cds.climate.copernicus.eu
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2.2. Fourier Basis

The basic philosophy of functional data analysis is to think of observed data functions as single
entities, rather than merely as a sequence of individual observations. In practice, functional data are
usually observed and recorded discretely as n pairs (tj, yj), and yj is a snapshot of the function at time
tj, possibly blurred by measurement error. Time is so often the continuum over which functional data
are recorded that we may slip into the habit of referring to tj as such, but certainly other continua may
be involved, such as spatial position, frequency, weight, and so forth:

yj = x(tj) + εj (3)

In functional data analysis, we need a strategy for constructing functions, which balances the
model fitting and complexity. We built a set of functions where φk, k = 1, ..., K are called basis functions,
and their linear combination is defined as a function:

x(t) =
K

∑
k=1

ckφk(t) = c′φ(t), (4)

the expansion of the basis function, where the parameters ck, k = 1, ..., K are the expansion coefficients
to be estimated. In effect, basis expansion methods represent the potentially infinite dimensional world
of functions within the finite-dimensional framework of vectors like c. The functional data analysis is
simplified to multivariate data analysis.

The basis functions used for data modeling mostly belong to two categories: periodic and
non-periodic. Most functional data analyses involve either a Fourier basis for periodic data, or a
B-spline basis for non-periodic data. Since we are interested in the diurnal variations of ozone, we
introduce the Fourier basis functions in detail. In order to express the repeated pattern in long-term
sequences, basis functions need to be repeated within a certain time period T. The famous basis
function extension for periodic data provided by the Fourier series is:

x̂(t) = c0 + c1sin(ωt) + c2cos(ωt) + c3sin(2ωt) + c4cos(2ωt) + ... (5)

where ω = 2 π/T. Defining a Fourier basis system requires two pieces of information: the number of
basis functions K and the period T. Figure 2 shows the Fourier basis system with K = 5 and T = 1.
Followed by the constant, the Fourier basis functions are arranged in consecutive sine/cosine pairs:

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.5
−

0
.5

0
.5

1
.5

Figure 2. Fourier basis function system with K = 5 and T = 1.

We select the ozone data from one of the pollution stations—Wanliu Monitoring Station, which
is located at Haidian District, Beijing, for preliminary analysis. The time span is one week from
21 May 2017 to 27 May 2017. We capture the daily variation of ozone data by using five Fourier basis
functions. The mean square error (MSE) of fitted residuals is 14.79 µg/m3. As shown in Figure 3,
the predicted value at hour 24 matches the predicted value at hour 0 in the next day, guaranteeing the
periodic nature of the daily cycle.
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Figure 3. Ozone data fitting by using five Fourier basis functions.

2.3. Model Equation

Let s = (slat, slon) be the generic spatial location on the Earth’s sphere with sample size n,
and t = 1, ..., T the day index, and domain H = [h1, h2] ⊂ R the time within the day expressed in
hours. The model for ozone observations O3(s, t, h) is:

O3(s, t, h) = x(s, t, h)
′
β (h) + φ(h)′z(s, t) + ε(s, t, h), (6)

z(s, t) = Gz(s, t− 1) + η(s, t). (7)

This model is referred to as the functional dynamic spatio-temporal model. In Equation (6), ε is
a zero-mean Gaussian measurement error independent in space and time with functional variance
σ2

ε (h), which implies that ε is heteroskedastic across the domainH. The variance is modeled as

log(σ2
ε (h)) = φ(h)′cε, (8)

where φ(h) is a p× 1 vector of basis functions evaluated at h while cε is a vector of coefficients to be
estimated. In Equation (6), x(s, h, t) is a b× 1 vector of covariates while β (h) = (β1(h), ..., βb(h))′ is
the vector of functional parameters modeled as

β j(h) = φ(h)′cβ,j, (9)

and cβ =
(

c′β,1, ..., c′β,b

)′
is the pb× 1 vector of coefficients to be estimated. Additionally, z(s, t) is

a p × 1 latent space-time variable with Markovian dynamics given in Equation (7). Matrix G is a
diagonal transition matrix with diagonal elements in the p× 1 vector g. The vector η is described by a
multivariate Gaussian process independent in time but correlated across space with matrix spatial
covariance function given by

Γ(s, s′; θ) = diag
(
v1ρ(s, s′; θ1), ..., vpρ(s, s′; θp)

)
, (10)

and v =
(
v1, ..., vp

)′ is the vector of scale coefficients while ρ(s, s′; θj) is a valid spatial correlation
function for locations s, s′ ∈ S2 parametrized by θj, and θ = (θ1, ..., θp)′. The unknown model

parameter vector is ψ =
(

c′ε, c′β, g′, v′, θ′
)

.
In Figure 4, we summarize the methodology. The main innovation is to incorporate the function

data analysis approach to the classic spatio-temporal statistical model, which facilitates exploring
the intra-day fluctuations of ozone pollution as well as the functional effects of covariates. Note that,
in order to ease the notation, the same p-dimensional basis functions φ(h) are used to model σ2

ε , β j
and φ(h)′z(s, t) in Equations (6) and (7). In the empirical analysis, we choose different numbers of
basis functions for modeling according to the model criteria, such as the mean square error (MSE),
and R2 (see Section 2.5 for details).
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Figure 4. Methodology summary.

2.4. Model Estimation

The estimation of ψ and the latent space-time variable z(s, t) is based on the maximum likelihood
approach and Kalman filter. At a specific location si and time t, q measurements are taken at hour
points h = (1, 2, ..., q)′ and collected in the vector

ysi ,t = (O3(si, t, 1), ..., O3(si, t, q))′, (11)

where q = 24 as pollutants are hourly recorded. Daily profiles of ozone data observed at time t across
spatial locations S are then stored in the vector yt = (y′s1,t, ..., y′sn,t)

′. Accordingly, Equations (6) and (7)
are rewritten as

yt = X̃tcβ + Φz,tzt + εt, (12)

zt = G̃zt−1 + ηt, (13)

where X̃t = XtΦβ,t is a nq× bp matrix, with Xt the matrix of covariates and Φβ,t the basis matrix
for β. Φz,t is the nq× np basis matrix for the latent np× 1 vector zt = (z(s1, t)′, ..., z(sn, t)′)′. ηt =

(η(s1, t)′, ..., η(sn, t)′)′ is the np× 1 innovation vector, while εt is the nq× 1 vector of measurement
errors. Additionally, G̃ = G⊗ In is the np× np diagonal transition matrix.

The complete-data likelihood function L(ψ; Y , Z) can be written as

L(ψ; Y , Z) = L(ψz0 ; z0)
T

∏
t=1

L(ψy; yt|zt)L(ψz; zt|zt−1), (14)

where Y = (y1, ..., yT), Z = (z0, z1, ..., zT), ψz = (g′, v′, θ′), ψy =
(

c′ε, c′β
)

, and z0 is the Gaussian

initial vector with parameter ψz0 . The model parameter set ψ is initialized with starting values ψ〈0〉and
then updated at each iteration ι of the EM algorithm. The algorithm terminates if any of the conditions
is satisfied ∥∥∥ψ〈ι〉 −ψ〈ι−1〉

∥∥∥ /
∥∥∥ψ〈ι〉

∥∥∥ < ε, (15)

∣∣∣L(ψ〈ι〉; Y)− L(ψ〈ι−1〉; Y)
∣∣∣ /

∣∣∣L(ψ〈ι〉; Y)
∣∣∣ < ε, (16)
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where ‖‖ is the l2 norm, ψ〈ι〉 is the parameter set at the ι-th iteration, L(ψ〈ι〉; Y) is the observed-data
likelihood function evaluated at ψ〈ι〉, and ε is a small positive number (e.g., 10−3).

The EM algorithm provides a point estimate of the parameter vector ψ but without uncertainty
information. Note that Y is a vector with dimension N = nqT. Generally speaking, inverting the full
variance–covariance matrix of the N-dimensional data vector Y has a computational complexity in
the order of O(N3), which is clearly unfeasible. Thanks to the state space representation of model,
we estimate the variance–covariance matrix Σ̂ψ = V (ψ | Y) from the marginal likelihood, which may
be used for model selection and inference.

2.5. Cross-Validation

We implement a 2-fold cross-validation by partitioning the original spatial locations S into subsets
Sest and Sxval . Data related to Sest are used for model estimation while data related to Sxval are used
for cross-validation. The cross-validation mean squared errors are then computed by

MSEs =
1
B

T

∑
t=1

∑
h∈hs,t

(
O3 (s, h, t)− Ô3 (s, h, t)

)2 , (17)

where Ô3 (s, h, t) = Eφ̂(O3 (s, h, t) |Y) is the prediction of ozone data at the cross-validation stations,
and B is the number of terms in each sum. We also obtain the cross-validation R2 with respect to
station s:

R2
s = 1− MSEs

VAR({O3(s,h,t),t,h}) (18)

The choice of the numbers of basis functions is very essential for model estimation. Here, based on the
cross-validated mean square error and other model criteria, we choose the reasonable numbers of basis
functions to estimate σ2

ε , β j and φ(h)′z(s, t) respectively. After implementing leave-one-station-out
cross-validation, we take the average MSE and R2 as our criteria:

MSE =
1
n

n

∑
i=1

MSEsi , (19)

R2 =
1
n

n

∑
i=1

R2
si

. (20)

3. Analysis of O3 Pollution in Beijing

In the paragraph, we first show the selection of covariates and basis numbers with application
to ozone data in Beijing, and then focus on the summertime modeling. By comparing our proposed
model with other models, we show the outstanding advantage of the functional spatio-temporal
statistical model. Finally, we show the model results and interpret the parameter estimates, especially
the functional effects of covariates.

3.1. Selection of Covariates and Basis Numbers

In the following text, we select the covariates in x(s, t, h) by using the Akaike information criterion
(AIC). Table 1 displays the results of forward selection based on AIC, which means starting with no
covariates, and iteratively adding the most contributive covariates. For instance, in the summertime
modeling, at the beginning (Iter 0), we select the variable NO2, which results in the best model
performance with maximum AIC. Then, at the next iteration (Iter 1), the variable particulate matter
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(PM10) is further selected. Table 1 shows that the importance of covariates varies among seasons,
but the most important variables are SO2, NO2, and PM10.

Table 1. The selection of model covariates according to AIC.

Iteration

Season Iter 0 Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9

Spring NO2 SO2 PM10 CO PRES UVB Iws IRAIN TEMP DEWP
Summer NO2 PM10 SO2 TEMP IRAIN UVB DEWP PRES CO Iws
Autumn NO2 SO2 TEMP DEWP PM10 UVB CO Iws PRES IRAIN

The ozone concentrations display a significant seasonal pattern, being pretty high in summer,
while meanwhile being moderate in winter [24,25]. Therefore, we focus on the analysis of O3 pollution
in summer. Figure 5 shows the maximum AIC at each iteration for summertime modeling.

0 1 2 3 4 5 6 7 8 9

-2.504

-2.502

-2.5

-2.498

-2.496

-2.494

-2.492

-2.49

-2.488

-2.486

-2.484
10

5

Figure 5. Improvement of AIC at each iteration for summertime modeling.

The improvement of model AIC is no longer significant after five iterations; therefore, we find the
optimal subset of covariates—NO2, PM10, SO2, TEMP, IRAIN, and UVB. Hence, the measurement
equation for ozone data is

O3(s, h, t) = β0(h) + xNO2(s, h, t)βNO2(h) + xPM10(s, h, t)βPM10(h)

+xSO2(s, h, t)βSO2(h) + xTEMP(s, h, t)βTEMP(h)

+xIRAIN(s, h, t)β IRAIN(h) + xUVB(s, h, t)βUVB(h)

+φ(h)′z(s, t) + ε(s, h, t), (21)

where data are available at h = 1, ..., 24, s ∈ {s1, ..., s36}, and t = 1, ..., 92. Moreover, due to the
circularity of time, Fourier basis functions are adopted. This implies that β j (h), σ2

ε (h) are periodic
functions. Under the different combinations of the numbers of basis functions, the model criteria MSE
and R2 in Section 2.5 are obtained and shown in Table 2.
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Table 2. Criteria MSE, R2, and AIC under different numbers of Fourier basis.

φ(h)′z(s, t) β(h) σ2
ε MSE R2 AIC

5 3 3 357.58 0.9206 −255,385
5 3 5 356.32 0.9209 −254,607
5 3 7 356.47 0.9208 −254,599
5 5 3 352.61 0.9215 −254,235
5 5 5 352.25 0.9216 −253,459
5 5 7 352.39 0.9215 −253,454
5 7 3 352.14 0.9215 −254,116
5 7 5 351.62 0.9217 −253,309
5 7 7 351.76 0.9217 −253,306
7 3 3 332.95 0.9259 −249,514
7 3 5 331.88 0.9261 −248,723
7 3 7 331.99 0.9261 −248,713
7 5 3 330.06 0.9264 −248,848
7 5 5 329.80 0.9264 −248,066
7 5 7 329.90 0.9264 −248,062
7 7 3 329.09 0.9266 −248,656
7 7 5 328.97 0.9266 −247,879
7 7 7 329.05 0.9266 −247,876
9 3 3 324.08 0.9278 −246,673
9 3 5 323.13 0.9280 −245,937
9 3 7 323.19 0.9280 −245,928
9 5 3 322.07 0.9281 −246,056
9 5 5 321.80 0.9282 −245,327
9 5 7 321.86 0.9282 −245,322
9 7 3 321.28 0.9283 −245,879
9 7 5 321.12 0.9283 −245,152
9 7 7 321.13 0.9283 −245,150

From the table, when the number of basis functions for estimating φ(h)′z(s, t) increases,
it significantly reduces the MSE. When the number of basis functions increases from 5 to 7, the MSE
is reduced more than that from 7 to 9. Considering such enormous calculation stress, we choose
seven basis functions to estimate the latent component φ(h)′z(s, t). However, increasing the number
of basis functions for the variance σ2

ε (h) of the residual ε(s, h, t) does not significantly reduce MSE but
is helpful to improve the AIC. We find that an increase from 3 to 5 has an improvement in AIC, but
the improvement becomes very minor from 5 to 7. Thus, we choose five basis functions to estimate
the variance σ2

ε (h). Finally, we choose five basis functions to estimate the effects from covariates
β j (h), considering the trade-off between the model interpretation and over-fitting problem. Based on
the analysis above, the number of basis functions for β j (h), σ2

ε (h) and φ(h)′z(s, t) is chosen to be 5,
5, and 7, respectively.

3.2. Model Comparison

In the paragraph, we compare the five models, namely Equations (22), (23), (24), (25), and (26).
Equation (22) is an ordinary regression model; Equation (23) is a regression model with functional
β(h) estimates; Equation (24) introduces the latent spatio-temporal variable z(s, t) to characterize
the spatio-temporal correlation; Equation (25) is a simplified version of the proposed functional
spatio-temporal statistical model that is β(h) ≡ β, σ2

ε (h) ≡ σ2
ε ; Equation (26) is the functional

spatio-temporal statistical model:

O3 = Xβ + ε (22)

O3(h) = X(h)β(h) + ε(h) (23)

O3(s, t) = X(s, t)β + z(s, t) + ε(s, t) (24)
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z(s, t) = Gz(s, t− 1) + η(s, t)

O3(s, h, t) = X(s, h, t)β + φ(h)′z(s, t) + ε(s, h, t) (25)

z(s, t) = Gz(s, t− 1) + η(s, t)

O3(s, h, t) = X(s, h, t)β(h) + φ(h)′z(s, t) + ε(s, h, t) (26)

z(s, t) = Gz(s, t− 1) + η(s, t)

Similar to the selection of the numbers of basis functions, the average MSE and R2, and AIC are
used to assess the model performance. As shown in Table 3, our model Equation (26) is the optimal
among the five models in view of the three model criteria. Equation (23) is much improved from
Equation (22) in terms of MSE and R2, which means a better model forecast in general. Benefiting
from the latent spatio-temporal variable z(s, t), Equation (24) has an unbeatable advantage over the
ordinary regression models, accessing much smaller MSE and much larger R2 and AIC. Equation (25)
introduces the functional data analysis approach, and characterizes the latent component as a linear
combination of the basis functions and the latent random spatio-temporal variable z(s, t). Although the
AIC is only a little increased, a smaller MSE and larger R2 are achieved. Eventually, when Equation (26)
adds the functional covariate effects β(h) and the functional variance of the residuals σε(h), MSE,
and R2 is not improved much. However, AIC is further improved, which benefits from the more
capable interpretation of covariates and the flexibility of the residual variance.

Table 3. MSE, R2, and AIC for the five models.

Number of Basis Model Criteria

β φ(h)′z(s, t) σε MSE R2 AIC logL 1 Npar 2

Equation (22) 0 0 0 1880.54 0.5863 −414,714 −414,700 7
Equation (23) 5 0 0 1171.55 0.7423 −395,874 −395,812 31
Equation (24) 0 0 0 552.7 0.879 −256,960 −256,940 10
Equation (25) 0 7 0 336.88 0.925 −252,426 −252,370 28
Equation (26) 5 7 0 329.8 0.9264 −248,066 −247,954 56

1 log likelihood, 2 number of parameters.

In Equation (26), firstly, the latent hidden variable z(s, t) captures the spatial correlation by range
parameter θ, and variance parameter v, which shows that an average standard deviation of 48 µg/m3

of ozone data are explained by z(s, t) (refer to Table 5). Secondly, the functional β(h) shows that the
covariate effects are both significant and nonlinear, indicating the complicated formation of ozone
pollution by using the functional representation (refer to Figure 6). In summary, the hierarchical
spatio-temporal statistical model, combined with functional data analysis approach, contributes to the
high amount of R2.
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Figure 6. Estimated βcons(hour), βPM10(hour), βSO2(hour), βNO2(hour), βTEMP(hour), β IRAIN(hour),
βUVB(hour) and σ2

ε (hour), with 90%, 95%, and99%- confidence bands.

3.3. Model Result

Figure 6 shows the estimated β(h) and σ2
ε (h) for model Equation (21). Thanks to Fourier basis

functions, the estimation result at the end of the day matches the beginning of the next day.Since,
in general, the confidence bands of estimated β(h) may contain zero, it may be useful to test the
significance of covariates. The χ2 tests are introduced as follows:

β j(h) = φ(h)′cβ,j, cβ,j ∼ N(0, Σ ˆcβ,j). (27)

Thus, c′β,jΣ
−1

ˆcβ,j
cβ,j ∼ χ2(rank(Σ ˆcβ,j)). In Figure 6, IRAIN fluctuates around zero. The results of χ2

tests for the significance of covariates are reported in Table 4, and indicate that the effect of variable
IRAIN is not jointly significant.

Table 4. χ2 tests for significance of fixed effects.

Covariate χ2 Statistic p-Value

Cons 282.77 0
PM10 2114.06 0
SO2 1048.50 0
NO2 29,032.23 0
TEMP 5554.16 0
IRAIN 0.91 0.96
UVB 30,934 0

Therefore, it comes to the final model equation by excluding the IRAIN variable:

O3(s, h, t) = β0(h) + xNO2(s, h, t)βNO2(h) + xPM10(s, h, t)βPM10(h)

+xSO2(s, h, t)βSO2(h) + xTEMP(s, h, t)βTEMP(h)

+xUVB(s, h, t)βUVB(h) + φ(h)′z(s, t) + ε(s, h, t). (28)

In Table 5, we show the estimates and standard deviation of parameters relevant to the latent
spatio-temporal variable z(s, t), which are the transition coefficient g, range parameter θ, and variance
vector v. Most estimates of g parameter are positive, and the absolute values are all within one,
which guarantees the stability of the 7-variate spatio-temporal process z(s, t). Compared with the
geodesic distance of Beijing (around 50 km), the values of θ parameter, ranging from 31.92 km to
63.12 km, indicate a strong spatial correlation within the city. The average v estimate is around 2313
(with standard deviation of 48 µg/m3), and shows that the latent variable z(s, t) accounts for much
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more proportion of original O3 variance than the unexplained term σ2
ε (h). Hence, introducing the

latent spatio-temporal variable z(s, t) guarantees the advantage of the proposed model.

Table 5. Estimates and standard error of parameter g, θ, and v.

Transition g θ [km] Variance v

Est Std.err Est Std.err Est Std.err

Basis 1 0.739 0.018 63.12 4.57 8422.14 549.12
Basis 2 0.229 0.026 50.94 0.96 3799.47 176.33
Basis 3 0.179 0.03 36.98 1.02 2027.63 106.59
Basis 4 0.034 0.032 36.34 0.54 896.86 50.61
Basis 5 0.106 0.034 39.75 0.84 702.64 41.65
Basis 6 0.043 0.043 31.92 0.87 191.09 13.53
Basis 7 −0.210 0.042 37.10 0.35 151.80 10.78

Finally, in Figure 7, we show the estimated β(h) and σ2
ε (h). The last figure is the plot of functional

variance σ2
ε (h), which represents the unexplained portion of O3 variance. The plot shows that the

model is more capable when explaining the situation during the daytime [26].

Figure 7. Estimated βcons(hour), βPM10(hour), βSO2(hour), βNO2(hour), βTEMP(hour), βUVB(hour) and
σ2

ε (hour), with 90%, 95%, and 99%- confidence bands.

As shown in Figure 7, the coefficient curves of TEMP, uvb and PM10 are similar, increasing from
early morning and attending the peak at 12:00 p.m.–2:00 p.m., then falling down. Focusing on daytime,
we see that the three curves are consistent with the trend of temperature (or uvb), which implicates
that the relationship between ozone and temperature (or uvb) might be quadratic [27], or there were
interactions between temperature and uvb, that is, the ozone concentrations were dependent on
TEMP2, uvb2, or TEMP× uvb. The coefficients of TEMP and uvb in daytime are positive, which is
consistent with the present research [28]. While the coefficient of PM10 is negative at 5:00 a.m.–10:00 a.m.
and positive during other time periods. The positive correlation between PM10 and ozone may be
caused by their common sources, secondary nature, and interactions of their precursors [29], and the
negative correlation could be explained by PM’s consumption of hydroperoxy (HO2) radicals, which
would otherwise react with NO for ozone generation [30]. Furthermore, the positive correlation
becomes the strongest at 3:00 p.m., at which time the ozone concentration attains the largest.

In addition, the coefficient curves of NO2 and SO2 both have two spikes, while the coefficient
of NO2 is negative and the other is positive. The negative relationship between NO2 and ozone is
consistent with results in many studies [31,32], and the positive correlation between SO2 and ozone
could be explained by their common dependences on meteorology [33]. The strongest correlation
between NO2 and ozone in daytime appears at about 11:00 a.m., and the weakest correlation appears
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at 5:00 a.m. and 6:00 p.m. In contrast, the correlation between SO2 and ozone is the strongest at
9:00 a.m. and 8:00 p.m., in other words, approximately the end of morning/evening rush hours in
Beijing, respectively, and such correlation is the weakest at 3:00 p.m.

4. Conclusions

In this paper, we propose a functional spatio-temporal statistical method to analyze air quality
data, and explore the mechanism of pollution formation.

• The method has several advantages. First, as a hierarchical spatio-temporal statistical model,
it is flexible enough to handle latent variable while capturing spatio-temporal dynamics. Second,
the proposed model also takes covariates into consideration, thereby being efficient in discovering
relational patterns from chemical reaction, and meteorological factors on the formation of O3

pollution. Third, in the framework of the spatio-temporal models, we are the first to explore the
intra-day variation of ozone through the functional data analysis approach, which is the most
innovative part of the model.

• The model has made the following progresses. First of all, our model outperforms other models
in many ways, as shown in Section 3.2. Second, the latent spatio-temporal variable z(s, t) well
captures the temporal dynamic and spatial structure of ozone data. Third, from the functional
effects of the covariates, we explore the possible effects of air pollutants and meteorological
variables on ozone data.

• Our model is flexible enough to model any kind of data with spatio-temporal structure; therefore,
it can be applied in many fields, such as economy and agriculture, apart from the environment.
The introduction of the functional data analysis approach in the functional spatio-temporal model
is not restricted to model the daily pattern of the data, and provides us more capability to explore
the nature of the data of our interest.
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