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Application of the Multistate Tuberculosis
Pharmacometric Model in Patients With
Rifampicin-Treated Pulmonary Tuberculosis

RJ Svensson* and USH Simonsson

This is the first clinical implementation of the Multistate Tuberculosis Pharmacometric (MTP) model describing fast-, slow-,
and nonmultiplying bacterial states of Mycobacterium tuberculosis. Colony forming unit data from 19 patients treated with
rifampicin were analyzed. A previously developed rifampicin population pharmacokinetic (PK) model was linked to the MTP
model previously developed using in vitro data. Drug effect was implemented as exposure-response relationships tested at
several effect sites, both alone and in combination. All MTP model parameters were fixed to in vitro estimates except Bmax.
Drug effect was described by an on/off effect inhibiting growth of fast-multiplying bacteria in addition to linear increase of the
stimulation of the death rate of slow- and nonmultiplying bacteria with increasing drug exposure. Clinical trial simulations
predicted well three retrospective clinical trials using the final model that confirmed the potential utility of the MTP model in
antitubercular drug development.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 264–273; doi:10.1002/psp4.12079; published online 17 May 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � There is a lack of semimechanistic PK/PD models within
TB. The MTP model has been applied to in vitro and animal data in which natural growth and rifampicin drug effect were
successfully described. • WHAT QUESTION DID THIS STUDY ADDRESS? � Can the MTP model be applied to clinical
CFU data after rifampicin monotherapy? Can the approach predict retrospective clinical data using clinical trial simula-
tions? • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � The MTP model was successfully applied, which indi-
cates that the MTP model can be used for clinical and preclinical trial simulation. In addition, this study adds to the
evidence concerning rifampicin mechanism of action. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND
THERAPEUTICS � The MTP model can potentially aid in decision support for trial designs and program design evalua-
tions within the field of TB drug development.

Rifampicin is a recommended first-line antitubercular drug
used in patients with drug-susceptible pulmonary tuberculo-

sis (TB)1 partly because rifampicin is efficient in avoiding
relapse.2 Rifampicin inhibits bacterial DNA-dependent RNA

polymerase,3,4 which is essential for bacterial metabolism,
leading to activity against multiplying and nonmultiplying
bacteria.5

Clinical symptoms appear late in the infection6 when
infections are at a stationary phase in which no change in
the colony forming unit (CFU) over time in untreated
patients is seen.7 Studies on clinical sputum samples with
resuscitation-promoting factors revealed that only 0.01–
20% of Mycobacterium tuberculosis (M. tuberculosis) cells
are quantified as CFU,8 suggesting existence of a large
portion of noncultivable nonmultiplying bacteria.

In short-term clinical data, a biexponential pattern of
decline in CFU can be seen.9 This is thought to be due to
subpopulations with different drug susceptibility giving rise to
an initial rapid and a late slower decline, respectively. The
CFU readout is widely used within TB drug development to
quantify treatment progression10 in which the rate of decline
in CFU is associated with treatment outcome.11 In vitro, at
least three different subpopulations exist within a M. tubercu-

losis culture.12 Susceptibility relates to in vitro conditions;
log-phase and oxygen-rich cultures are susceptible to drugs,
whereas stationary phase and oxygen-poor cultures are not.
Subpopulations surviving drug exposure are by definition
phenotypically tolerant13 and are slow- or nonmultiplying.14

The Multistate Tuberculosis Pharmacometric (MTP)
model is a semimechanistic model describing fast-, slow-,
and nonmultiplying bacteria. It has been successfully
applied to describe in vitro15 and mouse data16 but not until
now to clinical data.

The objective of the analysis was to apply the MTP
model, linked to rifampicin pharmacokinetics (PKs), to clini-
cal phase IIa CFU data in patients with drug-susceptible
pulmonary TB. In addition, we performed clinical trial simu-
lations using the developed final model in order to predict
retrospective clinical data as external validation.

METHODS
Patients and study design
Data included individual sputum CFU counts from 23
patients with treatment-naive Kenyan drug-susceptible pul-
monary TB divided into four arms: (1) no treatment
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(negative control, n 5 4); (2) 5 mg/kg (n 5 3); (3) 10 mg/kg
(n 5 8); or (4) 20 mg/kg (n 5 8) rifampicin daily at 8 AM.
Patients were treated for 14 days with sputum collected
during 12 hours overnight (between 8 PM and 8 AM) every
second day, including two baseline measurements. Sputum
samples were cultivated on agar plates for CFU counting.
For more details, the reader is referred to the original publi-
cation.17 No formal ethical review boards or written consent
process existed at the time of the conduct of the study
(1966–1977). However, the principal investigator has con-
firmed that no restrictions relating to reuse of data were
envisaged and reuse of the irreversibly anonymized data by
the PreDiCT-TB consortium was approved by the UK
National Research Ethics Service.

Overall modeling strategy
The first step was to adapt the MTP model15 for the clinical
TB setting. This was done by fixing all parameters except
Bmax to estimates from the in vitro MTP setting.15 The sec-
ond step was to include a human rifampicin PK model in
order to describe rifampicin exposure. Finally, drug effect
was quantified by developing exposure-response relation-
ships linking the PK model to the MTP (disease) model. All
observed CFU data were modeled simultaneously as the
natural logarithm of CFU in ml21 and log-transformation both
sides. Data analysis was performed with the nonlinear mixed
effects modeling software NONMEM version 7.3 (Icon Devel-
opment Solutions [http://www.iconplc.com/technology/
products/nonmem], Ellicott City, MD)18 using the first-order
conditional estimation with interaction. Data handling was
performed in R version 3.1.1 (R Foundation for Statistical
Computing [http://www.R-project.org], Vienna, Austria).

Population pharmacokinetic model
As previously described, the PK-enzyme turnover model for
rifampicin19 was used as the PK model. Because the data
contained no observed rifampicin concentrations, a popula-
tion PK parameter approach20 was used. Random variabili-
ty parameters were removed with the remaining structural
parameters fixed to reported estimates of fixed effects. As
no covariate information was available, covariates were set
to most common or median values. Each patient was
assumed to be human immunodeficiency virus (HIV) nega-
tive with a body weight of 56 kg and a fat free mass of
45 kg, which were the mean observed demographics in the
study used for developing the PK model.19 These patients
originated from South Africa, Senegal, Benin, and Guinea.

The Multistate Tuberculosis Pharmacometric model
The structure of the MTP model15 developed using in vitro
time-kill data was used as the disease model. The structure
included fast-multiplying, slow-multiplying, and nonmultiply-
ing bacterial states. Only the bacterial numbers in the
fast- and slow-multiplying states were visible as CFU, the
nonmultiplying state was considered nonculturable. Growth
of the fast-multiplying state was described by a Gompertz
function. The MTP model does not include growth of slow-
multiplying bacteria but only increase of slow-multiplying
bacteria because of transfer of bacteria from the fast-
multiplying state.15 Each bacterial substate was allowed to
transfer between all states, except from non- to fast-

multiplying state. This transfer was judged scientifically neg-

ligible in vitro because of hypoxia.15 The transfer rate from

fast- to slow-multiplying state increased linearly with time.
The differential equations were written as:

dF
dt

5kG � log
Bmax

F1S1N

� �
� F1kSF � S2kFS � F2kFN � F

dS
dt

5kFS � F1kNS � N-kSF � S2kSN � S

dN
dt

5kFN � F1kSN � S

where kFS5kFSlin
� t where F, S, and N are the model pre-

dicted bacterial number (ml21) in fast-, slow-, and nonmulti-

plying states, respectively. Various k with two-letter

subscripts are transfer rates between substates. The first

letter describes the transfer origin and the second letter

describes the direction. The parameter kFSlin multiplied by

time (t) in days after infection describes the time-dependent

transfer rate from fast- to slow-multiplying state. The

parameter kG is the fast-multiplying bacterial growth rate

and Bmax is the system carrying capacity, constraining the

growth in the stationary phase.
In order to evaluate the importance of the nonmultiplying

substate in the MTP model, an alternative two-state model

not including a nonmultiplying state was developed. The dif-

ferential equations for the two-state model were written as:

dF
dt

5kG � log
Bmax

F1S

� �
� F1kSF � S2kFS � F2kD � F

dS
dt

5kFS � F2kSF � S2kD � S

where kFS5kFSlin
� t where kD is the natural death rate in

days21, needed to adequately describe the CFU in vitro

data when assuming no nonmultiplying state.15 The CFU

declines at �70 days, which is correctly described as a

shift into the nonmultiplying state in the MTP model but is

described as natural death in the alternative two-state

model. The parameters of the two-state model were esti-

mated using the same in vitro data as was used to develop

the structure of the MTP model.15 All model fitting and

assumptions were otherwise similar as for the MTP model.
All patients were assumed to have stationary phase

infections. Time from inoculum (i.e., infection) to stationary

phase for the in vitro MTP model15 was investigated

through simulations in Berkeley Madonna version 8.3.18

(Department of Molecular and Cellular Biology, University of

California [http://www.berkeleymadonna.com], Berkeley,

CA). Simulations in Berkeley Madonna were also used to

assess identifiability of parameters suitable for estimation

and corresponding impact on CFU vs. time.
Drug effect using the clinical data was investigated in

four sequential steps. The first step investigated drug effect

on different effect sites as univariate (i.e., single effect site)

models. Effect site refers to either inhibition of fast-

multiplying growth or stimulation of fast-, slow-, or nonmulti-

plying death in the MTP model. Included models were on/
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off (constant maximal drug effect at drug concentrations
above 0 mg/L), linear, Emax, and sigmoidal Emax models.
Drug effects were incorporated as:

dF
dt

5kG � log
Bmax

F1S1N

� �
� F � 12EFFFGð Þ1kSF � S2kFS � F2kFN

� F2EFFFD � F

dS
dt

5kFS � F1kNS � N2kSF � S2kSN � S2EFFSD � S

dN
dt

5kFN � F1kSN � S2kNS � N2EFFND � N

where EFFFG, EFFFD, EFFSD, and EFFND are the drug
effects as inhibition of fast-multiplying growth and death of
fast-, slow-, and nonmultiplying, respectively. Models were
statistically significant at 5% significance level if the objec-
tive function value (OFV) decreased by at least 3.84 (v2

distribution) for nested models with addition of one parame-
ter. The second step investigated effect sites in combina-
tion. To not exclude effect sites that were apparent only in
combination, all effect sites were included. In addition, to
not exclude any exposure-response relationships, all effect
sites included at least linear models. All combinations of
effect sites were tested. The statistically significant combina-
tion that fitted the data best (i.e., lowest OFV) was selected.
The third step reevaluated the exposure-response relation-
ship at each effect site. All drug effect models were retested
at each effect site. If an alternative drug effect model was
statistically significant on one effect site, that model was
kept. If multiple effect sites had statistically significant alterna-
tive drug effect models, the model with the best model fit
(i.e., lowest OFV) was kept and tested for statistical signifi-
cance in combination with the model with the second best
model fit until no alternative model was supported. The
fourth step was a backward elimination step at 1% signifi-
cance level (DOFV �6.63 for removal of one parameter).
Each effect site was removed to exclude nonsignificant effect
sites at 1% significance level, resulting in a full model.

Three approaches to handle predictions of CFU were eval-
uated. For the last time point method, predictions were
defined as the bacterial number in the fast- and slow-
multiplying states per milliliter sputum at the last time point of
the sputum sampling interval, which was at 8 AM because all
samples were collected between 8 PM and 8 AM. For the mid-
time point method, predictions were defined as the bacterial
number in the fast- and slow-multiplying states in mL21 at the
mid-point in the sputum sampling period (2 AM). The time for
each observation was for both methods specified in the data-
set. Predictions of CFU were defined as:

PRED5log F1Sð Þ

where PRED is the prediction of the natural logarithm of F
and S in mL21.

For the sputum sampling compartment method, predictions
were defined as the average bacterial number in the fast- and
slow-multiplying states (mL21) in the sputum sampling interval
(between 8 PM and 8 AM). This was implemented by inclusion
of a sputum sample compartment described by: T
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dSample
dt

5kprod � F1Sð Þ

where kprod 5
Vsputum

Dsample
Sample is the bacterial number in the

fast- and slow-multiplying states in the specified sputum

volume over the sampling interval. The sputum production

rate is kprod (mL/h). Sputum volume is Vsputum (mL) and the

sampling duration is Dsample (hours). The amount in the

sample compartment was set to 0 at the start of each col-

lection period. Predictions of CFU were defined as:

PRED5log
Sample
Vsputum

� �

where PRED is the natural logarithm of the average bacterial

number in the fast- and slow-multiplying states (mL21) over the

sampling interval. The true sample volume was unavailable in

this study and was assumed to be 10 mL for all samples, a

realistic value based on reported sputum volumes.21 Start and

duration of sputum sample collection and sample volume were

specified in the dataset (Supplementary Material S1).

Attempts were made to model immune response imple-
mented as specific zero- and first-order death rates on the
fast-, slow-, and nonmultiplying states. Furthermore, effect
delay models, implemented as effect compartment models,
were tested on all effect sites.

Random effects were tested in Bmax. Interindividual vari-
ability (IIV) was parameterized as:

P5TVP3eg

where P is the parameter, TVP is the typical value of the param-
eter, and g is a normally distributed parameter. Error models
implemented as additive error on log scale (approximates pro-
portional error on normal scale) and combined errors (including
two additive errors; one on normal scale and one on log scale)
were tested.

Observed CFU values were reported in replicate and
analyzed without averaging. To avoid bias because of cor-
relation between replicates a residual error model with two
components, one where the error was similar for all repli-
cates and one where the error was the same for replicates

Figure 1 Schematic describing the final model. The dose (DOSE) is transferred from the absorption site (Abs) to the central compart-
ment by a transit rate constant ktr, which is described by the number of compartments (n) 11 divided by the mean transit time (MTT).
Drug is eliminated linearly as described by rifampicin oral clearance (CL/F) divided by the apparent volume of distribution (V/F), at the
preinduced stage. The pharmacokinetic (PK) model includes an enzyme turnover model, in which plasma concentrations of rifampicin
(CRIF) increase the rate constant for first-order degradation of the enzyme pool (kENZ), which leads to an increase in the enzyme pool
(ENZ) with an Emax model leading to increased elimination of rifampicin. The parameter EC50 is the rifampicin concentration (CRIF) at
which half the Emax is reached. Emax is the maximal increase in the enzyme production rate. CRIF drives the effect implemented in the
Multistate Tuberculosis Pharmacometric (MTP) model. The MTP model consists of three bacterial compartments; the fast-multiplying
state (F), the slow-multiplying state (S), and the nonmultiplying state (N). Growth is present for F described by a fast-multiplying bacte-
rial growth rate (kG) multiplied by the natural logarithm of the system carrying capacity per milliliter sputum (Bmax) divided by the num-
ber of F, S, and N. F can transfer to N described by the transfer rate from fast- to nonmultiplying state (kFN). Transfer between F and S
is described by a time-dependent transfer rate from fast- to slow-multiplying state (kFSlin). S can transfer to F and N described by the
transfer rate from slow- to fast-multiplying state (kSF) and transfer rate from slow- to nonmultiplying state (kSN), respectively. N can
transfer to S described by the transfer rate from non- to slow-multiplying state (kNS). Drug effect enters the model as fractional inhibi-
tion of growth of fast-multiplying state (FGon/off) in presence of drug according to the PK model, as second-order nonmultiplying death
rate (NDk) and as second-order slow-multiplying death rate (SDk). The bacterial number of F and S together with the sputum produc-
tion rate (kprod) describes the amount of bacteria that is present in the sputum sample compartment (Sample).
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from the same sputum sample, were tested. This was

implemented using the L2 data item in NONMEM. No data

were below the limit of quantification.

Model selection and evaluation
Models were evaluated by comparing the difference in OFV

together with parameter precision and diagnostic plots gen-

erated with the R package Xpose version 4.5.2 (Depart-

ment of Pharmaceutical Biosciences, Uppsala University

[http://xpose.sourceforge.net], Uppsala, Sweden).22,23 In

addition, prediction-corrected visual predictive checks24

were generated using PsN version 4.3.2 (Department of

Pharmaceutical Biosciences [http://psn.sourceforge.

net])22,25 using 1,000 simulations. A prediction-corrected

visual predictive check normalizes the observed and simu-

lated dependent variable to the median typical prediction

within each bin, allowing visual interpretation of several

doses in one plot, which is not always the case with a tradi-

tional visual predictive check.22,25 A 1,000 sample bootstrap

was performed in PsN22,25 on the final model in order to

obtain the nonparametric 95% confidence interval for all

estimated parameters.

Clinical trial simulations
External validation was performed by comparing model pre-

dicted 95% prediction intervals (PIs) of the typical change

in CFU from baseline vs. time to the mean 6 SE of four

datasets not used for model building. The datasets con-

sisted of rifampicin in monotherapy with different doses and

study lengths,26–28 summarized in Table 1. The PI of the

typical predictions was generated from 1,000 samples

simulated with uncertainty in parameter estimates.

RESULTS

The final MTP model had the same structure as the final

MTP model developed using in vitro data,15 as shown in

Figure 1. An example dataset and final model code are

found in Supplementary Material S1 and S2, respectively.

Simulations from the MTP model developed using in vitro

data15 revealed that stationary phase was apparent beyond

130 days after infection. Because all patients were

assumed to have stationary phase infections, time for start

of treatment was set to 150 days after infection for all

patients.
The OFV was lower (DOFV 5 24.19) for the final MTP

model compared to the two-state model without nonmulti-

plying state, which indicates a better fit.
All MTP model parameters were fixed to in vitro esti-

mates,15 except for Bmax, which was estimated. Using the

in vitro Bmax value resulted in an increase in OFV by 53.2

and predicted typical log-10 CFU at day 150 of 6.23 mL21,

whereas the mean observed baseline value in the clinical

dataset was 7.64 mL21. Simulations with different values

for Bmax yielded identical relative amounts of bacterial

states at stationary phase because transfer rates between

states were fixed. Parameters kG, kFSlin, kSF, kSN, kNS, and

kFN were unidentifiable. This was probably because of the

short study duration and that data were obtained at a sta-

tionary phase of infection. Regardless, fixing these parame-

ters to in vitro estimates provided a good fit to the

observed data (Figure 2).
Statistically significant exposure-response relationships

were found between drug exposure and inhibition of the

growth rate of the fast-multiplying state and stimulation of

the death rates of the slow- and nonmultiplying states

(Figure 1). The data did not support any statistically

Figure 2 Prediction-corrected visual predictive check of the final model stratified on presence of drug in which (a) is the group that
received no drug and (b) is all groups that received drug. The solid and dashed lines are the median, 2.5th, and 97.5th percentiles of
the observed data, respectively. The shaded areas (top to bottom) are the 95% confidence intervals of the 97.5th (blue), median (red),
and 2.5th (blue) percentiles of the simulated data. Open circles are prediction-corrected observations.
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significant exposure-response relationship concerning death
of the fast-multiplying state. Inhibition of the growth rate of
the fast-multiplying state was described by an on/off effect.
Drug effects on the slow- and nonmultiplying states were
described by second-order death rates, denoted SDk and
NDk, respectively. The second-order rates were dependent
on the plasma concentration of rifampicin and amount of
bacteria (slow- or nonmultiplying).

The sputum sampling compartment method was chosen
to handle CFU predictions. The last time point and mid-
time point methods provided similar OFV, but was regarded
to not resemble the actual sample collection procedure.
The data did not support any statistically significant effect
delay or immune response.

The data supported IIV in Bmax, which allowed for pre-
diction of different baseline levels in CFU between individ-
uals. The residual variability was described by two
additive components (on log-scale), one shared by all rep-

licates and one shared between replicates from the same
sputum sample. Final parameter estimates are listed in
Table 2.

The final model described the patient data well, accord-
ing to the prediction-corrected visual predictive checks (Fig-
ure 2). The estimated second-order death rates were 0.200
and 0.106 L�mg21�days21 for the slow- and nonmultiplying
states, respectively. The inhibition of fast-multiplying growth
was estimated close to 1 (100%) and was therefore be
fixed to 1 in the final model with no change in OFV. The
model predicted a gradient of decline in CFU with dose
(Figure 3a). In Figure 3b, the typical model predicted bac-
terial number over time is seen for different states. External
validation revealed the ability of the final MTP model to pre-
dict data from other sources well without any re-estimation
(Figure 4). Simulations using the alternative two-state
model without a nonmultiplying state did not predict exter-
nal data well (Figure 5).

Table 2 Parameter estimates based on the final model

Parameter Description Typical estimate RSE%a 95% CIb

Drug PK parametersc

CL/F (L � h21) Oral clearance at the preinduced state in a patient weighing 70 kg 10.0 FIX - -

V/F (L) Apparent volume of distribution in a patient weighing 70 kg 86.7 FIX - -

MTT (h) Mean transit time 0.713 FIX - -

NN Number of transit compartments 1.00 FIX - -

Emax Maximal increase in the enzyme production rate 1.04 FIX - -

EC50 (mg � L21) Rifampicin concentration at which half the Emax is reached 0.0705 FIX - -

kENZ (h21) Rate constant for first-order degradation of the enzyme pool 0.00369 FIX - -

F Bioavailability 1.00 FIX - -

(Ffat)CL/F Contribution of fat-free mass and body weight to CL/F 0.311 FIX - -

(Ffat)V/F Contribution of fat-free mass and body weight to V/F 0.188 FIX - -

Multistate Tuberculosis Pharmacometric modeld

kG (days21)e Fast-multiplying bacterial growth rate 0.206 FIX - -

kFN (days21) Transfer rate from fast- to nonmultiplying state 8.97�1027 FIX - -

kSN (days21) Transfer rate from slow- to nonmultiplying state 0.186 FIX - -

kSF (days21) Transfer rate from slow- to fast-multiplying state 0.0145 FIX - -

kNS (days21) Transfer rate from non- to slow-multiplying state 0.00123 FIX - -

kFSlin (days22)f Time-dependent transfer rate from fast- to slow-multiplying state 0.00166 FIX - -

F0 (mL21) Initial bacterial number of fast-multiplying state 4.10 FIX - -

S0 (mL21) Initial bacterial number of slow-multiplying state 9770 FIX - -

Bmax (mL21)d System carrying capacity per mL sputum 2.61�109 30.5 1.51�10924.52�109

IIV Bmax (%)g Interindividual variability in Bmax 152 15.9 97.8–191

Exposure-response parameters

FGon/off Fractional inhibition of growth of fast-multiplying state 1.00 FIX - -

SDk (L�mg21�days21) Second-order slow-multiplying state death rate 0.200 41.6 0.0854–0.390

NDk (L�mg21�days21) Second-order nonmultiplying state death rate 0.106 19.0 0.0643–0.188

Residual error parameters

e (CV%) Additive residual error on log scale (approximates a

proportional error on normal scale) for all replicates

110 12.0 83.7–133

erepl (CV%) Additive residual error on log scale (approximates a

proportional error on normal scale) between replicates

23.1 10.2 18.4–27.2

CI, confidence interval; FIX, parameter was fixed during estimation; PK, pharmacokinetic; RSE, relative standard error.
aRelative standard error from the covariance step in NONMEM18 reported on the approximate SD scale.
b95% CI is the 95% percentile confidence interval from a nonparametric bootstrap (1,000 samples).
cAll drug PK model parameters were fixed to estimates reported by Smythe et al.19

dAll Multistate Tuberculosis Pharmacometric Model parameters except Bmax were fixed to estimates reported by Clewe et al.15

edF
dt 5kG � Bmax

F1S1N

� �
� F

fkFS5kFS lin � t
gIIV is the inter-individual variability expressed as coefficient of variation (CV).
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DISCUSSION

The MTP model can be applied to clinical data with only re-
estimation of the Bmax parameter and estimation of the
exposure-response relationships for rifampicin. Other MTP
model parameters can be fixed to estimates obtained from
fitting the model to in vitro data.15 The external validation
showed the ability of the final model to predict change in
CFU after different rifampicin doses (Figure 4).

All patients were assumed to have stationary phase
infections. Time of onset of symptoms and trial entry were
unknown. A suggested incubation period is 1.26 years.29

However, at that time, patients are in the stationary phase
with negligible change in CFU with respect to time. For
computational simplicity, the time of entering trial was

assumed to 150 days, a time point at which the model pre-
dicts negligible change in CFU in the stationary phase.

In order to account for different baseline sputum CFU
values in the in vitro and clinical settings, Bmax was re-
estimated. Re-estimation of Bmax did not affect the relative
amounts of bacterial states. The relative amounts are
determined by the rates between states that were fixed to
in vitro estimates.15 In the in vitro system, transfer from
non- to fast-multiplying state was excluded because of
hypoxia. In contrast, clinical lesions might have partial
access to oxygen. However, the transfer might be sup-
pressed clinically by the immune system. In the in vitro
model, there is a time-dependent transfer between fast-
and slow-multiplying bacteria,15 which has not been vali-
dated in vivo because of clinical data not being informative

Figure 3 Typical model predictions from the final Multistate Tuberculosis Pharmacometric model of (a) log-10 change from baseline in
colony forming unit (CFU) after daily rifampicin doses of 5 mg/kg body weight (solid black line, blue shaded area is the 95% prediction
interval [PI], including model uncertainty), 10 mg/kg body weight (dashed black line, red shaded area is the 95% PI, including model
uncertainty), and 20 mg/kg body weight (dotted black line, green shaded area is the 95% PI, including model uncertainty) and
(b) model predicted typical bacterial number of the fast- (green), slow- (yellow), and nonmultiplying (blue) states, denoted F, S, and N,
respectively, following different daily doses of rifampicin per kg body weight.
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Figure 4 Clinical trial simulations using the final Multistate Tuber-
culosis Pharmacometric model. Log-10 colony forming unit
(CFU) in mL21 change from baseline vs. time since first dose of
rifampicin for (a) 300 mg of rifampicin given once daily (OD) for
5 days28; (b) 600 mg rifampicin given OD for 5 (dashed line) and
7 (dotted line) days26,27; (c) 20 mg rifampicin per kg body weight
given OD for 5 days.27 Shaded areas are the 95% confidence
interval for the typical prediction of log-10 CFU (mL21) change
from baseline vs. time since first dose from 1,000 samples simu-
lated with parameter uncertainty. Solid lines are the typical pre-
dictions from the final model for the study design indicated in the
top right box in each graph. Dots are the mean values at each
designated time point with SEs shown as error bars. The dots
are connected with dotted and/or dashed lines.

Figure 5 Clinical trial simulations using an alternative two-state
model without inclusion of a nonmultiplying state. Log-10 colony
forming unit (CFU) in mL21 change from baseline vs. time since
first dose of rifampicin for (a) 300 mg of rifampicin given once
daily (OD) for 5 days28; (b) 600 mg rifampicin given OD for 5
(dashed line) and 7 (dotted line) days26,27; (c) 20 mg rifampicin
per kg body weight given OD for 5 days.27 Shaded areas are the
95% confidence interval for the typical prediction of log-10 CFU
(mL21) change from baseline vs. time since first dose from
1,000 samples simulated with parameter uncertainty. Solid lines
are the typical predictions from the model without a nonmultiply-
ing state for the study design indicated in the top right box in
each graph. Dots are the mean values at each designated time
point with SEs shown as error bars. The dots are connected with
dotted and/or dashed lines.
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enough. There might be strain differences between the in
vitro H37Rv strain data used to develop the MTP model
and clinical strains. The most important difference would be
the drug susceptibility. However, all exposure-response
parameters were estimated in this work using the clinical
data. Growth- and transfer rates between substates were
fixed to estimates from the in vitro model, which might devi-
ate from clinical strains, but did not seem to affect the over-
all ability to predict external data as such (Figure 4).

A limitation of this analysis was that no PK information
was available. However, a population PK parameter
approach20 was used, which does not require PK informa-
tion but is reusing a previously developed population PK
model.19 As no IIV or covariate information were included in
the PK model, IIV in exposure-response parameters was
not evaluated as it would most likely represent a sum of PK
and pharmacodynamic (PD) variability. Only IIV in Bmax

was estimated, which allowed for prediction of different
CFU baseline levels. One assumption in the population PK
parameter approach is that the typical patient in the dataset
used for developing the population PK model is representa-
tive for a typical patient in the PD dataset. Because covari-
ates for the PD dataset were unknown, it is difficult to
judge the impact of this assumption. The PK model applied
was developed using patient data from South Africa, Benin,
Senegal, and Guinea,19 whereas the patients included in
this analysis originated from Kenya. Rifampicin exposure
has been shown to be slightly higher in eastern Africa.30

Our analysis relies on a small historical dataset, which may
not reflect current TB trials. However, the final model pre-
dicted recent trials (Figure 4) justifying the approach and
data used despite these discrepancies.

We investigated the immune system as a bactericidal pro-
cess but no immune effect was supported that might be due
to the limited study duration. Most information regarding this
parameter was available in the negative control group.

The final model predicted a gradient of reduction in CFU
with increasing dose (Figure 3a). Bowness et al.31 compared
matched CFU counts with time to positivity in mycobacterial
growth incubator tube in rifampicin-treated patients in which
mycobacterial growth incubator tube quantifies a subpopula-
tion unable to grow on solid media. Rifampicin had a dose-
dependent activity against this subpopulation that we believe
coincides with the drug effect on the nonmultiplying state seen
here. The predicted potency was higher toward slow- than
nonmultiplying bacteria (Table 2). No drug effect was sup-
ported regarding death of fast-multiplying state, contradicting
that fast-multiplying subpopulations are more susceptible to
drug exposure.14 However, the fast-multiplying bacteria might
have been too few in the stationary phase patients in order to
find any significant drug effect or there was an indistinguish-
able balance between kill and inhibition of growth.

In Figure 3b, the typical model predicted bacterial number
over time is seen for the different subpopulations. The change
in slow- and nonmultiplying states is circadian because of the
direct effect by the drug through the link to plasma concentra-
tion. As the model included no concentration-dependent effect
on fast-multiplying bacteria, but only complete inhibition of the
growth of fast-multiplying bacteria, no circadian change is
seen for this state.

The model predicted high numbers of unquantifiable bac-

teria (i.e., nonmultiplying state), as inherited from the in

vitro model.15 In vitro, animal and clinical studies support

M. tuberculosis subpopulation(s) that are culture-negative

on solid media but can grow in liquid media.32–34

The final MTP model was compared to a two-state model,

not including a nonmultiplying state. The OFV was lower

(DOFV5 24.19) for the final MTP model compared to the two-

state model without a nonmultiplying state. The latter model pre-
dicted a net decline in CFU in the stationary phase that did not

agree with the negative control group. Noncultivable subpopula-

tions have been described in PK/PD models for malaria35,36

and Escherichia coli.37 There are several empirical CFU models

for TB,9,11,38,39 but none are semimechanistic like the MTP

model, which links PK to multiple mycobacterial states.
The sputum sampling compartment method was chosen to

handle predictions of CFU that best resembled the sample

collection procedure compared with the other methods investi-

gated. Sampling intervals, time points for sampling, and sam-

ple volumes can deviate within and between studies, which
can be accounted for using our approach (Supplementary

Material S1 and S2). Patients produce less sputum as treat-

ment progresses, which could be important to account for in

future analyses.21 Variability in CFU is also affected, as it

increases at smaller sample volumes. Larger sputum volumes

can be obtained (e.g., by increasing the sampling interval),40

which could be accounted for using our approach. The

assumed volume of 10 mL will not affect the predictions

because the model predicts the average bacterial number

over the sampling interval. Assuming higher volumes would

be compensated by a higher sputum production rate.
In addition to the clinical application presented here, the

MTP model has been successfully applied to in vitro15 and

mouse data.16 As such, the MTP model can be used for

analysis and simulation of clinical and preclinical trials

within TB drug development to optimize the development of

drugs against TB.
In summary, the MTP model was successfully applied to

clinical data with rifampicin-treated patients. Retrospective

data were successfully predicted using this approach.
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