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Abstract

Background: Acute lymphoid leukaemia (ALL) is the commonest childhood cancer whose incidence is rising in
many nations. In the USA, between 1975 and 2016, ALL rates (ALLRs) rose 93.51% from 1.91 to 3.70/100,000 < 20
years. ALL is more common in Caucasian-Americans than amongst minorities. The cause of both the rise and the
ethnic differential is unclear, however, prenatal cannabis exposure was previously linked with elevated childhood
leukaemia rates. We investigated epidemiologically if cannabis use impacted nationally on ALLRs, its ethnic effects,
and if the relationship was causal.

Methods: State data on overall, and ethnic ALLR from the Surveillance Epidemiology and End Results databank of
the Centre for Disease Control (CDC) and National Cancer Institute (NCI) were combined with drug (cigarettes,
alcoholism, cannabis, analgesics, cocaine) use data from the National Survey of Drug Use and Health; 74.1%
response rate. Income and ethnicity data was from the US Census bureau. Cannabinoid concentration was from the
Drug Enforcement Agency Data. Data was analyzed in R by robust and spatiotemporal regression.

Results: In bivariate analyses a dose-response relationship was demonstrated between ALLR and Alcohol Use
Disorder (AUD), cocaine and cannabis exposure, with the effect of cannabis being strongest (β-estimate =
3.33(95%C.I. 1.97, 4.68), P = 1.92 × 10− 6). A strong effect of cannabis use quintile on ALLR was noted (Chi.Sq. =
613.79, P = 3.04 × 10− 70). In inverse probability weighted robust regression adjusted for other substances, income
and ethnicity, cannabis was independently significant (β-estimate = 4.75(0.48, 9.02), P = 0.0389). In a spatiotemporal
model adjusted for all drugs, income, and ethnicity, cannabigerol exposure was significant (β-estimate = 0.26(0.01,
0.52), P = 0.0444), an effect increased by spatial lagging (THC: β-estimate = 0.47(0.12, 0.82), P = 0.0083). After missing
data imputation ethnic cannabis exposure was significant (β-estimate = 0.64(0.55, 0.72), P = 3.1 × 10− 40). 33/35
minimum e-Values ranged from 1.25 to 3.94 × 1036 indicative of a causal relationship. Relaxation of cannabis legal
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paradigms had higher ALLR (Chi.Squ.Trend = 775.12, P = 2.14 × 10− 112). Cannabis legal states had higher ALLR
(2.395 ± 0.039 v. 2.127 ± 0.008 / 100,000, P = 5.05 × 10− 10).

Conclusions: Data show that ALLR is associated with cannabis consumption across space-time, is associated with
the cannabinoids, THC, cannabigerol, cannabinol, cannabichromene, and cannabidiol, contributes to ethnic
differentials, demonstrates prominent quintile effects, satisfies criteria for causality and is exacerbated by cannabis
legalization.

Keywords: Acute lymphoid leukaemia, Childhood, Cannabis, Socioeconomic, Chromosomes, Genotoxicity,
Epigenotoxicity

Background
Acute lymphoid leukaemia (ALL) is the commonest
childhood cancer and accounts for about 25% of all
childhood cancer cases [1]. In 2012 globally there were
352,000 cases of leukaemia with 265,000 deaths [2]. ALL
has undergone a significant and unexplained increase in
many nations, with global incidence and mortality rates
of leukaemia of 4.7 and 3.4 / 100,000 closely aligned due
its high mortality in developing nations [2]. Across Eur-
ope from 1978 to 1997 the ALL rate (ALLR) rose from
3.2 to 3.7 / 100,000 (16.9%) in children, and from 0.85 to
1.2 (44.7%) in adolescents, being markedly worse in the
north [3]. In New Zealand from the period 1968–1972
to the period 1988–1990 the age standardized incidence
of ALL rose from 4.83 to 7.04 / 100,000 (45.7%) [4].
Marked ethnic disparities have also been reported in

New Zealand with the rate in patients of Caucasian back-
ground being 3.2 / 100,000 compared to only 1.3 /
100,000, or 40.6% less in those of Maori background.
Similarly, in the USA long term data series from 1975 to
2017 show that the overall ALLR has risen markedly and
is more prevalent in Americans of Caucasian background.
Data on the Surveillance Epidemiology and End Results
(SEER) Explorer website reveal that at the national level
the age-adjusted ALLR for all ethnicities and all stages in
ages < 20 years rose from 1.9124 / 100,000 in 1975 to
3.7007 / 100,000 in 2016, a 93.51% rise. The age-adjusted
modelled ALLRs in patients < 20 years rose from 2.50 to
3.45 (/100,000 or 37.4%) 1975–2017 [5]. For the period
2000–2017 this is listed as a 0.6% annual percent change
which is highly significant (P < 0.01). Nationally the mean
rate in patients of Caucasian-American background is
3.75 ± 0.76 compared to 2.23 ± 0.77 (mean ± S.E.M.) in
patients of African-American background (t = 14.42, df =
53.14, P = 2.60 × 10− 20) [5].
The cause of this rise both in the USA and globally is

unknown, as is the aetiology of the marked ethnic
differences.

Acute lymphoid leukaemia
One clue may be the widespread recognition that most
pediatric cancers arise during in utero life as a result of

genetic or epigenetic errors [6, 7]. Amongst other factors
reports exist of a link between prenatal cannabis expos-
ure (PCE) and other leukaemia’s, including acute
myeloid leukaemia and acute myelomonocytic leukaemia
[8, 9] although this association has been contested [10].
Accordingly, investigators have looked for a similar asso-
ciation with ALL with negative results [8–10], however
outcomes may been confounded in earlier studies by
ALL incidents requiring a threshold level of cannabis
exposure. As cannabis use has risen globally since
1975, including use by pregnant women or females of
reproductive age, the possibility of cannabis as a
driver of these dual mysterious trends bears serious
consideration.
National Survey of Drug Use and Health (NSDUH) data

from the Substance Abuse and Mental Health Services Ad-
ministration (SAMHSA) reveal that between 2016 and 2019
the number of Americans estimated to have used cannabis
in the prior month rose in the three age categories 17–21
years, 18–25 years and > 26 years from 6.5 to 7.4%, from 20.8
to 23.0% and from 7.2 to 10.2% respectively, representing
total rises from 24 million to 31.5 million or 31.25% elevation
across those three years [11]. In 2017 161,000 American
women were estimated to have smoked cannabis while preg-
nant [11]. In a 2018 published study 69% of Colorado dis-
pensaries contacted advised pregnant women that cannabis
use during pregnancy was safe [12], despite the American
College of Obstetricians and Gynaecologists (ACOG) and
the American Academy of Pediatrics (AAP) recommending
otherwise [13–17]. 24% of pregnant Californian teenagers re-
cently tested positive to cannabis [18].
Whilst much of the debate relating to cannabis centres

on its main psychoactive component tetrahydrocanna-
binol (THC), it is important to note that other cannabi-
noids have also been implicated in carcinogenic
pathways. For example THC, cannabinol and cannabi-
diol have been implicated in end to end chromosomal
translocations [19] and cannabidiol and is propyl ester
cannabidivarin, in low micromolar doses, have been
shown to induce DNA double strand breaks, induce mi-
cronucleus formation and directly oxidize both the pur-
ine and pyrimidine bases of DNA [20].
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The present study examined if the previously
described link between prenatal cannabis exposure and
childhood leukaemia: (1) could be extended to ALL with
different analytical strategies; (2) was observable and
salient at the population health level; (3) linked in a
space-time analysis with trends of cannabis use; (4)
might be a driver of the recent rise in ALL; (5) might ac-
count for some of the variance related to the known and
described ALLR by ethnic background; and (6) whether
the relationship satisfied the quantitative formal criteria
of causality. USA data was selected as both drug use and
ALLRs by state and year, along with other important
covariates, were publicly available.

Methods
Data
Age-adjusted ALLR for all patients < 20 years and by se-
lected ethnicities were downloaded via the SEERStat
Software from the National Program of Cancer Regis-
tries (NPCR) and Surveillance Epidemiology and End
Results (SEER) Incidence File from the US Cancer Statis-
tics Public Use Database, Submission 2001–2017 [21].
National rates were taken from the SEER*Explorer web-
site of the Centers for Disease Control Atlanta Georgia
(CDC) and National Cancer Institute [5]. Drug use by
US state was taken from the Restricted Use Data Ana-
lysis System (RDAS) of the Substance Abuse and Mental
Health Data Archive (SAMHDA) of the National Survey
of Drug Use and Health (NSDUH) from the Substance
Abuse and Mental Health Services Administration
(SAMHSA) for the period 2003–2017 [22]. The drugs of
interest were monthly cigarette use (Cigarettes), Alcohol
Use Disorder (AUD), last month cannabis use (Canna-
bis), last year analgesic misuse (Analgesics), and last year
cocaine use (Cocaine). State median household income
and ethnicity data was downloaded via the tidycensus
package within R [23] from the US Census bureau. The
ethnicities of interest were Caucasian-American,
African-American, Asian-American, Hispanic-American,
American Indian / Alaskan Native (AIAN)-American
and Native Hawaiian-Pacific Islander (NHPI) – Ameri-
can. The THC concentration in Federal seizures was de-
rived from publications from the Drug Enforcement
Agency [24–26]. Data on the legal status of cannabis by
state was taken from an internet search [27].

Derived data
The SAMHDA RDAS lists a variable at the national level
called mrjmdays, which provides data on the intensity of
cannabis use by ethnicity in the month prior to the sur-
vey in the categories 0 days, 1–2 days, 3–5 days, 6–19
days, 20–30 days. In each year of the NSDUH this vari-
able can be summed by ethnicity so that the percentage
using cannabis in each category can be summed to

provide an index of the intensity of cannabis use at the
Federal level for that ethnicity. These ethnic scores were
then multiplied by the state rates of last month cannabis
use and by the concentration of THC in Federal seizures
to derive an estimate of ethnic THC exposure at the
state level. State rates of cannabinoid exposure were de-
rived by multiplying the concentration of the cannabin-
oid identified in Federal seizures by the mean rate of last
month cannabis use in that state. Quintiles of cannabis
use were calculated for each year by dividing states into
five groups based on their surveyed last month cannabis
use rates.

Statistics
Data was processed using R version 4.0.2 and R-Studio
1.3.1093 in October 2020 [28]. Data was pre-processed
using the dplyr and tidycensus packages [23, 29]. Point
estimates are listed as mean + standard error of the
mean. Data were log-transformed guided by the
Shapiro-Wilks test. Graphs were drawn in in R-Base,
ggplot2 and lattice [28–30]. Maps were drawn in sf and
ggplot2 [29, 31, 32]. Correlograms were drawn in corr-
plot and corrgram [33, 34]. Initial regression models
were manually reduced in the classical manner by serial
deletion of the least significant term to adduce final
models. Two by two epidemiological table analysis was
with epiR version 2.0.11 [35].
Several regression model forms were used in order to

harness the various strengths of each model type.
Straightforward linear regression was performed by lin-
ear regression. Mixed effects regression was used to cap-
ture the serial repeated nature of the data, to utilize
inverse probability weights and to provide standard devi-
ations for e-value calculations. Panel regression was per-
formed as the data were inherently of that type, models
could accept missing values, instrumental variables could
be utilized, models could be temporally lagged and
models could utilize inverse probability weights. How-
ever panel models do not accept data with repeated
space-time indices as required in ethnicity studies and
do not provide model standard deviations. Spatial re-
gression was performed as data were inherently spatio-
temporally distributed; spatial model coefficients
confirmed the importance and significance of consider-
ing the spatiotemporal distribution of data; both spatial
and temporal lagging could be conducted; and standard
deviations could be calculated from which to calculate e-
values; however inverse probability weights are not ac-
cepted, instrumental variables cannot be used and miss-
ing values are not tolerated. Robust regression was
performed both to utilize inverse probability weights and
to provide robust regression estimates, but standard de-
viations cannot be calculated from such models nor
instrumental variables or lagging used.
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Linear regression was conducted in R-base. Fitted
values were calculated from the model objects. Exten-
sion of the time series of linear models was performed
using the predict function from package stats [28]. Ro-
bust regression was conducted with the survey package
[36]. Repeated measures mixed effects regression was
conducted with package nlme [37] using State as a ran-
dom effect. Inverse probability weights were constructed
using package ipw [38]. Panel regression was calculated
using package plm [39]. E-Values were calculated using
package EValue [40].
Spatial neighbour relationships were constructed in

spdep [41] and spatiotemporal regression was con-
ducted in splm [42] with the spatial panel random ef-
fects maximum likelihood (spreml) function [43].
Model specification and error structure was determined
using the final model regression coefficients from a full
model including serial correlation in the remainders,
spatial error effects after Kelejian, Kapoor and Prucha
[44], spatial lag effects and random effects (sem2srre)
and only utilizing those effects which were significant
as recommended [45].
Multiple imputation by chained equations for ethnicity

data was conducted in R-package mice [46]. As 47.94%
of the state-level ethnicity data was missing 60 imputa-
tions with 60 iterations each were conducted following
Van Buuren and Groothius-Oudshoorn [46, 47]. Imput-
ation was performed by the classification tree (“cart”)
method which provided the best ethnic-specific ALLRs
and resulted in fractions of missing data of only 3.1% in
simple linear models regressing ALLR against cannabis
exposure. All interactions were calculated prior to data
imputation. Linear models were calculated on each im-
puted dataset and the pooled results were combined in
accordance with Rubin’s rules [46, 47].
All t-tests were two sided. P < 0.05 was considered

significant.

Data sharing and availability
Data including software code in R has been made freely
available through the Mendeley data repository at this
URL https://doi.org/10.17632/cf8c43yv62.1 .

Ethics
This study received ethical approval from the University
of Western Australia Human Research Ethics Commit-
tee on 7th January 2020 RA/4/20/7724.

Results
Data from the SEER*Explorer website reveal that the an-
nual age-adjusted modelled incidence of pediatric ALL
climbed significantly from 2.4970 to 3.4513 /
1,000,001,975–2017 across all races and all stages com-
bined which represents an 0.7736 annual percent rise.

Amongst Caucasian-Americans the modelled age-
adjusted rate rose from 2.6495 to 3.8150 / 100,000
across this same period. No modelled rates are listed on
the SEER*Explorer site for ethnic minorities. 50.89% of
cases occurred in those younger than 20 years.
The NSDUH advises that it has a 74.1% response rate [48].
Age-adjusted ALLRs by state were downloaded from

the SEER database 2001–2017 as described. States
with less than 15 cases are routinely suppressed.
Complete datasets are required for spatiotemporal
analysis as techniques do not accommodate missing
data. Data from 31 states was complete. Data from
Idaho, Mississippi and Nebraska was incomplete and
was completed by temporal kriging. The missing data
rate was 14 cases from 576 cases or 2.4%. The
complete kriged dataset is shown in Supplementary
Table 1 with imputed data marked.
Figure 1 illustrates this data across the USA map-

graphically for log ALLR’s.
Figure 2 shows the log rate of last month cannabis use

map-graphically across the USA.
Figure 3 shows the ALLR as a function of the various

substances used in the community. Rising trends are
noted with AUD, cannabis, cocaine and median house-
hold income.
Figure 4 shows the ALLR as a function of exposure to

the cannabinoids THC, cannabinol, cannabigerol, canna-
bichromene and cannabidiol.
Figure 5 shows the ALLR as a function of the ethnic

THC exposure for all ethnicities (A) together and for (B)
each of the ethnicities of interest.
Table 1 lists the various regression slopes of these lines

together with their significance levels. The slope for the
cannabis use line is noted to be highly significant (β-esti-
mate = 3.33, (95%C.I. 1.97–4.68), P = 1.92 × 10− 6). The
slopes of all of the regression lines for the cannabinoids
cannabichromene, cannabigerol, cannabinol and canna-
bidiol were also significant. Log transformation im-
proved the normality compliance of these data so these
results are also listed.
Importantly the slopes of all of the lines for ethnic

THC exposure were positive and significant with the sin-
gle exception of the NHPI-American ethnicity.
Table 2 lists the correlation matrix for these data, con-

flated in both cases with the relevant significance matrix.
The upper top right in both cases shows the Pearson
correlation coefficients and the lower bottom left half-
matrix shows the applicable significance levels. Matrix A
lists the various substances, income and ethnicities.
Matrix B lists the results for ethnic THC exposure and
cannabinoid exposure. Results are colour coded.
Similar results are listed graphically in the correlo-

grams shown in Figs. 6 and 7 constructed with corrplot
and corrgram respectively.
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In Fig. 5 positive correlations are shown as red ellipses
sloping upward and to the right. Stronger correlations are
illustrated by narrower ellipses and the brighter tone shades.
The positive association of the ALLR with substance and
ethnic THC exposure is clear from these figures.
The corrgram correlogram shown in Fig. 7 has been

ordered by hierarchical clustering for all covariates
together. The ALLR is noted here to correlate with
most cannabinoids, most ethnicities and most
substances with the exception of cigarettes, Non-
Hispanic Caucasian and Non-Hispanic African-
American ethnicities.
Table 3 shows the quintile composition by state for

each quintile of cannabis use.
Figure 8 shows a quintile analysis of the cannabis

use data (A, C) alongside the ALLR (B, D) by canna-
bis use quintile as both scatterplots (B, D) over time
and as boxplots over aggregated time (A, C). One
reads the boxplots by noting where the notches do
not overlap which signifies a statistically significant
difference. The boxplots for ALL appear to broadly

follow those for cannabis use. The applicable Chi-
squared test for trend for ALLRs by quintile is
significant (Chi Squ. = 613.79, df = 112, P = 3.04 ×
10− 70).
Comparing the highest cannabis use quintile with

the remainder 10,326 ALL cases were reported
across all ages 2003–2017 in the highest cannabis
use states from a total cumulative population of
367,557,212 an overall rate of 2.8091 / 100,000 com-
pared to 60,645 from a cumulative population of
3,509,515,577 in states in lower quintiles an overall
rate of 1.7280 / 100,000. These data equate to a risk
ratio of 1.6256, a risk difference of 1.0811, an odds
ratio (OR) of 1.6256 (95%C.I. 1.52921, 1.6599), an at-
tributable fraction amongst the exposed of 38.4857%
(37.6910, 39.2972%), and a population attributable
fraction (PAF) of 0.0560 (0.0548, 0.0572), P < <
10− 320. However this is obviously an underestimate
as populations in lower cannabis use quintiles were
also exposed to rising rates of cannabinoid exposure
overall: that is to say there was a “moving baseline”.

Fig. 1 Choropleth Map of age-adjusted ALL rates across USA
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Fig. 2 Choropleth Map of age-adjusted last month cannabis use rates across USA (NSDUH, SAMHSA data)

Fig. 3 ALL rate by Substance Use
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Table 4 lists some key introductory linear regressions
of the ALLR against time, cannabis, substances and
quintiles. Cannabis use quintiles have also been dichoto-
mized as the upper two quintiles v. the lower three quin-
tiles. In each case significant results are noted. The β-
estimate coefficient for ALL regressed against cannabis
use alone is 0.2967 (0.1988–0.3945), P = 4.25 × 10− 7.
Inverse probability weights can be calculated on this

data for cannabis exposure as a function of other sub-
stance exposure.

Inverse probability weighted mixed effects models can be
computed from this data with results shown in Table 5.
Cannabis use is shown to be highly and independently sig-
nificant both alone and in additive models including all sub-
stances, income and all ethnicities. Terms including cannabis
are also persistently significant in final interactive models.
Similar results are found at inverse probability

weighted panel regression (Table 6). In additive and
interactive models cannabis use is independently signifi-
cant in models including all substances, income and

Fig. 4 ALL rate by Cannabis / Cannabinoid use

Fig. 5 ALL rate by Ethnic THC Exposure (A) Overall and (B) by Ethnicity
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ethnicities (from β-estimate = 5.52 (3.71–7.34), P =
4.71 × 10− 9). When the cannabinoids cannabigerol and
tetrahydrocannabinol (THC) are considered, cannabi-
gerol is significant from β-estimate = 1.21 (0.86, 1.56),
P = 1.39 × 10− 11).
However when ethnic exposure to THC is included in

panel models as instrumental variables, the significance
of the cannabis effect is greatly reduced (β-estimate =
0.117 (0.002, 0.232), P = 0.0462).
Table 7 extends these panel regression results by pre-

senting the results of models lagged to two, four, six and
eight years. Highly significant results for terms including
cannabis are noted at each time-lag.
Robust regression in inverse probability weighted

marginal structural models was conducted on this
data with results shown in Table 8. Interactive
models for all substances, income and five ethnicities
are shown. In both cases cannabis is significant both
independently and in interaction with other
substances.
Data on ALLRs by state was complete or almost

complete for 34 states. In 14/576 cases missing data was
completed by temporal kriging as described above. The
states for which data was available are shown in the
maps in Fig. 9 which illustrate the 2017 rates of (A) ALL
and (B) cannabis use respectively.
Figure 10 presents the geospatial neighbourhood links

(A) edited after derivation from the spdep::poly2nb func-
tion and (B) in final form.
The results of initial spatiotemporal models are

shown in Table 9. Cannabis is again independently pre-
dictive of ALLR by itself and in additive models with
other substances. In a full interactive model with can-
nabinoids and other substances, income and ethnicities,
cannabigerol remains independently significant in the
final model.
As cannabigerol was the most powerful term in these

spatial models, lagged models were explored where can-
nabigerol was lagged spatially and temporally. These re-
sults are presented in Table 10. Once again terms
including THC and cannabigerol are significant and
THC and cannabigerol are both independently signifi-
cant with positive coefficients.
Table 11 explores the effects of ethnic THC exposure

in more detail in three models, additive for ethnic THC
exposure, interactive for ethnic THC exposure, and
interactive for various substances and interactive for eth-
nic THC exposure together. In all cases ethnic THC
exposure is significant with positive coefficients.
Figure 11 (A) shows the intensity of last month

cannabis use for Caucasian-American and African-
American ethnicities. Fig. 11 (B) shows the SEER data-
set for the ALLRs by these two ethnicities. Fig. 11 (C)
projects this data out over the whole time period 1975–

Table 1 Introductory linear regression results

Parameter Parameter

Estimate (C.I.) P-Value

Substances

Cannabis 3.33 (1.97, 4.68) 1.9E-06

AUD 4.32 (1.9, 6.75) 5.2E-04

Cocaine 7.93 (2.3, 13.57) 0.0060

Analgesics 1.88 (− 1.93, 5.7) 0.3340

Cigarettes −2.78 (−3.59, −1.96) 5.6E-11

Income

Income 0.41 (0.21, 0.61) 6.7E-05

Cannabinoids

Cannabis 3.33 (1.97, 4.68) 1.9E-06

CBC Exposure 12.42 (6.94, 17.91) 1.1E-05

CBG Exposure 5.65 (2.92, 8.37) 5.6E-05

CBD Exposure 7.19 (3.1, 11.29) 6.2E-04

CBN Exposure 2.76 (1.13, 4.38) 9.5E-04

THC Exposure 0.13 (0.05, 0.21) 0.0012

Log (Cannabinoids)

log (Cannabis) 0.3 (0.18, 0.41) 4.3E-07

log (CBC Exposure) 0.27 (0.16, 0.38) 2.2E-06

log (CBG Exposure) 0.22 (0.12, 0.31) 1.0E-05

log (THC Exposure) 0.14 (0.06, 0.21) 2.6E-04

log (CBN Exposure) 0.12 (0.05, 0.19) 4.3E-04

log (CBD Exposure) 0.13 (0.05, 0.22) 0.0023

Ethnicity

log (Hispanic-American) 0.27 (0.23, 0.31) < 2.2E-16

log (Asian-American) 0.17 (0.12, 0.22) 2.0E-10

log (NHPI-American) 0.11 (0.08, 0.15) 9.5E-10

asinh (AIAN-American) 3.45 (1.86, 5.04) 2.6E-05

log (Caucasian-American) −0.33 (− 0.51, − 0.14) 5.1E-04

log (Black-American) − 0.16 (− 0.2, − 0.13) < 2.2E-16

Ethnic THC Exposure

log (Asian THC Exposure) 0.08 (0.03, 0.13) 0.0025

log (Hispanic THC Exposure) 0.08 (0.03, 0.13) 0.0033

log (NHBlack THC Exposure) 0.08 (0.03, 0.13) 0.0033

log (NHWhite THC Exposure) 0.08 (0.03, 0.14) 0.0041

log (AIAN THC Exposure) 0.07 (0.01, 0.13) 0.0172

log (NHPI THC Exposure) 0.02 (−0.02, 0.06) 0.2810
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Table 2 Correlation & significance matrices

Fig. 6 Corrplot correlogram (A) Drugs and ethnic correlations and (B) Cannabinoid and Ethnic THC Exposure correlations
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2017 based on extensions of the linear models. The
mean state ethnicity ALLRs are 3.47 ± 0.13 and
2.47 ± 0.27 (mean ± S.E.M., /100,000) for Caucasian-
American and African-Americans respectively (t = 24.03,
df = 101.72, P = 4.91 × 10− 44)
These interesting and provocative ethnic differences

between the Caucasian-American and the African-
American populations invited further exploration. How-
ever 489 of the of the 1020 (47.94%) datapoints were
missing or suppressed. These were imputed by the mul-
tiple imputation by chained equations routine in R pack-
age mice. Following [46, 47] 60 imputations each with
60 iterations were employed due to the large amount of
missing data.
Figure 12 shows successful convergence of the imputa-

tions as stripplots with successively increasing imputa-
tions and iterations.
Figure 13 shows the density plot of the imputed data.

Imputed data are shifted relative to the main dataset as
the imputations occurred primarily in the ethnic minor-
ities which had a lower mean ALLR.
Table 12 presents the results of linear regression on

the imputed datasets. The ALLR is noted to be highly
significantly related to ethnic THC exposure alone (β-es-
timate = 0.14 (0.12, 0.17), P = 3.4 × 10− 26), and ethnic
THC exposure is independently highly predictive in an
additive (β-estimate = 0.53 (0.44, 0.61), P = 6.2 × 10− 31)
and an interactive (β-estimate = 0.42 (0.35, 0.50), P =

1.7 × 10− 27) model. When cannabinoids are included as
primary covariates, ethnic THC exposure remains sig-
nificant in interactive terms. Indeed ethnic THC expos-
ure remains significant in this table as model complexity
increases.
Table 13 collates some of the e-Values calculated from

the above analyses. The minimum e-Values are listed in
descending order in Table 14. 33 / 35 e-Values are >
1.25 which is the cut-off quoted as indicative of causal
effects in the literature [49]. The highest minimum e-
Value relates to ethnic cannabis exposure differences by
ethnicity (3.94 × 1036).
Having demonstrated prominent dose-response and

quintile effects, the effects of cannabis legalization re-
main to be considered. Cannabis legalization is associ-
ated with higher rates of use, higher intensity of use and
higher concentration of THC in cannabis products [50].
The rates of cannabis use (A, C) and ALL (B, D) by legal
status are shown in Fig. 14 both as scatterplots (C, D)
and boxplots (A, B). The scatterplots and boxplots for
ALL appear to track those for cannabis use. The mean
ALLR under illegal, decriminalized, medical and legal par-
adigms were 2.091 ± 0.009, 2.077 ± 0.014, 2.305 ± 0.018
and 2.395 ± 0.039 / 100,000 (mean ± S.E.M.) respectively.
The Chi squared test for trend is highly significant
(Chi Squ. = 775.12, df = 84, P = 2.14 × 10− 112).
Data may be dichotomized as the legal paradigm v. the

others as shown in Fig. 15. The notches of the ALL

Fig. 7 Corrgram correlogram for all variables

Reece and Hulse BMC Cancer          (2021) 21:984 Page 10 of 33



boxplots in the two groups are noted to clearly not over-
lap. The mean ALLR in the legal and not-legal groups
were 2.395 ± 0.039 and 2.127 ± 0.008 / 100,000 respect-
ively (t = 6.7151, df = 128.16, P = 5.05 × 10− 10).
When these data are analyzed by linear regression the

highly significant results shown in Table 15 are found.
These results are associated with minimum e-Values
mostly > 1.90 as shown in the upper part of Table 13.
33/35 e-Values are > 1.25 which is the cut-off point

described in the literature for causal effects 1.25 [49]. 12
e-Values are > 100.

Discussion
Main results
This study significantly extends prior cohort analyses
linking cannabis use with the incidence of childhood
leukaemia. We here report a positive relationship be-
tween cannabis exposure and ALLR for the first time.

Table 3 Cannabis use Quintiles by State

State Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Alabama 14 1 0 0 0

Arizona 0 3 7 5 0

Arkansas 0 6 9 0 0

California 0 0 0 15 0

Colorado 0 0 0 1 14

Connecticut 0 0 2 12 1

Florida 0 0 14 1 0

Georgia 2 3 8 2 0

Idaho 6 9 0 0 0

Illinois 0 2 13 0 0

Indiana 0 1 2 12 0

Iowa 14 1 0 0 0

Louisiana 7 8 0 0 0

Maryland 2 3 1 9 0

Michigan 0 0 0 15 0

Minnesota 0 3 7 4 1

Mississippi 14 1 0 0 0

Missouri 0 0 14 1 0

Nebraska 9 4 2 0 0

Nevada 0 0 4 9 2

New Jersey 8 7 0 0 0

New Mexico 0 0 0 15 0

New York 0 0 0 15 0

North Carolina 0 11 4 0 0

Ohio 0 0 13 2 0

Oklahoma 10 4 1 0 0

Oregon 0 0 0 0 15

South Carolina 4 6 5 0 0

Tennessee 1 8 4 2 0

Texas 15 0 0 0 0

Utah 15 0 0 0 0

Virginia 2 8 4 1 0

Washington 0 0 0 2 13

Wisconsin 0 14 1 0 0
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Importantly data analysis shows that this result is not
limited to a single cohort analysis, but is generalizable
across the pediatric cancer epidemiology of a whole na-
tion for the most common malignant disease of child-
hood. Further data indicate that ethnic differences in
ALL incidence are associated in part with differing in-
tensity of cannabis use, suggesting a gene-environment
interaction. The present report includes other sub-
stances, median household income and ethnicity and
finds that the effects of exposure to cannabis and canna-
binoids is independently significant and persistent in
final robust regression models. In bivariate analysis the
ALLR was related to AUD, cannabis use and estimates
of state-level cannabinoid exposure to THC, cannabinol,
cannabigerol, cannabichromene and cannabidiol and
strong dose-response effects were demonstrated. Simi-
larly the effect of ethnic THC exposure is maintained
across most ethnicities. Inclusion of ethnic THC expos-
ure as either a primary covariate or an instrumental

variable greatly mollifies the effect of cannabis exposure
per se. The cannabis-ALL link was strongly maintained
when analyzed across space and time. The causal nature
of the relationship was demonstrated by significant re-
sults upon inclusion of inverse probability weights in
mixed effects, panel, and robust regression models, and
by the demonstration that 33/35 minimum e-Values
were above the cut-off threshold of 1.25 extending up to
3.94 × 1036. Consistent with the general dose-response
effects prominent quintile effects were demonstrated, as
were major effects of cannabis legalization which has
been linked with increased cannabis availability, use,
intensity of use and THC potency [50].
The present study reports a strong, robust, spatiotem-

poral and causal link between cannabis use and ALLR.
Current findings contrast with cohort and case-control
studies undertaken two to three decades ago investigat-
ing the association between ALL and cannabis where no
apparent association was identified [8–10]. However,

Fig. 8 Quintile analysis of Cannabis use (A and C) and ALL Rates (B and D) by cannabis use quintile as time-dependent scatterplots (B and D)
and boxplots (A and C)

Reece and Hulse BMC Cancer          (2021) 21:984 Page 12 of 33



numerous in vitro studies investigating genotoxic
changes associated with cannabinoid exposure have re-
ported that a threshold exposure is required before det-
rimental changes occur. It is therefore possible that the
apparent disparity in findings are explained by increasing
frequency of cannabis use, especially amongst existing
users, and increased concentration in cannabis products
of THC and many other genotoxic cannabinoids over
the last two decades [24–26] resulting in a general
movement of the whole population into a much higher
risk category.
The potential impact of this investigation is far

reaching given the possibility that cannabis may be a
primary driver for the remarkable 42% rise in total
pediatric cancer across the USA from 1975 to 2017
[5]. This relates to the general genotoxicity of
cannabis and cannabinoids, to the multiplicity of

mechanisms by which cannabinoids act genotoxically
and / or epigenotoxically and its evident disruption
of chromosomal and epigenomic physiology and to
the transgenerational transmission of the effects of
environmental intoxicants and thereby the multigen-
erational impacts of widespread and increasing can-
nabinoid exposure as is implicit in cannabis
legalization paradigms.

Cellular and biological mechanisms
Genetic and chromosomal pathways
Significant data indicate that interchromosomal
translocations or gene amplifications can upregulate
oncogenes or downregulate tumour suppressors. The
classically documented action of cannabinoids in-
cluding tetrahydrocannabinol (THC), cannabidiol and
cannabinol to induce end-to-end chromosomal

Table 4 Linear regression models

Parameter Parameter Model Parameters

Estimate (C.I.) P-Value SD R-Squared F dF P

lm (ALL_Rate ~ Cannabis)

Cannabis 0.3 (0.18, 0.41) 4.3E-07 4.06E-01 0.4728 26.26 1508 4.2E-07

lm (ALL_Rate ~ Time)

Year 0.01 (0, 0.01) 0.1670 4.06E-01 0.0018 1.916 1508 0.1670

lm (ALL_Rate ~ Time * Cannabis)

Year 0.04 (−0.18, −0.02) 0.0130 0.4039 0.05638 11.14 3506 4.3E-07

Cannabis 30.51 (13.22, 132.81) 0.0171

Year: Cannabis −0.02 (−0.07, − 0.01) 0.0176

Additive model

lm (ALL_Rate ~ Cigarettes + AUD + Cannabis + Analgesics + Cocaine)

cigmon −3.3 (− 4.19, −2.41) 1.3E-12 0.382 0.1561 32.38 3506 < 2.2E-16

AUD 7.58 (5.17, 9.99) 1.5E-09

Cannabis 0.14 (0.03, 0.26) 0.0154

Quintiles

lm (ALL_Rate ~ Quintile)

Quintile 4 0.18 (0.07, 0.29) 0.0020 0.4071 0.0234 4.047 4505 0.0031

Quintile 5 0.19 (0.06, 0.32) 0.0037

lm (ALL_Rate ~ Year * Quintile)

Year 0.03 (0.01, 0.05) 0.0061 0.4071 0.0416 3.456 9500 0.0004

Quintile 3 79.2 (26.91, 131.49) 0.0031

Quintile 4 74.23 (21.02, 127.44) 0.0065

Quintile 5 61.55 (3.2, 119.9) 0.0392

Year: Quintile 3 −0.04 (− 0.07, − 0.01) 0.0032

Year: Quintile 4 − 0.04 (− 0.06, − 0.01) 0.0066

Year: Quintile 5 − 0.03 (− 0.06, 0) 0.0397

lm (ALL_Rate ~ Year * Quintiles_Dichotomized)

Upper Quintiles 0.15 (0.07, 0.22) 0.0001 0.4102 0.0272 15.24 1508 0.0001
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fusions, ring chromosomes and chain chromosomes
in sperm [19], and to cause nuclear blebbing and
chromosomal bridges between separating nuclei in
anaphase and telophase in dividing oocytes and lym-
phocytes [51–53] constitute in vitro proof of princi-
pal that cannabis is at least an indirect chromosomal
clastogen as described long ago [19, 54–60]. Genetic
lesions underlying ALL have been proposed by
several authors [7, 61–64].
The cannabinoids Δ9-THC, Δ8-THC, their hydroxy-

metabolites, cannabinol, cannabidiol, cannabichromene,
cannabicyclol and olivetol which shares the C-ring
conformation of these cannabinoids were all shown to
impair thymidine, uridine and leucine incorporation
into lymphocytic DNA, RNA and protein long ago [53].
Δ9-THC and olivetol were shown to increase lympho-
cytic chromosomal segregation errors and the number
of hypodiploid cells [53].

When normal human lymphocytes from adult volun-
teers were incubated with micromolar concentrations
of Δ9-THC a significant increase in chromosomal
segregation errors was observed [53]. A higher
number of chromosomal bridges, anaphase lags,
micronuclei, unequal segregations in bipolar divisions
and multipolar divisions was noted. The difference in
anaphase lags and unequal divisions was significant
[53]. The photomicrographs of many chromosomal
bridges in telophase nuclei in [53] are very dramatic
indeed. Unequal divisions presage the heightened
incidence of chromosomal trisomies and mono-
somies noted epidemiologically in the Introduction.
Anaphase lag is a precursor lesion to micronucleus
formation which is the primary engine for
chromothripsis and chromoanagensis and micronu-
clei have long been associated with cannabinoid
exposure [65].

Table 5 Mixed effects regression models

Parameter Estimates Model Parameters

Parameter Estimate (C.I.) P-Value S.D. AIC BIC logLik

ADDITIVE MODELS

lme (ALL_Rate ~ Cannabis)

Cannabis 0.33 (0.15, 0.51) 0.0004 0.4689 872.1647 889.0866 − 432.0824

Drugs

lme (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine)

Cannabis 0.43 (0.23, 0.62) 2.7E-05 0.4668 863.5448 884.6873 − 426.7724

Cocaine 10.44 (2.01, 18.87) 0.0156

Drugs, Income & Ethnicity

lme (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine + Income + 5_Races)

Hispanic 0.45 (0.33, 0.57) 2.7E-12 0.4478 813.8363 860.2190 −395.9182

Cigarettes 5.21 (3.52, 6.9) 3.0E-09

Income 1 (0.56, 1.44) 1.2E-05

Cannabis 0.25 (0.06, 0.44) 0.0095

Analgesics −4.44 (−9.7, 0.82) 0.0986

Asian-American −0.14 (−0.29, 0.02) 0.0833

AIAN-American −4.72 (−8.06, −1.39) 0.0057

African-American −0.1 (− 0.17, − 0.03) 0.0056

INTERACTIVE MODEL

lme (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Hispanic 0.37 (0.28, 0.46) 7.0E-15 0.4508 809.6203 851.8063 −394.8101

Cannabis: AUD 7.95 (4.69, 11.22) 2.5E-06

AUD 20.43 (11.44, 29.43) 1.1E-05

Income 0.85 (0.47, 1.23) 1.3E-05

AIAN-American −4.48 (−7.56, − 1.4) 0.0045

African-American −0.12 (−0.19, − 0.06) 0.0003

Cigarettes: Cannabis −1.83 (−2.52, − 1.15) 2.6E-07
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Cannabis has been known to be positive in the micro-
nucleus assay which is one of the primary genotoxicity
assays for over fifty years [65, 66]. Micronuclei have
been shown to form when a chromosome becomes
derailed and disconnected from the main mitotic
spindle during the anaphase separation of the chroma-
tids [67]. This is thought to be due to the impact of

cannabis to interfere with the tubulin subunits of the
microtubular arms of the mitotic spindle and with the
actin subunits of the cellular cytoskeleton [67–69].
Lacking the normal complement of the many enzymes
involved in gene maintenance and transcription, the
genetic material becomes pulverized and then re-
annealed in a haphazard manner as a result of the

Table 6 Panel regression models
Parameters Model

Instrumental Variables Parameter Estimate (C.I.) P-Value Adj. R-Squared Chi Squared F dF P

Additive Model

plm (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine + Income + 5_Races)

Hispanic 0.2 (0.12, 0.27) 5.7E-07 0.1337 −55.3956 6503 1.0000

Cannabis −0.22 (−0.33, − 0.11) 1.0E-04

Cigarettes −1.76 (−2.56, −0.96) 2.0E-05

Analgesics −12.01 (− 16.6, − 7.43) 4.0E-07

Black −0.13 (− 0.18, − 0.09) 3.7E-08

AUD −8.02 (−8.89, −7.15) < 2.2E-16

Interactive Model

plm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cigarettes: AUD 1157.78 (876.06, 1439.5) 5.9E-15 0.0848 −29.2033 10,499 1.0000

AIAN 5.35 (3.79, 6.9) 4.4E-11

Cigarettes: Cannabis: AUD 416.5 (291.07, 541.94) 1.9E-10

Cannabis 5.52 (3.71, 7.34) 4.7E-09

Cocaine 10.32 (3.78, 16.86) 0.0021

Analgesics −7.98 (−12.56, −3.41) 0.0007

Cannabis: AUD −87.24 (−115.7, −58.77) 3.7E-09

Cigarettes: Cannabis −28.11 (−36.54, −19.68) 1.6E-10

AUD − 236.82 (− 295.84, − 177.8) 2.3E-14

Cigarettes −83.55 (−103.35, −63.75) 1.2E-15

Interactive Cannabinoids

plm (ALL_Rate ~ Cigarettes + THC * Cannabigerol + AUD + Analgesics + Cocaine + Income + 5_Races)

Cannabigerol 1.21 (0.86, 1.56) 1.4E-11 0.0359 −320.949 8 1

Cocaine 6.84 (3.91, 9.78) 5.0E-06

Hispanic 0.18 (0.08, 0.28) 0.0003

Asian −0.13 (− 0.26, − 0.01) 0.0392

Analgesics −13.67 (− 18.79, −8.54) 1.7E-07

THC: Cannabigerol −0.61 (− 0.73, − 0.49) < 2.2E-16

Cigarettes −4.89 (−5.71, − 4.08) < 2.2E-16

THC −3.21 (−3.73, −2.69) < 2.2E-16

Additive Model

plm (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine + Income + 5_Races)

Cauc-Am._THC Exposure Hispanic-American 0.18 (0.13, 0.23) 2.6E-11 0.3279 254.327 6 2.6E-11

Afric-Am._THC Exposure Asian-American 0.1 (0.02, 0.18) 0.0126

Hispan-Am._THC Exposure Cannabis 0.12 (0, 0.23) 0.0462

Asian-Am._THC Exposure Analgesics −3.72 (−7.32, −0.12) 0.0431

Income − 0.42 (− 0.7, − 0.14) 0.0037

African-American −0.13 (− 0.17, − 0.09) 1.7E-12
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normal processes of gene transcription particularly on
the lagging strand of DNA. This process thus gives rise
to chromothripsis [67, 68].
Prenatal cannabis use was linked with Downs syn-

drome in offspring in an Hawaiian study published
in 2007 [70], with Downs syndrome in Colorado,
Canada and Australia [71–74] and more recently
with Downs syndrome, Trisomies 13 and 18 and the
monosomy Turners syndrome in the USA [75]. PCE
has also been linked with Deletion 22q11.2 in the
USA in spatiotemporal analyses and in odds ratio-
based assessments [75].
Downs syndrome is known to greatly elevate the

ALLR from around 3/100,000 to about 5 / 100 [76, 77].
Downs syndrome ALL is a B-Cell ALL RUNX1 positive
disorder involving a translocation between chromo-
somes 12 and 21 [64].
Cannabis use is also linked with chromosome 12

pathophysiology. Testicular cancer invariably involves
oncogenic licensing of chromosome 12 usually as an iso-
chromosome 12p with reduplication of the short arms
but alternately intrachromosomal gene amplification has
also been described. All four studies examining the link
between cannabis use and testicular cancer have been
positive [78–81], and three have shown a dose-response
relationship [78, 79, 81].
ALL has been described as usually resulting from protoon-

cogene formation and re-arrangements due to translocations
between various chromosome combinations including chro-
mosomes 12 and 21 (ETV6-RUNX1), 4 and 11 (MLL-AF4),
1 and 19 (E2A-PBX1), 9 and 22 (BCR-ABL1), trisomy 4 and
10, ETV6-RUNX1-like, DUX4-rearranged, hyperploidy,
hypoploidy, and intra-chromosomal rearrangements of
chromosome 21 [7]. Interestingly MLL is also known as
KMT2a (histone lysine methyltransferase 2a) [64] and both
it and RUNX1 have major epigenomic activities.

Epigenomic pathways
It is established that ALL cells are mostly B-lymphocytes
precursors which are arrested in their cellular differenti-
ation and are therefore said to experience a “differenti-
ation block”. The epigenetic machinery carried on or
near DNA controls the expression of the genes. Hence
the epigenetic state controls tissue specificity of cells and
their differentiation stage by controlling factors such as
DNA methylation, histone methylation and acetylation
and post-translational modifications generally, micro-
RNA expression, long non-coding RNA expression, the
availability of enhancers to promoters, the activity of
non-coding DNA and repeat segments, 3-D position of
chromatin within the nucleus, proximity to topologically
active domains or transcriptionally active gene
“factories” and similar factors [82]. Moreover perturba-
tions of epigenomic control can lead to genetic lesions

and reciprocally genetic lesions can induce epigenomic
changes [82].
It is important to observe that the genome of embry-

onic stem cells and precursor cells generally is largely
demethylated and more open in its chromosomal con-
formation making it much more susceptible to genomic
and epigenomic insults than the adult genome [83].
In relation to ALL both MLL / KDM2a and RUNX1

(also known as acute myeloid leukaemia protein 1) are
key components of the epigenetic machinery. There are
28 million CpG islands in human DNA and their methy-
lation state to a large extent controls the activation of
the promoter regions of genes. Methylation of promoter
DNA is a key step in leukaemogenesis [83] and several
of the leukaemic fusion proteins are epigenomic effec-
tors and change the DNA methylation state globally
[63]. RUNX1 directly controls the state of differentiation
of haemopoietic precursor cells.
Cannabinoids themselves carry a large epigenomic

footprint. THC has been shown to reduce the level
of synthesis of nuclear histones, sometimes by half
[84, 85]. Marked epigenomically-mediated reduction
of brain D2-dopamine receptors has been demon-
strated in F1 rodent offspring following PCE [86].
Marked genome wide alteration in nucleus accum-
bens DNA methylation status has also been shown
in another study of rodent F1 offspring after PCE
[87–89]. This was replicated recently by a coordi-
nated study of rodent F1 offspring and rat and hu-
man sperm [90]. And epigenetically mediated
alteration in TH1 and TH2 lymphocyte proliferation
in an F1 generation within lymph nodes has also
been shown [91].

Metabolism
Epigenomic modifications of both DNA and histones re-
quire small molecules produced from intermediate me-
tabolism such as methyl, acetyl and sumoyl groups.
Therefore any process which inhibits cellular metabo-
lism can secondarily perturb the epigenomic state.
Importantly the mitochondria contain 16 KB of their

own DNA which carries the code for some of their pro-
teins. Therefore healthy cellular function requires that
the genome of the mitochondria and that of the cell nu-
cleus have coordinated expression of their genomic ma-
terial. This is known as mitonuclear balance and is
mediated both by small molecule metabolites and by
malate-aspartate, glycerol-3-phosphate and nicotinamide
mononucleotide shuttles and some extra-nuclear sirtuins
including sirtuin 2 [92].
In this regard fumarate and succinate are known as

oncometabolites and their corresponding disorders, fu-
marase deficiency and succinate dehydrogenase muta-
tions are known to predispose to malignancy and cause
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Table 7 Lagged panel regression models

Parameters Model

Lagged Variables Parameter Estimate (C.I.) P-Value Adj. R-Squared F dF P

Interactive Model 2 Lags

plm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cigarettes, 2 AUD 252.85 (183.13, 322.57) 4.94E-12 0.1084 − 21.106 12,429 1

AUD, 2 Cannabis: AUD 98.16 (65.56, 130.76) 7.31E-09

Cannabis, 2 Cigarettes 60.32 (36.61, 84.04) 9.01E-07

Analgesics, 2 Cigarettes: Cannabis 24.47 (14.69, 34.25) 1.34E-06

Cocaine, 2 Income 1.01 (0.57, 1.44) 6.69E-06

Analgesics 10.02 (5.38, 14.65) 2.81E-05

Cigarettes: Cannabis: AUD − 372.02 (−515.25, − 228.79) 5.35E-07

African-American −0.17 (− 0.24, − 0.11) 1.62E-07

Cigarettes: AUD −933.3 (− 1263.65, − 602.95) 5.36E-08

Cocaine −18.93 (−25.45, − 12.41) 2.39E-08

Cannabis −6.95 (− 9.04, −4.86) 2.07E-10

White −1.7 (−2.15, − 1.24) 9.93E-13

Interactive Model 4 Lags

plm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cigarettes, 4 Cigarettes: Cannabis: AUD 1080.24 (773.54, 1386.94) 2.3E-11 0.0348 −24.7061 10,363 1

AUD, 4 Cigarettes: AUD 2872.8 (2029.96, 3715.63) 9.0E-11

Cannabis, 4 Cannabis 18.57 (12.96, 24.18) 2.9E-10

Analgesics, 4 Hispanic 0.27 (0.15, 0.39) 1.1E-05

Cocaine, 4 AIAN-American −2.93 (−5.5, − 0.36) 0.0258

African-American −0.14 (− 0.21, − 0.07) 5.8E-05

Cigarettes −168.92 (−237.17, −100.67) 1.8E-06

Cigarettes: Cannabis −65.26 (−89.6, −40.91) 2.5E-07

AUD − 786.09 (−978.02, −594.16) 1.4E-14

Cannabis: AUD −291.97 (−363.15, − 220.8) 1.3E-14

Interactive Model 6 Lags

plm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cigarettes, 6 Cannabis: AUD 334.49 (201.76, 467.22) 1.3E-06 0.0748 −19.0948 12,293 1

AUD, 6 AUD 854.26 (489.45, 1219.07) 6.6E-06

Cannabis, 6 Asian 0.33 (0.18, 0.47) 2.8E-05

Analgesics, 6 Cigarettes: Cannabis 84.43 (40.2, 128.65) 0.0002

Cocaine, 6 Cigarettes 216.5 (90.79, 342.21) 0.0008

Analgesics 7.94 (1.08, 14.8) 0.0241

Cigarettes: AUD − 3188.8 (− 4708.15, − 1669.45) 5.1E-05

Cannabis −23.42 (−34.15, − 12.7) 2.5E-05

Cigarettes: Cannabis: AUD − 1262.2 (− 1805.43, −718.97) 7.7E-06

Cocaine −22.47 (−31.69, − 13.25) 2.8E-06

African-American −0.31 (− 0.41, − 0.2) 5.6E-08

White −2.14 (− 2.71, −1.58) 1.1E-12
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germ line mutations as they slow the tricarboxylic acid
cycle and interfere with the supply of metabolic sub-
strates to the epigenetic machinery [82, 93].

Cannabinoids and mitochondria
For these reasons it is highly pertinent that cannabi-
noids inhibit mitochondrial metabolism by many
pathways. It is not widely known that the outer
mitochondrial membrane of mitochondria carry all
the signalling apparatus of the plasmalemma for the

reception and transduction of cannabinoid signals
[94–100]. The mitochondrial outer membrane carries
cannabinoid type 1 receptors (CB1R’s) [95, 96]. This
makes sense as cannabinoids are lipid soluble and
are easily able to traverse the plasmalemma.
Cannabinoids directly reduce the synthesis of many of

the components of the electron transport chain includ-
ing the F1 ATPase itself [69, 101]. Cannabinoids reduce
the transmembrane potential and lower the proton gra-
dient in many cell types [94, 97–100, 102]. They directly
stimulate uncoupling protein 2 [98]. They slow many of
the reactions of the tricarboxylic cycle and pyruvate
dehydrogenase.

Other pathways
Apoptosis is a calcium-dependent feed-forward
process whereby release of calcium from endoplas-
mic reticulum stores precipitates massive dumping of
calcium from mitochondrial stores which activates
the nuclear caspases and other effectors of cata-
strophic DNA cleavage and cell death pathways [103,
104]. For this reason processes which interfere with
calcium channels and calcium signalling make cells
more resistant to apoptosis. Many oncoproteins in
the leukaemic disease-cluster act in this manner
[103, 104]. The vanilloid calcium channels TRPV4
and TRPV6 are implicated in this way [62]. Cannabi-
noids are known to act at TRPV1 and other vanilloid
channels [105–108].
Ceramide signalling is known to be involved in apop-

totic pathways [62, 103] and is a known target of canna-
binoid signalling [109, 110].
Cyclic-AMP and adenyl cyclase are known to be key effec-

tors of leukaemic cell apoptosis [62] and are primary targets
of cannabinoid and addictive drug signalling generally [111].

Table 7 Lagged panel regression models (Continued)

Parameters Model

Lagged Variables Parameter Estimate (C.I.) P-Value Adj. R-Squared F dF P

Interactive Model 8 Lags

plm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cigarettes, 8 Cigarettes: Cannabis: AUD 599.85 (483.48, 716.22) < 2.2E-16 − 0.0014 −21.9419 92,228 1

AUD, 8 Cigarettes: AUD 923.42 (657.01, 1189.82) 9.4E-11

Cannabis, 8 Cigarettes 59.16 (38.99, 79.32) 2.9E-08

Analgesics, 8 AIAN-American 9.11 (5.26, 12.95) 5.8E-06

Cocaine, 8 Asian 0.36 (0.17, 0.54) 0.0002

African-American −0.21 (− 0.33, − 0.08) 0.0011

Analgesics −19.12 (−27.41, − 10.82) 1.0E-05

AUD −225.61 (− 289.34, − 161.88) 4.1E-11

Cannabis: AUD −142.95 (− 170.37, − 115.54) < 2.2E-16

Table 8 Robust regression models

Parameter Estimate (C.I.) P-Value

Interactive Model - Drugs

svyglm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics +
Cocaine)

Cigarettes: AUD 735.98 (212.93, 1259.02) 0.0110

Cigarettes: Cannabis: AUD 275.98 (78.23, 473.74) 0.0115

Cannabis 3.42 (0.52, 6.31) 0.0297

Cannabis: AUD −65.86 (−107.03, −24.69) 0.0045

AUD −168.05 (− 261.96, −74.14) 0.0018

Interactive Model - Drugs, Income, Ethnicity

svyglm (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics +
Cocaine + Income + 5_Races)

AIAN-American 5.61 (3.91, 7.31) 8.8E-07

Cigarettes: AUD 1076.38 (277.07, 1875.68) 0.0141

Cigarettes: Cannabis: AUD 372.8 (70.03, 675.57) 0.0235

Cannabis 4.75 (0.48, 9.02) 0.0389

Cigarettes: Cannabis −25.81 (− 48.88, − 2.75) 0.0378

Cannabis: AUD −74.01 (− 133.03, − 15) 0.0213

Cigarettes −80.66 (−143.67, − 17.64) 0.0190

AUD − 207.46 (−347.32, −67.6) 0.0075

Reece and Hulse BMC Cancer          (2021) 21:984 Page 18 of 33



Leukotrienes have been shown to increase oxidative
stress and induce DNA damage and be pro-oncogenic
[7] and cannabinoid actions via CB1R are well
described as often being pro-inflammatory [112–117]
including in lymphocytes [118]. This is relevant as
heavy cannabis use in young adults is associated in
many case reports with aggressive cancers developing
at younger age [119–122]. A proinflammatory milieu
causes endogenous retrotransposons (“jumping
genes”) to jump and precipitates genomic instability
[123–129]. This process releases repeat sequences of
DNA into the cytoplasm where it triggers innate im-
munity pathways by the cGAS-STING pathway via
interferon gamma [123, 127–130]. Once this is stim-
ulated a powerful positive feed-forward loop is estab-
lished whereby cell-intrinsic inflammation triggers
further genomic instability and heightened inflamma-
tion. Hence this process has been linked with
tumour aggressiveness and metastasis [130].

Indeed it has been suggested that ALL may be a pre-
ventable disease based on the association of immune
and inflammatory pathways with its pathogenesis [6]. It
is interesting to observe that this may in fact be action-
able by a bold public health approach to control canna-
bis for the reasons outlined above.
Reports also exist of cannabinoids being anti-apoptotic

by several mechanisms [131–133].
Hence it can be seen that there are many interfaces

between cannabinoid, proinflammatory metabolic, mito-
chondrial and epigenomic pathways which are cancer
relevant and make the epidemiologically observed link
eminently biologically plausible.

Ethnogenomics
Many tumours demonstrate significant differential
rates by ethnic background. The biological basis of
one such interaction was elegantly elucidated by
research which traced such differential to a

Fig. 9 USA States with data for geospatial analysis (A) as ALL choropleth map for 2017 and (B) Cannabis use choropleth map for 2017

Fig. 10 Choropleth Map of state neighbourhood links (A) edited and (B) final
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paradoxical activation of a P53 response element at
position rs4590952 in the kit P53-RE on chromosome
9 which occurred only in light skinned races [134].
Three loci near this site have previously been identi-
fied in prior GWAS’s as conferring increased cancer
vulnerability [135–137]. P53 is generally known as the
guardian of the genome and P53 is widely connected
across the genomic and epigenomic machinery of the
cell to pause and halt genomic replication in the
presence of genotoxic stress. However at this locus
genomic stress has the paradoxical effect of inducing
activation of genomic replication, apparently to induce
the tanning response in the light skinned races and
result in melanocyte replication and increased skin
protection from ultraviolet light-induced carcino-
genesis [134]. Since cannabinoid exposed cells are

obviously genotoxically stressed this implies that in
fair-skinned races genomic stress can paradoxically
stimulate cell replication as implied here.
Other loci have since been described including

rs995030 and this is an area of active research enquiry at
this time [138].
Since both genetic background and cannabinoid ex-

posure are key factors in determining ALLRs this
strongly implies a gene-environment interaction.

Generalizability
Study results are likely to be generalizable for several
reasons. First, we utilize a large database from a
populous nation. It would appear that the drug use
and cancer incidence data are quite reliable, as are
the population-based census data. It is also likely the

Table 9 Geospatiotemporal regression models

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model Parameter Estimate P-Value

Cannabis Alone

spreml (ALL_Rate ~ Cannabis)

Cannabis 0.22 (0.09, 0.36) 0.0015 − 193.8962 0.4040 phi 0.5060 0.0005

Additive Model

spreml (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine)

Cannabis 0.16 (0.06, 0.27) 0.0032 N/A 0.3869 phi 0.4604 0.0005

rho −0.3274 0.0229

Interactive Models - Drugs

spreml (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine)

Cigarettes: Cannabis: AUD 22.02 (10.13, 33.91) 0.0003 −189.4824 0.3760 phi 0.3669 0.0022

Cigarettes: AUD 45.76 (17.83, 73.69) 0.0013 rho −0.3098 0.0349

Cannabis: AUD −2.39 (−4.75, −0.02) 0.0482 lambda 0.2865 0.0162

Interactive Models - Drugs, Income, Ethnicity

spreml (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Hispanic 0.21 (0.15, 0.26) 8.3E-13 −170.6536 N/A rho 0.3314 0.0007

Asian 0.12 (0.04, 0.2) 0.0035 lambda −0.3523 0.0011

Income −0.29 (− 0.57, − 0.01) 0.0404

African-Am. − 0.16 (− 0.21, − 0.12) 6.2E-14

Interactive Cannabinoid Models - Drugs, Income, Ethnicity

spreml (ALL_Rate ~ Cigarettes * THC * CBG + AUD + Analgesics + Cocaine + Income + 5_Races)

Hispanic 0.23 (0.17, 0.28) 9.9E-15 − 163.7442 0.3325 phi 0.0495 0.1403

Cannabigerol 0.26 (0.01, 0.52) 0.0444 psi 0.0573 0.2640

Cigarettes: THC: Cannabigerol −1.18 (−1.87, −0.49) 0.0008 rho 0.1791 0.2751

Cigarettes: THC −4.96 (−7.8, −2.12) 0.0006 lambda −0.2047 0.2159

African-Am. −0.13 (− 0.18, − 0.09) 3.4E-09

Technical Notes:
phi: - Idiosyncratic component of the spatial error term
psi: - Individual time-invariant component of the spatial error term
rho: - Spatial autoregressive parameter
lambda: - Spatial autocorrelation coefficient
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Table 10 Lagged geospatiotemporal regression models

Lagged
Variables

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model Parameter Estimate P-Value

Spatial Lagging - 1 Spatial Lag

spreml (ALL_Rate ~ Cigarettes * THC* Cannabigerol + AUD + Analgesics + Cocaine + Income + 5_Races)

CBG, 1 Hispanic 0.19 (0.14, 0.25) 3.8E-11 − 161.6159 N/A rho 0.3329 0.0005

Asian 0.15 (0.07, 0.23) 0.0003 lambda −0.3858 0.0002

THC 0.47 (0.12, 0.82) 0.0083

Income −0.43 (−0.72, − 0.13) 0.0045

Cigarettes: THC: Cannabigerol − 2.67 (− 3.97, − 1.37) 5.9E-05

Cigarettes: THC −11.45 (− 16.99, − 5.9) 5.2E-05

African-Am. − 0.18 (− 0.22, − 0.14) 2.3E-16

Spatial Lagging - 2 Spatial Lags

spreml (ALL_Rate ~ Cigarettes * THC* Cannabigerol + AUD + Analgesics + Cocaine + Income + 5_Races)

CBG, 2 Hispanic 0.21 (0.15, 0.27) 3.0E-12 −162.0804 N/A rho 0.2875 0.0065

Asian 0.14 (0.06, 0.22) 0.0006 lambda − 0.3379 0.0024

Cannabigerol 0.80 (0.16, 1.43) 0.0140

Cigarettes −10.92 (−21.53, −0.3) 0.0439

Cigarettes: Cannabigerol − 3.42 (−6.41, − 0.42) 0.0253

Income −0.37 (− 0.69, − 0.05) 0.0252

Cigarettes: THC −8.23 (−13.46, − 3.01) 0.0020

Cigarettes: THC: Cannabigerol − 2.35 (− 3.82, − 0.89) 0.0016

African-Am. − 0.17 (− 0.21, − 0.13) 7.3E-15

Temporal Lagging - 1 Lag

spreml (ALL_Rate ~ Cigarettes * THC* Cannabigerol + AUD + Analgesics + Cocaine + Income + 5_Races)

CBG, 1 Hispanic 0.22 (0.15, 0.29) 1.1E-09 − 139.8349 N/A psi 0.0981 0.0430

Cannabigerol 0.82 (0.25, 1.39) 0.0046 rho 0.1312 0.4054

Asian 0.12 (0.03, 0.2) 0.0093 lambda −0.2103 0.1734

AIAN −2.2 (−4.08, −0.32) 0.0217

Cigarettes −12.59 (−22.78, − 2.39) 0.0155

Cigarettes: Cannabigerol −3.73 (−6.58, −0.89) 0.0101

Income −0.46 (− 0.81, − 0.11) 0.0099

Cigarettes: THC −6.13 (−9.34, − 2.93) 0.0002

Cigarettes: THC: Cannabigerol −1.73 (− 2.61, − 0.86) 9.7E-05

African-Am. −0.2 (− 0.24, − 0.15) < 2.2E-16

Temporal Lagging - 2 Lags

spreml (ALL_Rate ~ Cigarettes * THC* Cannabigerol + AUD + Analgesics + Cocaine + Income + 5_Races)

CBG, 2 Hispanic 0.18 (0.12, 0.24) 2.0E-09 −132.1090 N/A rho 0.2545 0.0368

Asian 0.16 (0.07, 0.24) 0.0003 lambda −0.2987 0.0169

Cigarettes: THC −3.05 (−5.82, −0.28) 0.0308

Cigarettes: THC: Cannabigerol −0.86 (−1.61, − 0.12) 0.0226

Income −0.51 (− 0.81, − 0.21) 0.0010

African-Am. − 0.18 (− 0.22, − 0.14) 6.9E-16

Technical Notes:
phi: - Idiosyncratic component of the spatial error term
psi: - Individual time-invariant component of the spatial error term
rho: - Spatial autoregressive parameter
lambda: - Spatial autocorrelation coefficient
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Table 11 Geospatiotemporal ethnic regression models

Parameter Model

Parameter Estimate (C.I.) P-Value LogLik S.D. Model
Parameter

Estimate P-Value

Ethnic THC Exposure - Additive

spreml (ALL_Rate ~ Caucasian-Am._THC_Exp + African-Am._THC_Exp + Hispanic-Am._THC_Exp + Asian-AM._THC_Exp + AIAN-Am.THC_Exp +
NHPI_THC_Exp)

HispanicTHC_Expos. 0.39 (0.13, 0.65) 0.0038 −190.5057 0.3912 phi 0.5148 0.0005

NHAfrican-Am.THC_Expos. 0.34 (0.06, 0.63) 0.0184 rho −0.3454 0.0099

NHCaucas.-Am.THC_Expos. −0.75 (−1.25, −
0.25)

0.0032 lambda 0.2982 0.0063

Ethnic THC Exposure - Interactive

spreml (ALL_Rate ~ Caucasian-Am._THC_Exp * African-Am._THC_Exp * Hispanic-Am._THC_Exp + Asian-AM._THC_Exp + AIAN-Am.THC_Exp +
NHPI_THC_Exp)

NHCaucas.-Am.THC_Expos.: NHAfrican-Am.THC_Expos.:
HispanicTHC_Expos.

0.12 (0.04, 0.2) 0.0031 − 1847.4309 0.3817 phi 0.5033 0.0004

NHCaucas.-Am.THC_Expos. −0.06 (− 0.11, 0) 0.0349 rho −0.4053 0.0005

NHCaucas.-Am.THC_Expos.: HispanicTHC_Expos. −0.1 (− 0.16, −
0.04)

0.0007 lambda 0.3359 0.0003

Ethnic THC Exposure - Interactive in Substances and in Ethnicity

spreml (ALL_Rate ~ Cigarettes * AUD + Analgesics + Cocaine + Caucasian-Am._THC_Exp * African-Am._THC_Exp * Hispanic-Am._THC_Exp +
Asian-AM._THC_Exp + AIAN-Am.THC_Exp + NHPI_THC_Exp)

NHCaucas.-Am.THC_Expos.: NHAfrican-Am.THC_Expos.:
HispanicTHC_Expos.

0.12 (0.04, 0.2) 0.0023 −180.6319 0.3642 phi 0.3436 0.0021

Cigarettes: AUD 16.13 (3.39,
28.87)

0.0131 rho −0.3769 0.0016

NHCaucas.-Am.THC_Expos. −0.08 (− 0.16, −
0.01)

0.0305 lambda 0.3057 0.0014

Cigarettes − 2.86 (− 4.67,
−1.05)

0.0019

NHCaucas.-Am.THC_Expos.: HispanicTHC_Expos. −0.12 (− 0.18, −
0.06)

7.5E-05

Technical Notes:
phi: - Idiosyncratic component of the spatial error term
psi: - Individual time-invariant component of the spatial error term
rho: - Spatial autoregressive parameter
lambda: - Spatial autocorrelation coefficient

Fig. 11 (A) Cannabis use intensity for Caucasian -Americans and African-Americans; (B) Childhood ALL Rates by Race for both ethnicities and (C)
modelled ALL rates over the whole time period by ethnicity
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Fig. 12 Stripplots showing convergence of the multiple imputation algorithm with increasing numbers of imputations and iterations to 5 and 5,
25 and 25 and 60 and 60 respectively

Fig. 13 Density plot of imputed values in the various imputations
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Table 12 Linear models from imputed data
Parameters Model

Parameter Estimate (C.I.) P-Value No. Imputa- tions SD lambda FMI

Cannabis Alone

lm (ALL_Rate ~ Ethnic_THC_Exposure

Ethnic_THC_Exposure 0.14 (0.12, 0.17) 3.4E-26 60 0.2891 0.0562 0.0583

Additive Model

lm (ALLRate ~ Cigarettes + AUD + Ethic_THC_Exposure + Analgesics + Cocaine)

Ethnic_THC_Exposure 0.53 (0.44, 0.61) 6.2E-31 60 0.8246 0.0301 0.0321

AUD 9.1 (5.3, 12.89) 3.1E-06 0.0301 0.0321

Cigarettes 1.52 (0.09, 2.95) 0.0371 0.0294 0.0314

Interactive Model

lm (ALLRate ~ Cigarettes + AUD + Ethic_THC_Exposure + Analgesics + Cocaine + Cigarettes: AUD + Cigarettes: Ethnic_Cannabis + AUD: Ethnic_Cannabis)

Ethnic_THC_Exposure 0.42 (0.35, 0.5) 1.7E-27 60 0.8347 0.0335 0.0355

Cocaine 10.69 (2.47, 18.92) 0.0110 0.0323 0.0343

Interactive Model with Cannabinoids

lm (ALLRate ~ Cigarettes + AUD + THC + Cannabigerol + Analgesics + Cocaine + Cigarettes: AUD + Cigarettes: Ethnic_Cannabis + AUD: Ethnic_Cannabis)

Cigarettes: Ethnic_THC_Exposure 3.77 (3.12, 4.42) 5.8E-13 60 0.6885 0.0270 0.0290

Cannabigerol 2.14 (1.65, 2.63) 2.1E-17 0.0484 0.0505

AUD: Ethnic_THC_Exposure 6.98 (5.08, 8.88) 1.2E-12 0.0251 0.0270

Cigarettes −5.68 (−7.03, −4.33) 4.4E-16 0.0596 0.0617

THC: Cannabigerol −19.56 (−22.57, − 16.55) 1.0E-34 0.0405 0.0425

THC −2.63 (−3.03, − 2.23) 1.3E-35 0.0538 0.0559

Interactive Model with Ethnicity & Income

lm (ALLRate ~ Cigarettes + AUD + Ethic_THC_Exposure + Analgesics + Cocaine + Cigarettes: AUD + Cigarettes: Ethnic_Cannabis + AUD: Ethnic_Cannabis +
Income + NHWhite + NHAfrican-Am.)

Ethnic_THC_Exposure 0.64 (0.55, 0.72) 3.1E-40 60 0.8028 0.0352 0.0373

Cigarettes: AUD 27.3 (14.38, 40.22) 3.7E-05 0.0328 0.0348

Analgesics −8.83 (−14.57, − 3.09) 0.0027 0.0268 0.0288

Income −1.73E-05 (−2.46E-05, − 1.0E-05 3.7E-06 0.0482 0.0502

Black −1.56 (−2.18, −0.94) 1.1E-06 0.0371 0.0391

White −1.28 (− 1.72, −0.84) 2.6E-08 0.0313 0.0333

Interactive Model with Intensity Cannabis Use

Cigarettes: Ethnic_THC_Exposure 2.97 (2.61, 3.32) 4.80E-53 60 0.7883 0.0206 0.0226

Cigarettes: AUD −31.33 (−44.5, −18.17) 3.53E-06 0.0434 0.0455

NHWhite_Cannabis_Intensity −1.32 (− 1.55, − 1.09) 6.34E-28 0.0420 0.0440

Interactive Model with Ethnicity & Income with Intensity Cannabis Use

lm (ALLRate ~ Cigarettes + AUD + Ethnic_Intensity_Cannabis_Use_Indices + Analgesics + Cocaine + Cigarettes: AUD + Cigarettes: Ethnic_Cannabis + AUD:
Ethnic_Cannabis + Income + NHWhite + NHAfrican-Am.)

Cigarettes: Ethnic_THC_Exposure 4.69 (3.77, 5.61) 1.0E-22 60 0.7585 0.0231 0.0251

Cigarettes: AUD 150 (67.09, 232.91) 4.0E-04 0.0479 0.0500

Cocaine − 11.7 (−21.38, −2.02) 0.0181 0.0447 0.0467

Income −1.1E-05 (−2.0E-05, −3.0E-06) 0.0097 0.0458 0.0478

AUD: Ethnic_THC_Exposure −3.51 (−6.14, −0.88) 0.0088 0.0274 0.0294

AUD −29.6 (−49.98, −9.22) 0.0045 0.0477 0.0497

White −0.88 (−1.34, − 0.41) 0.0002 0.0441 0.0462

Analgesics −11.6 (− 17.11, −6.09) 3.8E-05 0.0316 0.0336

Cigarettes −17 (−22.66, − 11.34) 5.1E-09 0.0394 0.0415

NHWhite_Cannabis_Intensity −1.58 (− 1.82, − 1.34) 4.2E-35 0.0472 0.0493
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Table 13 e-Values

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

Linear Models

lm (ALL_Rate ~ mrjmon)

Cannabis 0.3 (0.18, 0.41) 1.94 (1.51, 2.51) 3.30, 2.38

lm (ALL_Rate ~ Time * mrjmon)

Cannabis 30.51 (13.22,
132.81)

2.70E+ 71 (1.13E+ 13, 6.46E+
129)

5.40E+ 71, 2.25E+
13

Quintiles

lm (ALL_Rate ~ Quintile)

Quintile 4 0.18 (0.07, 0.29) 1.49 (1.15, 1.91) 2.34, 1.59

Quintile 5 0.19 (0.06, 0.32) 1.53 (1.15, 2.04) 2.43, 1.57

lm (ALL_Rate ~ Year * Quintile)

Quintile 3 79.2 (26.91,
131.49)

7.55E+ 76 (1.67E+ 26, 3.41E+
127)

1.51E+ 77, 3.34E+
26

Quintile 4 74.23 (21.02,
127.44)

1.13E+ 72 (3.23E+ 20, 3.96E+
123)

2.26E+ 72, 6.50E+
20

Quintile 5 61.55 (3.2, 119.9) 5.54E+ 59 (1.65E+ 03, 1.85E+
116)

1.11E+ 60, 3.31E+
03

lm (ALL_Rate ~ Year * Dichotomized_Quintiles)

Upper Quintiles 0.15 (0.07, 0.22) 1.99E+ 59 (1.56E+ 03, 2.54E+
115)

3.99E+ 59, 3.13E+
03

Legal Status

lm (Rate ~ Status)

Legal 0.3 (0.12, 0.49) 1.98 (1.31, 2.98) 3.37, 1.95

Medical 0.21 (0.12, 0.31) 1.62 (1.30, 2.00) 2.62, 1.94

lm (Rate ~ Year * Status)

Legal 0.3 (0.12, 0.49) 1.98 (1.31, 2.98) 3.37, 1.95

Medical 0.21 (0.12, 0.31) 1.62 (1.30, 2.00) 2.62, 1.94

lm (Rate ~ Year * Dichotomized Status)

Liberal 0.11 (0.04, 0.18) 1.27 (1.08, 1.49) 1.85, 1.38

Additive model

lm (ALL_Rate ~ Cigarettes + AUD + Cannabis + Analgesics + Cocaine)

Cannabis 0.14 (0.03, 0.26) 1.40 (1.06, 1.84) 2.16, 1.34

MIXED EFFECTS MODELS

ADDITIVE MODELS

lme (ALL_Rate ~ Cannabis)

Cannabis 0.33 (0.15, 0.51) 1.30 (1.04, 2.47) 2.58, 1.24

Drugs

lme (Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine)

Cannabis 0.43 (0.23, 0.62) 2.29 (1.56, 3.37) 4.02, 2.50

Drugs, Income & Ethnicity

lme (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine + Income + 5_Races)

Cannabis 0.25 (0.06, 0.44) 1.66 (1.14, 2.44) 2.72, 1.53

INTERACTIVE MODEL

lme (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cannabis: AUD 7.95 (4.69, 11.22) 9.40E+ 06 (1.29E+ 04, 6.81E+
09)

1.88E+ 07, 2.59E+
04
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Table 13 e-Values (Continued)

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

GEOSPATIAL MODELS

Cannabis Alone

spreml (ALL_Rate ~ Cannabis)

Cannabis 0.22 (0.09, 0.36) 3.44 (1.61, 7.36) 6.34, 2.60

Additive Model

spreml (ALL_Rate ~ Cigarettes + Cannabis + AUD + Analgesics + Cocaine)

Cannabis 0.16 (0.06, 0.27) 1.47 (1.14, 1.90) 2.31, 1.54

Interactive Models - Drugs

spreml (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine)

Cigarettes: Cannabis: AUD 22.02 (10.13,
33.91)

1.38E+ 23 (4.65E+ 10, 4.11E+
35)

2.77E+ 23, 9.30E+
10

Interactive Cannabinoid Models - Drugs, Income, Ethnicity

spreml (ALL_Rate ~ Cigarettes * Cannabis * AUD + Analgesics + Cocaine + Income + 5_Races)

Cannabigerol 0.26 (−3.68, 4.2) 2.04 (1.02, 4.11) 3.51, 1.16

ETHNICITY MODELS

Ethnic THC Exposure - Additive

spreml (ALL_Rate ~ Caucasian-Am._THC_Exp + African-Am._THC_Exp + Hispanic-Am._THC_Exp + Asian-AM._THC_Exp + AIAN-Am.THC_Exp +
NHPI_THC_Exp)

HispanicTHC_Expos. 0.39 (0.13, 0.65) 2.47 (1.34, 4.54) 4.37, 2.01

NHAfrican-Am.THC_Expos. 0.34 (0.06, 0.63) 2.11 (1.09, 4.07) 3.65, 1.43

Ethnic THC Exposure - Interactive

spreml (ALL_Rate ~ Caucasian-Am._THC_Exp * African-Am._THC_Exp * Hispanic-Am._THC_Exp + Asian-AM._THC_Exp + AIAN-Am.THC_Exp +
NHPI_THC_Exp)

NHCaucas.-Am.THC_Expos.: NHAfrican-Am.THC_Expos.: HispanicTHC_
Expos.

0.12 (0.04, 0.2) 1.33 (1.10, 1.59) 1.98, 1.43

spreml (ALL_Rate ~ Cigarettes * AUD + Analgesics + Cocaine + Caucasian-Am._THC_Exp * African-Am._THC_Exp * Hispanic-Am._THC_Exp +
Asian-AM._THC_Exp + AIAN-Am.THC_Exp + NHPI_THC_Exp)

NHCaucas.-Am.THC_Expos.: NHAfrican-Am.THC_Expos.: HispanicTHC_
Expos.

0.12 (0.04, 0.2) 1.36 (1.12, 1.66) 2.06, 1.48

Ethnic Imputed Models

Additive Model

Ethnic_THC_Exposure 0.53 (0.44, 0.61) 1.78 (1.62, 1.96) 2.97, 2.64

Interactive Model

Ethnic_THC_Exposure 0.42 (0.35, 0.5) 1.59 (1.46, 1.72) 2.55, 2.29

Interactive Model with Cannabinoids

Cannabigerol 2.14 (1.65, 2.63) 16.99 (8.90, 34.42) 33.47, 17.29

Cigarettes: Ethic_THC_Exposure 3.77 (3.12, 4.42) 146.54 (62.25, 344.97) 292.59, 124.00

AUD: Ethnic_THC_Exposure 6.98 (5.08, 8.88) 1.01E+ 04 (829.80, 1.24E+ 05) 2.03E+ 04, 1.66E+
03

Interactive Model with Race & Income

Ethic_THC_Exposure 0.64 (0.55, 0.72) 2.05 (1.85, 2.27) 3.52, 3.11

Interactive Model with Race & Income & Cannabis Intensity

Cigarettes: Ethic_THC_Exposure 4.69 (3.77, 5.61) 279.13 (92.59, 841.47) 557.76, 184.68

Cannabis_Use_Intensity

NH Caucasian-American 8.93 (6.2, 11.66) 1.66E+ 52 (1.97E+ 36, 1.39E+
68)

3.32E+ 52, 32.94E+
36
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most accessible dataset in the world relating drug use
to ALL incidence. Secondly, we found similar results
when data was interrogated by a variety of regression
techniques. Thirdly, the results of the causal inference
analysis are strongly positive with both inverse prob-
ability weighting and e-Value analyses being strongly
confirmatory. Finally, findings satisfy eight of nine of
Hill’s criteria of causality including strength of associ-
ation, consistency amongst studies, specificity,

temporality, coherence with other known data, bio-
logical plausibility, dose-response relationships and
experimental confirmation [139]. Notwithstanding, as
this relationship has not previously been reported
elsewhere we feel that further replication in other
contexts is important.
It is also noteworthy that study findings apply more

broadly across the spectrum of cannabinoids than just
implicating THC alone. Regression findings clearly
implicated cannabigerol often more powerfully than
THC. Positive and significant trends were observed
for the bivariate relationship between ALLR and
THC, cannabinol, cannabigerol, cannabichromene and
cannabidiol. The action of cannabidiol and cannabidi-
varin to cause double stranded DNA breaks, micronu-
cleus formation and directly oxidize all the bases of
DNA, and slow protein DNA and RNA synthesis was
noted earlier [19, 54–57, 59, 60].

Strengths and limitations
This study has a number of strengths and limitations. Its
strengths include the use of: a large population dataset
and registry controlled data; a variety of advanced statis-
tical methods including space-time regression, instru-
mental panel regression, and a number of robust and
other regression models; spatially and temporally lagged
models with robust results throughout; causal inference
techniques including inverse probability weighting in
multiple models and e-Value calculation; inclusion of a
range of relevant potential covariates including other
substance exposure, ethnicity, income and the intensity
of use of cannabinoids by various ethnicities; and use of
well-validated multiple imputation techniques to exam-
ine the effects of ethnic differentials in ALLR. The prin-
cipal limitation of this study relates to the non-
availability of individual patient level substance use data,
a limitation which is common to most epidemiological
studies of this kind. Indeed because of recall bias, and
because individual participants may be confused about
whether their pregnancy was cannabinoid affected after
cessation of cannabis exposure early in the pregnancy,
we advocate the development of a robust biomarker,
possibly derived from epigenomic or glycomic analyses
as has previously been advanced [140].

Conclusion
Study data show for the first time that pediatric
ALLRs are robustly related to state-level cannabis
exposure and to ethnic THC exposure. Prominent
dose-response and quintile effects are demonstrated
with marked effects of cannabis legalization. Results
are confirmed at space-time regression and shown to
be causal by techniques of causal inference particu-
larly inverse probability weighting and e-Values,

Table 14 List of Minimum e-Values

No. Minimum e-Value

1 3.94E+ 36

2 3.34E+ 26

3 6.50E+ 20

4 2.25E+ 13

5 9.30E+ 10

6 2.54E+ 08

7 25,900.00

8 3310.00

9 3130.00

10 1660.00

11 184.68

12 124.00

13 17.29

14 3.11

15 2.64

16 2.6

17 2.5

18 2.38

19 2.29

20 2.01

21 1.95

22 1.95

23 1.94

24 1.94

25 1.59

26 1.57

27 1.54

28 1.53

29 1.48

30 1.43

31 1.43

32 1.38

33 1.34

34 1.24

35 1.16
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which are all strongly confirmatory. Cannabis
legalization was associated with significantly higher
ALLRs both when legal status was considered and
when dichotomized legal status was reviewed. In so
doing we greatly extend prior work, show that the
cannabis-ALL link is salient at the population health
level, is likely a primary driver of the 93.5% mono-
tonic rise in ALLRs since 1975, and is a primary
contributor to the well described ethnic differentials
in ALL incidence, likely related to differential inten-
sity of cannabis exposure and strongly suggesting a
gene-environment interaction. Such results are there-
fore pivotal in re-focussing the pediatric cancer dis-
cussion on substance use and cannabinoid exposure
in particular. In that ALL is the commonest malig-
nant disorder of the pediatric age group, the present
results leave open the possibility that increasing can-
nabis exposure is a key driver of the marked in-
creases in total pediatric cancers since 1975.

Findings implicate all cannabinoids examined includ-
ing THC, cannabigerol, cannabichromene, cannabinol
and cannabidiol. In that ALL is well described as be-
ing due to formation of several protooncogenes and
oncoproteins by a series of chromosomal transloca-
tions the present clear results add an important
mechanistic dimension to the trisomy / monosomy
series of defects previously described in association
with prenatal cannabis use in addition to anaphase
chromosomal mis-segregation [68, 75]. Since
pediatric cancer is known to be related to gestational
genetic and epigenetic defects these transgenerational
impacts add a further major dimension to the canna-
bis legalization debate which has not been widely
considered [141, 142]. Future research directions
could include study of this relationship at higher
geotemporal resolution and in other contexts and
with sensitive objective biomarkers of cannabinoid
exposure [140].

Fig. 14 Effect of cannabis legal status on ALL rate. (A and C) Cannabis use by legal status and (B and D) ALL rate by legal status as (C and D)
scatterplots and (A and B) boxplots. Note particularly non-overlapping notches in the boxplots which signify statistically significant differences
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Fig. 15 Effect of dichotomized cannabis legal status on ALL rate. Dichotomized as legal status v. not legal. (A and C) Cannabis use by legal status
and (B and D) ALL rate by legal status as (C and D) boxplots and (A and B) scatterplots. Note particularly non-overlapping notches in the
boxplots which signify statistically significant differences

Table 15 Legal Status

Parameter Parameter Model Parameters

Estimate (C.I.) P-Value SD R-Squared F dF P

Legal Status

lm (Rate ~ Status)

Legal 0.3 (0.12, 0.49) 0.0013 0.4053 0.0502 9.971 3506 2.10E-06

Medical 0.21 (0.12, 0.31) 1.4E-05

lm (Rate ~ Year * Status)

Legal 0.3 (0.12, 0.49) 0.0013 0.4053 0.0502 9.971 3506 2.10E-06

Medical 0.21 (0.12, 0.31) 1.4E-05

lm (Rate ~ Year * Dichotomized Status)

Liberal 0.11 (0.04, 0.18) 0.0037 0.4128 0.0146 8.523 1508 0.0036

lm (Rate ~ Year * Dichotomized Status)

Legal (v Not Legal) 1.24E-04 (3.0E-05, 2.2E-04) 0.0103 0.4132 0.0127 4.288 2507 0.0142
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