
Citation: Chen, W.; Shen, W.; Gao, L.;

Li, X. Hybrid Loss-Constrained

Lightweight Convolutional Neural

Networks for Cervical Cell

Classification. Sensors 2022, 22, 3272.

https://doi.org/10.3390/

s22093272

Academic Editor: Wai Lok Woo

Received: 22 March 2022

Accepted: 21 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hybrid Loss-Constrained Lightweight Convolutional Neural
Networks for Cervical Cell Classification
Wen Chen, Weiming Shen * , Liang Gao and Xinyu Li

State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science and
Technology, Wuhan 430074, China; chenwen0704@hust.edu.cn (W.C.); gaoliang@mail.hust.edu.cn (L.G.);
lixinyu@mail.hust.edu.cn (X.L.)
* Correspondence: shenwm@hust.edu.cn

Abstract: Artificial intelligence (AI) technologies have resulted in remarkable achievements and
conferred massive benefits to computer-aided systems in medical imaging. However, the worldwide
usage of AI-based automation-assisted cervical cancer screening systems is hindered by computa-
tional cost and resource limitations. Thus, a highly economical and efficient model with enhanced
classification ability is much more desirable. This paper proposes a hybrid loss function with la-
bel smoothing to improve the distinguishing power of lightweight convolutional neural networks
(CNNs) for cervical cell classification. The results strengthen our confidence in hybrid loss-constrained
lightweight CNNs, which can achieve satisfactory accuracy with much lower computational cost for
the SIPakMeD dataset. In particular, ShufflenetV2 obtained a comparable classification result (96.18%
in accuracy, 96.30% in precision, 96.23% in recall, and 99.08% in specificity) with only one-seventh of
the memory usage, one-sixth of the number of parameters, and one-fiftieth of total flops compared
with Densenet-121 (96.79% in accuracy). GhostNet achieved an improved classification result (96.39%
accuracy, 96.42% precision, 96.39% recall, and 99.09% specificity) with one-half of the memory usage,
one-quarter of the number of parameters, and one-fiftieth of total flops compared with Densenet-121
(96.79% in accuracy). The proposed lightweight CNNs are likely to lead to an easily-applicable and
cost-efficient automation-assisted system for cervical cancer diagnosis and prevention.

Keywords: medical imaging; deep learning; lightweight convolutional neural networks; cervical
cancer diagnosis; hybrid loss function

1. Introduction

Cervical cancer is the fourth most frequently diagnosed cancer and the fourth leading
cause of cancer death worldwide in women; in 2020, more than 600,000 women were
diagnosed and more than 340,000 deaths were caused by cervical cancer [1]. In particular,
cervical cancer is the most commonly diagnosed cancer and the leading cause of cancer
death in many developing countries. The human development index (HDI) and poverty
rates have been shown to account for >52% of global variance in mortality [2]. Cervical
cancer is the rare end stage of an unresolved human papilloma virus (HPV) infection. The
time lag between the peak of HPV infection and the peak of cancer incidence is two to
four decades, so the ability to detect cancer in the early phase will enable early effective
intervention or prevention. The Pap smear has been extensively adopted in developed
countries and is credited with reducing the mortality rate of cervical cancer significantly.
However, only 44% of women in lower-middle income countries (LMICs) have ever been
screened for cervical cancer, compared with >60% in high-income countries [3]. Because
of the lack of health resources and the scarcity of qualified medical technicians, women in
these countries are the true high-risk group for cervical cancer.

To address these issues, automation-assisted screening systems have been researched
and applied to enhance efficiency and increase the availability of cervical cancer screening.
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Over the last ten years, automated image analysis techniques have been adopted for
building automation-assisted cervical screening systems. The systems generally comprise
three steps: cell segmentation, feature extraction or feature selection, and cell classification.
Several methods aimed at addressing cell segmentation have been proposed and employed,
such as fuzzy C-means (FCM) clustering [4], adaptive threshold decision method [5],
iterative threshold methods [6], morphological operation, and watershed transformation [7].
After the segmentation step, important features are extracted from cell components. Several
researchers have investigated this feature extraction topic. RF (random forest) algorithm [8],
a new elongated quinary pattern (EQP) method [9], and a three-layered learning model [10]
were proposed for the purpose of finding a reliable set of features. Furthermore, an
algorithm that combines nearest neighbor techniques and a GA was proposed for feature
selection [11]. Subsequently, different features were calculated and obtained, for example:
features derived from 2-D Fourier transform spectrum and log transforms of images [8];
features based on various biologically interpretable, clinically significant shapes, as well as
morphology [12]; features including shape, statistical Gabor and Markov random fields
features [13]; features based on the texture and structure of cytoplasm [14]; and features
based on texture and shape [15]. These selected features were then adopted for classifying
cervical cell images. Additionally, a classification method that combines global significance
value, texture statistical features, and time–series features was proposed for cervical cell
classification [16].

Inspired by the great success of deep learning technology in various computer vision
and pattern recognition tasks [17–19], the application of deep convolution neural networks
in the field of biomedicine has increased [20–22]. Convolutional neural networks (CNNs)
benefit automation-assisted cervical cancer screening systems in many ways [23,24]. In the
research, we briefly introduce those deep learning-based approaches. DeepPap [25] was pro-
posed to extract deep features automatically for classifying cervical cells. The morphology
information was added in another CNN-based approach [26]. A hybrid transfer learning
algorithm that combines features from different CNNs was presented in [27]. Furthermore,
a hierarchical modular neural network architecture [28] for automated screening of the
cervical cancer was also explored. A comparative study was conducted on five CNNs [29]
to check their classification performances. Graph convolutional network (GCN) features
were combined with CNN features [30] to improve the classification performances. The
fused deep CNN features that were extracted from several different models are combined
with AF-SENet for cervical tissue pathological images classification [31]. Mask-RCNN
was utilized for collected segmented image patches, and then these image patches were
classified by a VGG-like model [32]. An improved YOLOv3 was proposed with soft-scale
anchor matching [33], which eliminates the traditional segmentation phase. Three deep
CNNs were trained respectively, and then ensemble features together for prediction [34].
A transfer learning method based on knowledge distillation was proposed and evaluated
using the Herlev dataset [35].

Among these approaches, a number of CNN architectures [36–38] have been tested
and applied to the task of cervical cell classification. However, many former approaches
targeting the improvement of classification accuracy do not consider the computational
costs, which can be a big hindrance for the worldwide application of automation-assisted
screening systems. CNNs often have a large number of parameters and require massive
floating-point operations to achieve satisfactory accuracy. Therefore, deep and powerful
CNNs require significant memories and hardware resources. Furthermore, fine-grained
cervical cell classification has superior clinical significance that can ultimately facilitate sub-
sequent evaluation and follow-up treatment. However, most of the previous studies only
change the number of classes in CNNs for the fine-grained classification without further
modifications. The key to fine-grained classification lies in improving the discriminative
power of CNN models, especially when it comes to confusable samples. Indistinguishable
samples from different classes should be considered when designing automation-assisted
screening systems.
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With the proposed method, two lightweight CNN architectures can perform at the
same level as typical, large-sized CNNs. Furthermore, they achieve the same results at a
much lower computational cost. In this paper, several well-designed lightweight CNNs
are adopted to reduce hardware requirements and computational costs. A more efficient
method inspired by triplet loss [39] is also proposed for solving the problem of confusing
samples. Unlike the traditional loss function, which computes the discrepancy between the
prediction and the true targets, the proposed method utilizes a hybrid loss function, adding
functions that making the features from the same class closer while making features from
different classes farther away from each other. To the best of our knowledge, this is the first
use of triplet loss as well as lightweight Ghostnet model for this fine-grained cervical cell
classification task.

This paper proposed a hybrid loss function with label smoothing to improve the
distinguishing power of lightweight convolutional neural networks applied in cervical cell
classification. We believe that this work has following contributions:

1. The proposed hybrid loss function allows the lightweight CNNs to obtain enhanced
classification results by improving the ability of CNNs to distinguish confusing
samples among the cervical cell images.

2. The integration of the proposed hybrid loss function with lightweight CNN models
provides some significant value in practical applications under limited
computational resources.

The remainder of this paper is organized as follows: Section 2 describes the proposed
method for cervical cell classification under limited resources. Section 3 presents the
experiment results and analyses. Section 4 summarizes the conclusions and discusses the
directions for future work.

2. Proposed Method

This paper proposes a hybrid loss function for cervical cell classification in a computer-
aided screening system, which aimed to improve the distinguishing power of the CNN
models, especially when encountering confusing samples. Several lightweight CNNs were
selected and trained with the hybrid loss function to choose economic and effective models.

2.1. Overview

For this fine-grained problem, the goal of this study is to improve the distinguishing
power of the automation-assisted system under restrained computation resources, which
will achieve economic feasibility as well as technical reliability for worldwide application
in cervical cancer screening systems.

For the purpose of improving the distinguishing power of the system, the triplet loss
is utilized as a component of the proposed hybrid loss function. Under the condition of
joint supervision, on one hand, the differences in inter-class features are enlarged. On the
other hand, the variations in intra-class features are reduced.

Four lightweight CNN architectures are selected and investigated to address the
constraint of limited resources. These lightweight models have great capability for building
competent systems with small computation requirements.

The overview of the proposed method is presented as follows: raw images after pre-
processing are sent into the lightweight CNN model, which is initialized with pre-trained
ImageNet weights. The CNN features after the last convolutional layer are adopted for cal-
culating triplet loss, while class prediction logits are adopted for computing cross-entropy
loss, and a hyperparameter is used to balance these supervision signals. Furthermore, label
smoothing is implemented to prevent overfitting. The details of the four lightweight CNN
networks are discussed in Section 2.3. The overview of the proposed method is shown in
Figure 1.
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2.2. Hybrid Loss Function

The proposed hybrid loss function includes two losses as follows: cross-entropy loss
and triplet loss.

L = LCross Entropy Loss + λLTriplet Loss (1)

λ is the balanced weight of triplet loss. The hybrid loss function aims to gradually
make the average intra-class distance smaller and smaller, but make the average inter-class
distance larger and larger. On one hand, the cross-entropy operation computes the cross-
entropy loss between network predictions and target values. Intuitively, it forces the deep
features of different classes to stay apart. On the other hand, in the learned feature space,
the triplet loss function aims to pull the instances of same class closer, and at the same time
pushing the instances belonging to different classes farther from each other.

The cross-entropy loss is computed as:

LCross entropy = −
N

∑
i=1

p(xi) log(q(xi)) (2)

where p is the true distribution of the image label, q is the distribution of image as predicted
by the model, and N is the number of samples.

The triplet loss minimizes the distance between an image xi
a (anchor) and an image

xi
p (positive), both of which have the same class, and maximizes the distance between the
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The triplet loss is computed as:
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2 are feature distances of a positive pair and
a negative pair, α is a margin between positive and negative pairs. K is the set of all possible
triplets in the training set and has cardinality N; in this paper, α is set to 1.

2.3. Lightweight CNN Models

In this study, four lightweight CNN models (Squeezenet [40], MobilenetV2 [41], Shuf-
flenetV2 [42], and Ghostnet [43]) are selected and evaluated to address the constraint of
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limited resources. These lightweight models have great capability of building competent
systems with low computation requirements.

Squeezenet was proved to have comparable classification results with 50× fewer
parameters than AlexNet. The distinctive trait of Squeezenet is the fire module, which
follows three strategies: replace 3 × 3 filters with 1 × 1 filters; decrease the number of input
channels to 3 × 3 filters; and downsample late in the network. These strategies enable the
Squeezenet to decrease the quantity of parameters in the CNN model while maintaining a
competitive accuracy.

MobilenetV2 allows a very memory-efficient inference and relies on the utilization
of standard operations. The architecture benefits greatly from a novel layer module: the
inverted residual with linear bottleneck. This module takes an input as a low-dimensional
compressed representation which is first expanded to high dimension and filtered with
a lightweight depth-wise convolution. Features are subsequently projected back to a
low-dimensional representation with a linear convolution.

ShufflenetV2 inherited two operations from ShufflenetV1 [44]: pointwise group convo-
lution and channel shuffle. These operations reduce computational cost while having very
little impact on accuracy. ShuffleNetV2 further considers the actual speed on target hard-
ware for compact model design. It introduces a channel split operator in the ShufflenetV2.

Ghostnet was proposed to build efficient neural architecture with high performance.
The basic Ghost module splits the original convolutional layer into two parts and uti-
lizes fewer filters to generate several intrinsic feature maps. Then, a certain number
of cheap transformation operations can be further applied for generating ghost feature
maps efficiently.

2.4. Training Strategy

The Pytorch deep learning framework is utilized for leveraging the implementation
and experimentation of the proposed method. Stochastic gradient descent with a momen-
tum of 0.9 is employed for optimizing the model. The weight decay is set to 0.005 without
dampening. The initial learning rate is set to 0.0001 and is decreased by 0.1 at the 30th
epoch and 60th epoch, respectively. The number of training epoch is 100, and the batch size
is 16. Label smoothing [45] is adopted to prevent overfitting for a classification task.

3. Experiments and Analyses

In this section, the classification performances of the hybrid loss-constrained lightweight
CNNs are investigated towards the fine-grained cervical cell classification task. Experiments
on different loss constraints are conducted using several lightweight CNNs to illustrate
the effectiveness of the proposed hybrid loss. Furthermore, comparisons between the
proposed approach and several other CNN-based approaches are provided to illustrate the
advantages of the effective lightweight CNNs in clinical applications.

3.1. Dataset and Pre-Processing

To evaluate the performance of the proposed method, the publicly available cervical
cell image dataset SIPaKMeD [46] is adopted. It contains 4049 image samples of isolated
cells, which have been cropped from 996 cluster cell images of Pap smear slides manually.
The original sizes of these patches vary from each other. These images were acquired
through a charge-coupled device (CCD) camera adapted to an optical microscope. The
image samples are annotated by expert cytopathologists into five classes, depending
on their cellular appearance and morphology: two classes for normal cells (superficial–
intermediate and parabasal); two classes for abnormal cells (koilocytotic and dyskeratotic);
and one class for benign cells (metaplastic). Sample images of individual classes are
presented in Figure 2, and the class-wise distribution of the cell images is listed in Table 1.
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Table 1. Data distribution of the cells in categories of SIPaKMeD dataset.

Categories Number of Image Samples

Superficial/Intermediate 813
Parabasal 787

Metaplastic 793
Koilocytotic 825
Dyskeratotic 813

Total 4049

The images (raw images with background) of SIPaKMeD are resized and center
cropped into 224 × 224 pixels to facilitate the training phase of the CNN models. Rotate
the image with the degree randomly selected from the range (−180, +180). Horizontal flip
each image randomly with a given probability of 0.5. The image samples are reshuffled at
every epoch.

ColorJitter is utilized for improving the diversity of the limited samples. It is an API
function in Pytorch for image transformation, which aims to change the brightness, contrast,
saturation, and hue of an image randomly. In our work, the value of the parameters in
ColorJitter are set to 0.3, 0.5, 0.3, and 0.1, respectively:

• brightness (float or tuple of float (min, max)): How much to jitter brightness. The
brightness_factor is chosen randomly from [max(0, 1 − brightness), 1 + brightness]

• contrast (float or tuple of float (min, max)): How much to jitter contrast. The con-
trast_factor is chosen randomly from [max(0, 1 − contrast), 1 + contrast]

• saturation (float or tuple of float (min, max)): How much to jitter saturation. The
saturation_factor is chosen randomly from [max(0, 1 − saturation), 1 + saturation]

• hue (float or tuple of float (min, max)): How much to jitter hue. The hue_factor is
chosen randomly from [−hue, hue]

Each image is then decoded into 32-bit floating point raw pixel values in [0, 1]. Then,
the pixel intensity distribution of each input image is normalized by subtracting its mean
and dividing the resulting difference by its standard deviation. A five-fold cross-validation
method was adopted to report the classification performance for the SIPaKMeD dataset.
Concretely, four-fifths of the image samples are used as the training set and the remaining
samples as the validation set for five rounds. The classification evaluation metrics are
obtained by averaging results from the five rounds.
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3.2. Performances of Different Losses on Several Lightweight CNNs

To test the capability of the proposed method, two different losses are adopted and
evaluated on four lightweight CNN models. The first is denoted by traditional loss: cross-
entropy loss. The second is a hybrid loss for adding a triplet loss before the fully connected
layers in the CNNs, denoted by hybrid loss: cross-entropy loss + triplet loss. The hyperpa-
rameter in the hybrid loss is set to 1 for all the selected lightweight CNNs. Four lightweight
CNNs, Squeezenet, MobilenetV2, ShufflenetV2, and Ghostnet are trained under these two
different constraints. Table 2 shows the classification performances (accuracy, precision,
recall, and specificity) of all the models with traditional loss and hybrid loss, respectively.

Table 2. The classification performances of four lightweight CNNs with traditional loss and
hybrid loss.

Accuracy Precision Recall Specificity

Squeezenet
Traditional

loss 93.85 93.96 93.87 98.46

Hybrid loss 94.52 94.63 94.54 98.62

MobilenetV2
Traditional

loss 87.35 87.52 87.41 96.84

Hybrid loss 83.10 83.41 83.22 95.78

ShufflenetV2
Traditional

loss 95.61 95.66 95.61 98.89

Hybrid loss 96.18 96.30 96.23 99.08

Ghostnet
Traditional

loss 95.45 95.52 95.44 98.85

Hybrid loss 96.39 96.42 96.39 99.09

Compared with lightweight CNNs trained under different constraints of losses, three
lightweight CNNs (Squeezenet, ShufflenetV2, and Ghostnet) trained with proposed hybrid
loss outperformed the models trained with traditional loss. As reported in Table 2, hybrid
loss-constrained Ghostnet achieved the highest accuracy, precision, recall, and specificity
among all the models. ShufflenetV2 acquired comparable classification performances.
However, MobilenetV2 did not enhance results in the same way as other lightweight CNNs.
These differences can be explained in part by the hyperparameter settings in the hybrid
loss or the training of CNN models. From the comparison above, it can be regarded that
utilizing the proposed hybrid loss function benefits the discriminative ability of several
lightweight CNNs for cervical cell classification.

Confusion matrices of the lightweight models (Ghostnet and ShufflenetV2) trained
with different losses are presented in Figure 3. They display a detailed visualization of the
classification performances on each cell class. As for the analysis of Ghostnet shown in
Figure 3a,b, the normal cells (i.e., superficial–intermediate and parabasal), the benign cell
(metaplastic), and the abnormal cells (koilocytotic) have better classification results in Ghost-
net trained with hybrid loss function (Ghostnet*) than trained with traditional loss function
(Ghostnet). As reported in Figure 3c,d, the classification results of ShufflenetV2 trained
with hybrid loss function in terms of three classes (superficial–intermediate, parabasal, and
koilocytotic) surpass the results of ShufflenetV2 trained with the traditional loss. Besides,
the misclassification rate of parabasal in ShufflenetV2* is 2.92% lower than in ShufflenetV2.
One explanation is that the proposed approach let the model learn more discriminative
features. The hybrid loss enhances intra-class compactness and interclass separability in
the Euclidean space. Therefore, the representative features generated by the hybrid loss
can enhance the discriminative ability of some lightweight CNNs.
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(“*” means the CNN model was trained with hybrid loss function). Class 1, superficial/intermediate;
Class 2, parabasal; Class 3, metaplastic; Class 4, koilocytotic; Class 5, dyskeratotic. (a) Ghostnet;
(b) Ghostnet*; (c) ShufflenetV2; (d) ShufflenetV2*.

3.3. Comparisons with State-of-the-Art Methods

For the purpose of demonstrating the advantages of the proposed method, several
other CNN based methods were selected for comparison. To analyze the requirements
of computational cost for different models, the following metrics are calculated: (1) total
parameters, (2) total memory, (3) total flops, with (4) accuracy is also listed as an important
indicator. Total parameters reports the number of network parameters; total memory
reports the memory usage of models; total flops reports floating point operations, which
indicates the complexity of CNN models in inference; and accuracy reports the overall
percentage of correctly identified cells.

Table 3 shows the comparison results of our proposed model with existing methods.
All of these listed methods except the GCN method utilize only one single CNN model
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in an end-to-end manner. The GCN method combines the CNN features with GCN
features. Overall, the results presented below show the lightweight ShufflenetV2 and
Ghostnet trained with the hybrid loss function surpass the single Alexnet, VGG and Resnet-
101models, and make a comparable result compared to the single DenseNet-121 model.
However, from the aspect of computation requirements, these two lightweight models
outperform all the other models by great superiority. As reported in Table 3, with the
proposed method, ShufflenetV2 obtained a satisfactory classification result with only one-
seventh of the memory usage, one-sixth of the number of parameters, and one-fiftieth
of total flops compared with Densenet-121. Furthermore, the Ghostnet also reported
comparative results.

Table 3. Comparison results of the proposed method with existing methods for the
SIPaKMeD dataset.

Accuracy Total
Parameters

Total Memory
(M) Total Flops (GB)

Alexnet [20] 93.58 6.11 × 107 4.19 M 0.70 GB
VGG [39] 95.35 13.84 × 107 109.39 M 15.50 GB

Resnet-101 [31] 94.86 4.45 × 107 161.75 M 7.84 GB
Densenet-121 [32] 96.79 0.80 × 107 147.10 M 2.88 GB

Densenet-121+GCN [25] 98.37 p* m* f*
ShufflenetV2+HL 96.18 0.13 × 107 20.84 M 0.15 GB

Ghostnet+HL 96.39 0.40 × 107 40.05 M 0.15 GB

Notes: p* > 0.80 × 107, m* > 147.10 M, f * > 2.88 GB; ShufflenetV2 + HL indicates ShufflenetV2 trained with the
proposed hybrid loss function; Ghostnet + HL indicates Ghostnet trained with the proposed hybrid loss function.

From the above analyses, it can be concluded that the lightweight ShufflenetV2 and
Ghostnet trained under the proposed hybrid loss can provide satisfactory classification
performances with much lower computational cost. The experimental results fulfill the
main goals of the proposed method, which is to enhance the discriminating power of
the deeply learned features. These observations also provide compelling evidence that
lightweight Ghostnet and ShufflenetV2 achieve satisfactory classification performances un-
der limited resources. It can be stated that these experiments have proved the effectiveness
and economic efficiency of the proposed methods.

4. Conclusions

This paper proposes the use of hybrid loss-constrained lightweight CNNs for fine-
grained cervical cell classification. With the proposed joint supervision of hybrid loss
function, the representation ability of CNNs for cervical cell classification is enhanced. This
finding also confirms the usefulness of the lightweight CNN models with low computa-
tional cost. With the proposed method, ShufflenetV2 obtained satisfactory classification
(96.18% accuracy, 96.30% precision, 96.23% recall, and 99.08% specificity) results with only
one-seventh of the memory usage, one-sixth of the number of parameters, and one-fiftieth
of the total flops compared with Densenet-121 (96.79% accuracy). GhostNet acquired an
improved classification result (96.39% accuracy, 96.42% precision, 96.39% recall, and 99.09%
specificity) with one-half of the memory usage, one-quarter of the number of parameters,
and one-fiftieth of total flops compared with Densenet-121 (96.79% accuracy). It is believed
that these results are an excellent initial step towards sample characterization in cervical
cells images using deep learning under limited resources.

Nevertheless, the proposed method has a few notable limitations. First, the current
study was not specifically designed for an end-to-end cervical cell screening system, and the
detection of isolated cervical cells is another challenging task in this area. The lightweight
CNN based system for cervical cells detection and classification is promising and significant
for end-to-end automatic screening systems. Second, the collection of large amounts of
labeled data is still a hindrance to the application of deep learning algorithms in healthcare
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areas, and unsupervised learning that aims to augment the data efficiency of deep learning
is a very promising solution to this challenge. Another challenge is the selection of hyper-
parameters. Due to the limited computation resources, we have not performed a thorough
investigation. Automatic adjustment and some machine learning-inspired algorithms are
very promising for addressing this problem, which will be considered in our future work.

We hope that our research will be helpful in addressing the difficulty in developing
automation-assisted cervical cancer screening systems; we also believe that this approach
can be applied to other medical image processing applications. Future studies on this
topic are therefore needed to establish a more robust automation-assisted cervical cancer
screening system with satisfactory accuracy under limited computing resources.
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