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Per-fluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic
fluorinated chemicals used widely in industry and consumer products. Due to their
extensive use and chemical stability, PFAS are ubiquitous environmental contaminants
and as such, form an emerging risk factor for male reproductive health. The long half-lives
of PFAS is of particular concern as the propensity to accumulate in biological systems
prolong the time taken for excretion, taking years in many cases. Accordingly, there is
mounting evidence supporting a negative association between PFAS exposure and an
array of human health conditions. However, inconsistencies among epidemiological and
experimental findings have hindered the ability to definitively link negative reproductive
outcomes to specific PFAS exposure. This situation highlights the requirement for further
investigation and the identification of reliable biological models that can inform health risks,
allowing sensitive assessment of the spectrum of effects of PFAS exposure on humans.
Here, we review the literature on the biological effects of PFAS exposure, with a specific
focus on male reproduction, owing to its utility as a sentinel marker of general health.
Indeed, male infertility has increasingly been shown to serve as an early indicator of a
range of co-morbidities such as coronary, inflammatory, andmetabolic diseases. It follows
that adverse associations have been established between PFAS exposure and the
incidence of testicular dysfunction, including pathologies such as testicular cancer and
a reduction in semen quality. We also give consideration to the mechanisms that render
the male reproductive tract vulnerable to PFAS mediated damage, and discuss novel
remediation strategies to mitigate the negative impact of PFAS contamination and/or to
ameliorate the PFAS load of exposed individuals.
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INTRODUCTION

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse
group of more than 4,700 synthetic, highly fluorinated, aliphatic
chemicals with distinctive chemical properties [see review by Kirk
et al. (1)], which render members of this chemical group incredibly
stable and environmentally persistent (2, 3). Consequently, PFAS
have been employed for a range of purposes including in the
formulation of fire-fighting foams as well as in a variety of
consumer products (4, 5), such as food packaging, cookware and
water repellent clothing (6–9). Since the 1950s, the extensive
manufacture, distribution, use and disposal of PFAS has resulted in
the widespread environmental contamination and subsequent
exposure of humans and animals. Despite endeavors to phase out
the toxic eight chain PFAS initiated in 2000, the inherent stability of
these compounds has resulted in omnipresence in the global
environment (5, 9–11). Thus, many industrialized nations are
seeking to implement measures to limit, detect and eradicate PFAS
contamination (5, 9). Long-chain PFAS generally have longer
environmental half-lives and a high propensity to accumulate in
biological systems from which they may take many years to be fully
excreted. For example, PFAS such as perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS) are the most extensively
reported long-chain perfluoroalkyl acids described in scientific
literature (5) and have a half-life in human serum of 3.8 and 5.4
years, respectively (Table 1) (13). Longer chain (≥ 6 carbon atoms)
PFAS bioaccumulate to a greater extent than shorter chain analogues
(14–17), and alsopossess longer half-lives (18, 19).Upon entering the
body, PFAS bind to albumin in the blood stream and accumulate
within thebody’s protein-rich tissues (6, 20).Consequently, PFASare
readily detectable throughout the human body as well as
accumulating to detectable levels in most bodily fluids, including
urine, breast milk, blood, and seminal plasma (21, 22). Notably, in
support of the notion that albumin binding is one of the key reasons
that PFAS are slowly excreted in urine, Jain and Ducatman have
shown that serum PFAS levels decrease under conditions of
albuminuria (23). This pathology, during which albumin is able to
escape into the urine as a consequence of renal dysfunction, is
presumed to result in increased excretion of bound PFAS.

PFOS and PFOA are the two most abundant PFAS found in
human serum worldwide (7, 10, 24), with levels of each varying
Frontiers in Endocrinology | www.frontiersin.org 2
between countries, suggesting differences in the degree of exposure in
each country (24, 25). Further, PFOS andPFOAhave a propensity of
accumulate in our food chains (10) and it is thought that dietary
intake is a key pathway of exposure for the general population; either
from food packaging or environmental contamination of food
products (26–29). Other suggested routes of contamination include
household dust (28, 30) or from the consumption of contaminated
drinking water (29, 31, 32); although all paths of human exposure
remain to be fully identified. Exposure levels vary between locations
and individuals and range from background levels in the general
population of up to around 14 ng/mL of PFOS and PFOA in the
blood (33), through to considerably higher levels in individuals who
have been occupationally exposed, or those who reside in
contaminated areas (34). The highest concentrations have been
detected in individuals employed in PFAS manufacturing facilities
with amean blood concentration of 1,000 to 2,000 ng/mL PFOS and
5,000 ng/mL PFOA (25, 35). Such findings are of particular concern
in view of the potential of PFAS to elicit a range of adverse
health outcomes.

Here,we review literature pertaining to the emerging threat posed
byPFASexposure,witha specific focuson themale reproductive tract
andgeneralmale fertility, owing to its utility as a biomarker of general
health. Indeed, inwhathas becomeawell-establishedparadigm,male
infertility has been shown to serve as an early indicator of a range of
co-morbidities such as coronary, inflammatory, and metabolic
diseases; conditions that all have associated transgenerational
effects (36–42). It follows that adverse associations have been
established between PFAS and the incidence of testicular
dysfunction, including pathologies such as testicular cancer (43–48)
and a reduction in semen quality (35, 49, 50). Accordingly, we give
consideration to the mechanisms that render the male reproductive
tract vulnerable to PFAS mediated damage, as well as novel
remediation strategies to mitigate the negative impact of PFAS
contamination and/or ameliorate the concentration of PFAS that
has accumulated in exposed individuals.
PFAS CHEMISTRY

The term ‘fluorinated substances’ encompasses an extensive
array of organic and inorganic chemicals that contain a
TABLE 1 | Summary of a selection of common PFAS chemicals, detailing abbreviations, chemical formula, and half-life in humans.

Chemical Name Abbreviation Formula Half-life in humans

Perfluorobutane sulfonic acid PFBS C4HF9O3S 28 days
Perfluorohexane sulphonic acid PFHxS C6HF13O3S 5.3 – 8.5 years
Perfluorooctane sulfonic acid PFOS C8F17SO3H 3.5 – 5 years
Perfluorooctane sulfonamide PFOSA C8H2F17NO2S Unknown
Perfluorobutanoic acid PFBA C4HF7O2 3 days
Perfluoropentanoic acid PFPeA C5HF9O2 Unknown
Perfluorohexanoic acid PFHxA C6HF11O2 32 days
Hexafluoropropylene oxide dimer acid (MS-20244) (Q29388239) GenX C6HF11O3 Unknown (estimated 4 hours to 6 days)
Perfluoroheptanoic acid PFHpA C7HF13O2 1.2 – 2.5 years
Perfluorooctanoic acid PFOA C8HF15O2 2.1 – 3.8 years
Perfluorononanoic acid PFNA C9HF17O2 2.5 – 4.3 years
Perfluorodecanoic acid PFDA C10HF19O2 Unknown
Ma
Table adapted from Fenton et al. (12).
rch 2022 | Volume 12 | Article 799043

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Calvert et al. PFAS and Male Reproduction
minimum of one fluorine (F) atom, with each substance
possessing different chemical, biological and physical
properties (3). The properties of each compound are
influenced by both the number of F atoms and their position
in the molecule, with chemicals classed as partially fluorinated
(polyfluoroalkyl), or fully fluorinated (perfluorinated) (4). The
most common PFAS are the perfluorinated alkyl acids (PFAAs),
which are amphiphilic and exhibit attraction to both aqueous
and lipid media, mimicking phospholipid properties. Their
structure contains a water-insoluble hydrophobic segment (the
fluorinated carbon chain), and a water-soluble hydrophilic
functional group such carboxylic acid or sulfonic acid (4). The
structural formula of the resulting moiety is CnF2n+1-R, where R
represents the functional group (Figure 1) (5). The PFAS moiety
contains strong carbon-fluorine bonds conferring unique
chemical properties that render these chemicals heat-resistant,
water repellent, and exceptionally stable, to the point where they
are almost indestructible under normal environmental
conditions (5). The fluorination of the hydrocarbon chain
drastically changes the chemical properties of the molecule, as
the hydrophobic fluorinated segment repels water, while in
parallel, the oleophobic properties also repel fat and oil (4).
Thus, perfluorinated compounds can effectively lower surface
tension and act as efficient surfactants for coatings on non-stick
cookware and in food packaging and firefighting foam (1).
Individual PFAS are distinguished from each other by 1) the
properties of the functional group and 2) the length of the carbon
backbone (Figure 1). However, PFAS molecules are also further
categorized based on their usage, and the history of their
manufacture. In this context, group members are described as
either legacy PFAS, specifically those molecules with a long
history of usage and/or environmental persistence, or as
replacement PFAS, which include a new generation of
compounds with different chemistries that were designed to
replace the original and ‘more’ harmful legacy PFAS (51, 52).
ROUTES OF PFAS EXPOSURE

PFAS exposure can arise through several routes (Figure 2), with
environmental contamination occurring at varying stages of
production, usage, and waste disposal. In particular, PFAS have
found application as a major component of aqueous film forming
foams (AFFF) (53), which are widely used for firefighting, military
training activities and at airports and thus has resulted in extensive
contamination of nearby soil and waterways (31, 34, 54, 55).
Elevated PFOS/PFOA levels have been detected in the serum of
individuals living in areaswithhigh levels of these chemicals in their
drinking water (11, 31), including those communities located in
close proximity tomilitary bases, airports and PFASmanufacturing
factories (31, 56). Not surprisingly, greater plasma contamination
levels have also beendetected in occupationally exposed individuals
such as firefighters and factory workers manufacturing or using
PFAS (31, 34, 55, 57, 58). Industry waste and AFFF usage has
resulted in widespread contamination of groundwater, often used
as drinking water, with dietary exposure suggested to be the main
Frontiers in Endocrinology | www.frontiersin.org 3
route of exposure for adults (29, 34, 56, 59). In addition,
background levels of contamination are seen in the general
population who are exposed to PFAS through drinking water
(29, 60), house dust (61) and food consumption (27, 62, 63), with
the latter arising from the extensive use of PFAS in consumer
packaging. Compounding this situation, prenatal exposure can
occur through the placenta (64, 65) and young babies can be
exposed through breast milk (66, 67).
ACCUMULATION AND DISTRIBUTION OF
PFAS IN THE BODY

PFAS enter the body through ingestion (31), inhalation (68) or
dermal exposure (69). Once they have entered the bloodstream
through gas-exchange or digestion, PFAS bind to serum proteins
such as the major transport protein, human serum albumin (HSA)
(70, 71). It appears PFOShas a greater binding affinity forHSA than
PFOA, which correlates with the known longer half-life of PFOS
(Table 1) (12, 72). Due to their biochemical stability, PFAS
chemicals tend to accumulate within the body (1) and move from
plasma into tissues, with the highest levels being found in human
tissues with a larger blood supply such as the liver, lungs and
kidneys (6, 20, 66). This is also reported in studies ofmicewhere the
highest accumulation of PFOS has been documented in the liver,
lungs, kidney and bonemarrow (73), aswell as in primates,with the
kidneys and blood also showing higher levels in comparison
to other tissues (66). Notably, the tissue distribution of PFAS
is influenced by multiple factors including species and
gender, chemical characteristics such as chain length and
functional group, as well as exposure dose (66, 74, 75). Most
environmentally relevant PFAS have chain lengths between 4 and
13 fluorinated carbons (15, 76) giving rise to a variety of different
structures such as branched forms (4, 76), although the most
commonly detected PFAS in humans and wildlife are linear
forms (Figure 1) (77). Longer chain PFAS have a greater
potential to accumulate in living organisms than do shorter chain
PFAS (<6 carbons) (14) due to the ability of longer chain PFAS such
as PFOA, PFOS and perfluorohexanesulphonic acid (PFHxS) to
bind to a wider range of serum proteins, including transferrin,
plasma gamma-globulin and albumin (70). This is supported by
evidence that PFAS accumulation occurs in protein-rich tissues
such as the liver (66). Such evidence has led to the replacement of
legacy and long-chain PFAS with structurally similar shorter chain
variants, thought to be less toxic; for example, perfluorobutane
sulfonic acid (PFBS) has been used to replace PFOS (51) and GenX
(hexafluoropropylene oxide dimer acid) has replaced PFOA (16).
Plasma concentrations support this rationale with longer chain
PFAS such as PFOA and PFOS showing higher levels [3.9 and 20.7
µg/L, respectfully (21)] in comparison to the shorter chain
replacements PFBS [typically below the detection limit of 4.2 µg/
L (9)] andperfluorobutanoic acid (PFBA) [3.3 µg/L (78)].However,
little is currently known about the toxicology of these replacement
chemicals (79). Additionally, bioaccumulation of PFAS appears to
be influenced by the functional group(s) attached to the
hydrocarbon backbone of each PFAS molecule. For example,
March 2022 | Volume 12 | Article 799043
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compounds that harbor an attached carboxylic acid functional
group have been shown to accumulate less in fish, than those
with a sulfonate functional group of the same carbon chain
length (14, 18). Although the exact mechanisms behind this
disparity are currently unknown, it may be due to the stronger
affinity for proteins seen with longer chain length and in sulfonic
acids (71).
Frontiers in Endocrinology | www.frontiersin.org 4
PFAS HUMAN HEALTH ASSOCIATIONS

Increasing awareness of the dangers of PFAS and their
propensity to bioaccumulate has led to a surge in scientific
research and public interest, with PFAS being labelled as a
potential risk for humans and the environment by the
Scientific Committee on Health in 2018 (80). Studies have
FIGURE 1 | Basic structure of perfluoroalkyl substances (PFAS), using perfluorooctanesulfonic acid (PFOS) as an example. Outlined in blue is the perfluoroalkyl tail
(carbon/fluoride chain) and the functional group is outlined in red. All PFAS share these general features, with variation in the carbon chain length and functional
group. Figure adapted from Blake and Fenton 2020 (51).
March 2022 | Volume 12 | Article 799043
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been conducted in both human and animal models to investigate
possible health consequences arising from PFAS exposure (1,
43). The most commonly investigated PFAS with regards to
human health are PFOS and PFOA (81), with a range of
additional PFAS having been studied including PFHxS and
PFBS (1) (Table 1). Mounting evidence from these studies
supports an association between PFAS and an array of human
diseases and disorders (1). However, it is somewhat difficult to
definitively link causality to PFAS due to the variation in
chemistries and potential biological activities between the
different classes of PFAS, the duration and degree of exposure,
potential synergistic or antagonistic effects of PFAS
combinations in the body as well as the often-overlooked
precursors of PFAS, which degrade to the terminal
perfluoroalkyl acids (PFAAS) (82, 83). This situation is further
compounded by the mechanisms of PFAS exposure, which vary
both between and within communities, resulting in distinct
PFAS profiles among individual subjects. Furthermore,
disparities also exist in an individual's genetic and phenotypic
constitution within affected populations, which could ultimately
influence their PFAS clearance rates and susceptibility to the
biological effects of these chemicals. Notwithstanding these
limitations, the balance of evidence supports the potential for
PFAS exposure to elicit adverse health sequelae at differing
developmental stages and ages (66, 84–88). The C8 Health
Project also bears out this conclusion; a comprehensive
Frontiers in Endocrinology | www.frontiersin.org 5
investigation of an entire community of 69,000 people exposed
to PFAS via consumption of contaminated drinking water (43).
This study revealed probable links between PFOA exposure and
six diseases: kidney and testicular cancer, thyroid disease, high
cholesterol, ulcerative colitis, and pregnancy-induced
hypertension (43), findings that are supported by the
International Agency for Research on Cancer evidence (48,
85). Although, it should be noted this evidence relates to
PFOA exposure only, and therefore, further investigations of
this nature are required for the remaining range of PFAS.

Building on this evidence, the greatest and most consistently
reported metabolic consequence of PFAS exposure is
dyslipidemia, with several notable studies finding links between
serum PFAS and dysregulated lipid profiles (89), including
increased low-density lipoprotein (90, 91), triglycerides (92)
and total cholesterol (90, 91, 93, 94) in addition to diminished
high-density lipoprotein (89). However, the extent of cholesterol
dysregulation is variable across PFAS exposure levels as is the
response to different forms of PFAS; with PFOA and PFOS
demonstrating the most consistent effects between studies (62).

Epidemiological evidence has also linked PFAS exposure to the
prevalence of testicular cancer, with the International Agency for
Research on Cancer concluding PFOA is possibly carcinogenic to
humans (48) and the United States Environment Protection
Agency declaring it a likely carcinogen (95). In this context,
studies by Barry et al. reported a strong association between
FIGURE 2 | Schematic diagram illustrating the routes of human PFAS exposure. Following production, PFAS are used in consumer products such as food packaging,
cookware, water repellent clothing and non-stick fry pans. PFAS are also a main component in firefighting foam, which can leach into the environment, or are otherwise
disposed of as industrial waste. Human exposure may occur through use of consumer products or from contaminated water supplies. Accordingly, environmental
exposure can occur as a result of waste products contaminating waterways and soil through leaching of firefighting foam and waste from industry and consumers.
March 2022 | Volume 12 | Article 799043
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testicular cancer and PFOA exposure (hazard ratio of 1.34) in
adults exposed through drinking water assessed as part of the C8
Health Project cohort (43, 44). Similarly, Vieira et al. identified a
positive correlation in individuals exposed to very high PFOS
levels, with an adjusted odds ratio of 2.8; although a potential
limitation of this study was the relatively small sample number
(45). Confounding this situation, three additional studies focusing
on PFOA exposure and mortality from testicular cancer all failed
to identify an association in occupationally exposed workers (87,
96, 97). Thus, whilst not universally demonstrated, the potential
significance of these positive associations is highlighted by parallel
correlations between the widespread increase in worldwide PFAS
usage and the rising prevalence of testicular cancer; a pathology
that has significantly increased in recent times to become the most
common malignancy in young men aged 20-40 years (98–101).
Although the characterization of testicular cancer remains
incomplete, there is speculation that environmental factors, as
opposed to genetic factors, are a key contributor to the etiology of
this form of cancer (98, 102).
DIFFICULTIES ASSOCIATED WITH THE
STUDY OF THE EFFECTS OF PFAS
CHEMICALS ON HUMAN HEALTH

Many challenges exist that have hindered attempts to fully assess
PFAS effects on health, including those directly related to tracing
the mode and levels of PFAS exposure in the general population,
consequences of PFAS precursors, compound effects of PFAS
mixtures, as well as nuances specific to studies of animal models
(103). The use of the latter has proven invaluable for studying the
toxicology of PFAS exposure, albeit with variable outcomes (66,
104, 105). Laboratory rodents are the chief animal model
employed, with zebrafish also being utilized in recent times,
particularly in the context of assessing the impacts of PFOA and
PFOS exposure (12). Amongst animal models, considerable
interspecies variation has been noted, but thus far, the
mechanistic basis of such inconsistency has not been entirely
resolved. Known variables include biological mechanisms of
PFAS action within target tissues, rates of PFAS metabolism
and elimination, as well as assessment of different disease
endpoints (12, 29, 51, 103). For instance, the half-life of PFOA
in mice, at 6 days, is much shorter than in rats at 16 to 22 days
and is generally significantly longer in humans (~2.1 to 3.8 years)
(12). These differences are further confounded by differential
responses between genders, with PFOA being eliminated much
quicker from female rats (2-4 hours) compared to their male
counterparts (4-6 days) (12, 106, 107). Li et al. (108) have
reported similar results in humans with a significantly lower
PFOS half-life being seen in women (3.1 years) compared to
males (4.6 years). Similarly, Zhang et al. (109) reported that
PFOS half-life was shorter in women under 50 years of age (6.2
years) in comparison to women over 50 and for males of all
assessed age groups (27 years), although, the same trend was not
seen with PFOA. However, it should be noted that this estimated
Frontiers in Endocrinology | www.frontiersin.org 6
half-life of 27 years for PFOS is higher than that calculated in
similar studies, and as such, should be considered an upper
limit estimation.

The manufacture and pervasive use of PFAS began in the
1950s (4), meaning that virtually all humans born after this time
have potentially been exposed to some degree of PFAS
contamination. As a consequence, there is a genuine difficulty
in identifying a naïve unexposed control cohort, a situation that
hinders the reliability of epidemiological models and cohort
studies used to compare exposure groups and evaluate the risk
of disease associated with varying PFAS exposure levels (51).
Further, direct evaluation of the health outcomes of an individual
resulting from PFAS exposure provides challenges due to the
wide array of PFAS profiles detected in individuals within the
same community, and between geographically distinct
communities (51). Indeed, an individual’s PFAS profile
depends on several variables, such as the source of exposure,
which can range from contamination associated with standard
food packaging, through to the waste products encountered
within the vicinity of a facility which manufactures PFAS (51).
Exposure sources are also likely to differ over time due to
fluctuations in PFAS usage as has been seen with the
progressive phasing out of PFOS and PFOA chemicals in favor
of alternative short chain PFAS derivatives (51). Additionally,
possible synergistic or antagonist effects between different PFAS
molecules may result in variable health outcomes between
individuals (51), yet little is currently known of the
repercussions of such chemical interplay (66). Variations in
exposure also occur throughout the lifetime of an individual
and can range from consistent chronic exposure to intermittent
shorter periods of exposure. This exposure range has apparent
consequences for an individual’s PFAS profile making attempts
to relate PFAS exposure to incident health outcomes difficult.
Indeed, PFAS-related health outcomes emerging in adults may
be attributed to exposure at one or more key stages of
development such as the in utero, childhood or puberty stages
(110), or alternatively, to chronic life-long exposure.
Additionally, it cannot be determined whether an individual’s
PFAS contamination level is a result of a current exposure(s) or
accumulation over a period of several years.

Another limitation of PFAS investigation is knowledge of the
full assortment of contaminating PFAS chemicals. Initial
identification of these chemicals in human serum was reported
in 1980 when PFOA was discovered in a group of industrial plant
workers exposed to fluorochemicals (111). A subsequent
reduction in the manufacture, and phasing-out the use of
PFAS classed as being damaging agents began in several
countries in 2000 (5). Consequently, the original PFAS were
replaced with other chemical analogues thought to be less toxic
and which did not accumulate as readily in biological systems
(79). Regrettably, the next generation of PFAS has subsequently
been found to be detrimental to human health, with a prominent
example being GenX, a branched short-chain PFAS that has
subsequently been found to be more toxic than the PFOA it
replaced (16). As a result, new PFAS are constantly being added
to the list of hazardous and toxic chemicals (112, 113), which
March 2022 | Volume 12 | Article 799043
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emphasizes the necessity for increased investment into PFAS-
related research.

Currently, determination of the PFAS profile of an individual
is limited by available testing methods. Serum testing is
performed most often using mass spectrometry paired with
liquid chromatography (78). Mass spectrometry identifies
organic compounds based on their molecular mass and can
detect and quantify compounds with a high level of sensitivity.
Many methods measure a limited subset of 20-30 PFAS, which
potentially leads to inaccurate PFAS profiles, and should be
considered when comparing PFAS studies (114). The limit of
detection varies between PFAS (e.g. , 1.10 ng/L for
perfluoroheptanoic acid (PFHpA) to 25.1 ng/L for PFBA), with
the limit of quantitation being even greater (e.g. 3.3 ng/mL for
PFHpA, to 75.3 ng/L for PFBA) (78). If a particular PFAS is
present below the method reporting limit in a sample it would be
assumed not to be present in the assessed sample, thus
introducing inaccuracies in the assignment of biological effects.
These limitations in measurement techniques highlight the need
to identify and understand new and emerging fluorinated
compounds to allow an accurate determination of exposed
communities and the efficacy of remediation strategies to
reduce exposure.

The confounders documented above highlight the
requirement for reliable markers of general health with which
to determine the risk posed by PFAS exposure. Here, we explore
the utility of employing male reproductive health as one such
indicator to understand the molecular pathways by which PFAS
drive pathophysiological responses, a strategy that builds on
evidence that the male germline is vulnerable to a variety of
environmental toxicants (1, 115).
THE RELATIONSHIP BETWEEN MALE
INFERTILITY AND OVERALL HEALTH

Infertility is a reproductive system disease that impacts 16 to 25%
of couples, with almost half of all cases attributed to male
reproductive issues (116). Such problems are often connected
to semen abnormalities, key contributors to which include body
mass, lifestyle, age, and environmental exposures (116). Over the
past few decades, decreasing trends in semen quality have been
reported but there remains no clear explanation for the
underlying causes of this decline (116). In recent years there
has also been increased understanding that the general health of
a male is closely related to his reproductive health (116), with
strong associations established between male infertility and
future health; especially the development of testicular cancer
(117–120), and chronic non-malignant diseases such as ischemic
heart disease and diabetes (36, 37, 40, 42, 116, 121). It has been
proposed that shared genetic pathways, lifestyle factors and the
environment, possibly acting in utero, could play a key role (122).
Mounting evidence implies that semen quality can serve as a
biological marker for future male health, as multiple
epidemiological studies of notable size (>50,000 men) describe
consistent associations between reduced semen quality and
Frontiers in Endocrinology | www.frontiersin.org 7
mortality. For instance, diminished semen parameters, such as
sperm count, concentration, motility, and morphology, are
related to a 2.3-fold greater risk of death in the following eight
years: factors comparable to the risk of death due to diabetes or
smoking (36, 42, 117). These studies reveal that men with
atypical semen characteristics commonly die due to a higher
prevalence of testicular cancer and/or altered androgen signaling,
which culminate in the onset of metabolic, cardiovascular, or
inflammatory diseases (123, 124); a disease set not too dissimilar
to those suggested to onset due to PFAS exposure (1, 43).

Hence, current epidemiological evidence aligns with the
association between male infertility and PFAS exposure, as
seen with the link between male infertility and risk of chronic
disease and mortality. Nevertheless, the scarcity of prospective
studies and insufficient adjustment of confounders hinder the
ability to ascertain the causality of these associations, and the
pathogenic pathways linking these conditions are still ambiguous
(1). Despite this, male fertility, particularly the clinical
assessment of basic sperm parameters, allows for readily
accessible biomarkers and presents as a potentially important
resource to identify diseases promptly and predict the long-term
health of an individual (36, 39–42). The theory that male
reproductive pathologies are triggered by environmental
exposure is not a new concept. Indeed, several studies have
investigated a range of environmental contaminants (115) such
as pesticides and herbicides (125), acrylamide (126), and
radiation (127) and their implications for male fertility. In
addition, these studies provide an important precedent for
equivalent research to be performed on PFAS.
KNOWN EFFECTS OF PFAS EXPOSURE
ON MALE FERTILITY

Despite the publication of several studies exploring the
relationship between PFAS exposure and male fertility, the
evidence presented is often conflicting (81, 128), and further
such studies are hindered by the nature of the chemicals assessed
and the pre-existing history of worldwide PFAS exposure.
Notwithstanding the l imitat ions imposed by these
confounders, male ailments such as testicular cancer are
perceived as a prominent endpoint of PFAS exposure (1, 43–
47) (Table 2). Further evidence of testicular dysfunction is
supported by large cohort studies assessing semen quality (49,
140). In this context, a dose-response relationship may exist
between chronic PFOA and PFOS exposure and sperm
production. A 35% decline in normal sperm production was
observed in the upper tertile of PFOS concentration (> 27.3 µg/L),
compared to that of the first tertile (< 11.9 µg/L) (35). Similarly, a
40% decrease in normal sperm production was recorded in high
PFOS and PFOA exposed individuals, compared to men classed
as having low exposure levels (129). Moreover, in utero exposure
to PFOA was shown to lower total sperm count (130). Further to
this, recent studies have described a significant association
between PFAS exposure and several indicators of human
sperm quality (49, 134). For instance, Toft and colleagues (35)
March 2022 | Volume 12 | Article 799043

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Calvert et al. PFAS and Male Reproduction
TABLE 2 | Summary of outcomes from studies investigating the impact of PFAS on human male reproductive function.

Assessed outcome Serum PFAS assessed Timing of PFAS exposure Outcome References

Prevalence of testicular cancer
PFOA
PFHxS

Adulthood Increased Frisbee et al. (43)
Barry et al. (44)
Kirk et al. (1)
Vieira et al. (45)
Bartell and Vieira (47)

PFHxS In utero Increased Lin et al. (46)
Sperm morphology

PFOS, PFHxS
PFOA + PFOS
PFOSA

Adulthood Decrease in percentage of normal spermatozoa Toft et al. (35)
Joensen et al. (129)
Louis et al. (49)

PFOA, PFOS In utero No change Vested et al. (130)
Multiple
PFOS, PFOA, PFNA, PFHxS

Adulthood No change Joensen et al. (131)
Petersen et al. (132)

Sperm count and concentration
PFOA In utero Decrease in sperm count and concentration Vested et al. (130)
PFOS, PFOA, PFNA, PFHxS Adulthood No change Toft et al. (35)

Joensen et al. (131)
Petersen et al. (132)
Raymer et al. (133)

PFOS In utero No change Vested et al. (130)
Sperm DNA quality

Multiple Adulthood Increased sperm DNA damage Governini et al. (134)
PFOS, PFOA, PFNA, PFHxS
PFHxA

Adulthood No change in DNA integrity Specht et al. (135)
Emerce and Cetin (136)

PFOS, PFOA, PFNA, PFHxS Adulthood No change in DNA methylation Leter et al. (137)
Semen volume

PFOS, PFOA, PFNA, PFHxS Adulthood No change Toft et al. (35)
Joensen et al. (131)
Joensen et al. (129)
Vested et al. (130)
Petersen et al. (132)
Raymer et al. (133)

Sperm motility
PFOA Adulthood Increase Toft et al. (35)
PFOS, PFOA, PFHS Adulthood Decrease Song et al. (78)
Multiple
PFOS, PFOA, PFNA, PFHxS

Adulthood No change Joensen et al. (131)
Joensen et al. (129)
Petersen et al. (132)
Raymer et al. (133)

PFOA, PFOS In utero No change Vested et al. (130)
Serum levels of testosterone

PFHxS In utero Increase Nian et al. (138)
PFOS Adulthood Decrease Joensen et al. (131)
PFOA, PFOS, PFNA Adulthood Decrease Cui et al. (139)
PFOS, PFOA, PFHxS, PFNA Adulthood No change Joensen et al. (129)

Petersen et al. (132)
Raymer et al. (133)

PFOS, PFOA In utero No change Vested et al. (130)
Serum levels of sex hormone binding globulin

PFOA Adulthood Increase Petersen et al. (132)
PFOA, PFOS, PFNA Adulthood Decrease Cui et al. (139)
PFOS, PFOA, PFHxS, PFNA Adulthood No change Joensen et al. (129)

Joensen et al. (131)
Petersen et al. (132)

PFOS, PFOA In utero No change Vested et al. (130)
Serum levels of luteinizing hormone

PFOA, PFOS Adulthood Increase Petersen et al. (132)
Raymer et al. (133)

PFOA In utero Increase Vested et al. (130)
PFBS, PFHpA In utero Decrease Nian et al. (138)
PFOS, PFOA, PFHxS Adulthood No change Joensen et al. (129)

Cui et al. (139)

(Continued)
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found no consistent associations between exposure to multiple
PFAS and sperm concentration and count, or semen volume but
did record a decrease in sperm cells with normal morphology in
association with higher PFOS levels (35). Similarly, Joensen et al.
reported equivalent results in their 2009 study with PFOA and
PFOS (129), but these outcomes could not be reproduced in their
later study published in 2013 (131), possibly due to lower levels
of PFAS recorded in this later cohort (0.5% for PFOS), in which
no participants were classified in the ‘high exposure’ category as
per the criteria in the first study. Further studies also failed to
find an association between PFAS and sperm quality (132, 133,
135–137); thus precluding the establishment of causative links
(133, 136). Sperm motility has also been found to correlate both
positively and negatively with PFOA exposure. One study
investigating the implications of PFAS exposure on sperm
parameters found greater sperm motility the study cohort with
the highest serum PFOA levels (35). However, this observation
was not consistent across all countries, nor the individual PFAS
examined, and due to the many statistical tests performed in this
study, the authors concluded such results might be due to chance
events alone (35). In contrast, an independent study reported a
significant negative correlation between several PFAS in semen,
including PFOA, and sperm motility (78). This latter study also
found associations between the PFAS concentration in semen
and sperm motility, which indicates that seminal concentrations
of PFAS may be more indicative of semen quality than that of
serum PFAS levels. Such a finding has implications for the
accuracy of extrapolating data from different sample sources
across studies. Thus far, less than 15 studies have been conducted
to investigate associations between PFAS levels and sperm
parameters (1, 141) (Table 2). Half of these studies show no
association while the other half report some associations. Yet, no
studies consistently found the same set of altered sperm
parameters due to PFAS exposure. Differing results may, in
part, be attributed to the variation in the studied cohorts
between countries; for example European and Arctic (35),
versus Chinese populations (78), wherein participants are likely
to have been exposed to different PFAS profiles depending on the
source and route of contamination, not to mention other
environmental factors to which they may be exposed, that
could act synergistically or antagonistically. Although the
variation in outcomes reported in these studies highlights the
difficulties in directly comparing PFAS studies, the existence of
positive correlations between PFAS exposure and abnormal
sperm characteristics uphold the view that internalized PFAS
do localize to the testis, along with other organs of the body,
Frontiers in Endocrinology | www.frontiersin.org 9
thereby forming a useful model to study PFAS-induced damage.
However, it should be noted that using sperm parameters as a
measure is quite a blunt tool and small changes are unlikely to be
informative due to the wide variation seen between males and the
low threshold for WHO defined parameters (142). Therefore,
researchers should exercise caution when interpreting data on
sperm parameter changes.

The impact of PFAS on a variety of additional reproductive
characteristics has also been investigated, including
dysregulation of reproductive hormone profiles (141, 143, 144).
In one such study, significantly lower serum testosterone levels
were detected in male mice following 21 days of high (10 mg/kg)
PFOS administration via oral gavage, compared to untreated
controls (145). This finding supports previous evidence from
studies of adult male rats exposed to PFOA by gavage at a
concentration of 25 mg/kg/day for 14 days (146) and of mice
treated for 28 days with PFOA (147). In the latter study, a dose-
responsive reduction in testosterone and progesterone levels in
the testis was revealed. These animal data are commensurate
with some human investigations, which have also attributed
reduced testosterone levels in men to high PFOS (131) and
PFOA (139) levels. Furthermore, Luteinizing hormone (LH) and
sex hormone binding globulin (SHBG) levels have been reported
to correlate with increasing plasma PFOA concentrations in
adult males (132, 133). Additionally, increased LH and follicle-
stimulating hormone (FSH) were detected in men who
experienced prenatal exposure to PFOA (130), indicating that
this developmental phase may be particularly sensitive to
maternal PFAS exposure. However, several conflicting studies
fail to show any associations between PFAS exposure and plasma
reproductive hormone levels in males (testosterone, LH, FSH,
SHBG and estradiol) (129, 148, 149). Further, Nian et al. revealed
a negative trend with FSH and PFBS in cord blood from
newborns exposed to PFAS during pregnancy (138). As an
additional caveat, animal study evidence should be interpreted
cautiously as information on PFAS effects and male fertility is
often not at environmentally relevant concentrations due to the
much shorter half-life and faster elimination rates seen in
animals, which result in lower internal levels at doses
equivalent to human exposures.

Mechanisms of PFAS Action on
Reproductive Health
Testicular dysgenesis syndrome (TDS) is a term that
encompasses a range of male reproductive disorders
originating from fetal development (150) and which are
TABLE 2 | Continued

Assessed outcome Serum PFAS assessed Timing of PFAS exposure Outcome References

PFOS In utero No change Vested et al. (130)
Serum levels of follicle-stimulating hormone

PFOA In utero Increase Vested et al. (130)
PFBS In utero Decrease Nian et al. (138)
PFOS, PFOA, PFHxS, PFNA Adulthood No change Joensen et al. (129)

Petersen et al. (132)
Raymer et al. (133)

PFOS In utero No change Vested et al. (130)
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thought to be a consequence of environmental influences (150–
152). Such issues share similarities with those attributed to PFAS
exposure, such as undescended testes (cryptorchidism), fertility
issues in adults, and testicular cancer (150, 151). Fetal
development of the male reproductive system is sensitive to
disturbance by environmental factors such as diethylstilbestrol, a
synthetic estrogen prescribed to pregnant women in the mid-
1900s (153) and cyclooxygenase inhibitors such as ibuprofen and
paracetamol (154). An increased incidence of cryptorchidism has
been identified in men exposed to these environmental toxicants
in utero, with responses being particularly pronounced in those
exposed during the critical programming windows of the first
and second trimester (155, 156). Studies in rats have proposed
the existence of male programming windows corresponding to
weeks 8-14 of pregnancy in humans during which androgen-
induced masculinization occurs, including programming of
testes descent. Thus, environmental exposures encountered
during this period have the potential to affect normal male
reproductive development and reproductive hormone balance
(156), suggesting a mechanism by which PFAS exposure during
gestation may impact subsequent developmental events within
the male reproductive system.

Endocrine disruptors are chemicals (both naturally occurring
and synthetic) that interrupt the normal hormonal system of the
body, either through direct hindrance of hormonal pathways or
through mimicking the hormones within the endocrine system
(157, 158). This can result in variable consequences such as
dysregulation of immune, reproductive and developmental
pathways (159–162). It follows that this diverse group of
chemicals have been widely implicated in the development of
reproductive abnormalities including TDS (150, 163–166).
Indeed, the TDS hypothesis suggests that in utero exposure to
endocrine disruptors damages testis development resulting in
decreased function in adulthood, with symptoms ranging from
moderately reduced semen quality through to the promulgation
of testicular cancer (6, 167). PFAS display properties consistent
with that expected of endocrine disruptors (1, 6, 168), and are
widely reported as having endocrine disrupting actions (1, 6,
168–171). Accordingly, PFAS exposure often results in altered
androgen and insulin-like factor 3 (INSL3) dependent processes
(172–175) (Figure 3). There are two suggested mechanisms by
which PFAS produce harmful endocrine effects: either by
disturbing steroidogenesis (6) or by interfering with steroid
hormone receptors (176, 177).

Specifically, at least some of the pathologies attributed to in
utero PFAS exposure are hypothesized to arise due to abnormal
Leydig cell development and/or function (6, 176). Leydig cells
are a vital component of the male reproductive system
responsible for synthesizing the steroid hormone testosterone,
which is essential for sexual development and testis decedent in
the fetal period (178), and the support of normal sperm
production in the adult (179). Biegel et al. reported altered
Leydig cell function in vitro with cells isolated from untreated
rats, in which a dose-dependent decrease in testosterone was
seen following a 5-hour treatment with PFOA (IC50
approximately 200 mM) (146). Additionally, ex vivo
Frontiers in Endocrinology | www.frontiersin.org 10
investigations with Leydig cells isolated from rats gavaged for
14 days with 25 mg/kg/day of PFOA showed these alterations
are reversible following cessation of PFOA treatment (146).
Such effects may be attributed to PFAS interfering with one, or
more, of the enzymes involved in steroidogenesis. By way of
example, PFAS may directly inhibit the catalytic activity of the
3b-hydroxysteroid dehydrogenase (HSD3B) enzyme by
competing against its native pregnenolone substrate, thereby
limiting the production of testosterone in rat Leydig cells (180).
In humans, PFOS displays non-competitive inhibition of
HSD17B3, another enzyme required for testosterone synthesis
(176). Interference with steroid hormone receptors has also
been documented, with the binding of PFAS leading to
antagonism of androgen receptors (50), thereby blocking
their activation by androgens, such as testosterone, in a dose-
dependent manner (181). Other studies have reported a
reduction in fetal Leydig cell number in male offspring
exposed in utero, with mothers gavaged with 5 or 20 mg/kg
of PFOS daily from gestational day 11 to 19 (182),
which provides a tenable explanation for the reduction in
testosterone levels seen in independent studies of rat models
(146). Alternatively, elevated exposure to PFAS has been
positively correlated with increased serum cholesterol in
humans (1), which may lead to an increase in the production
of steroid hormones. Of concern, the consequences of
alterations resulting from prenatal PFAS exposure have the
potential to be passed on to offspring through epigenetic
transgenerational inheritance modalities (183) and may thus
increase the susceptibility of future generations to disease, as
demonstrated with other environmental factors (121, 184).

Further to this, at least two studies have shown that high
PFOS exposure in adult men results in a higher proportion of
morphologically abnormal sperm cells (35, 129). However,
Vested et al. failed to identify any such association between
PFOA exposure in utero and the proportion of morphologically
normal spermatozoa (130). The authors did, however, report
associations between PFOA exposure and total sperm count and
concentration (130), which would suggest that the timing of
exposure plays a part in the mechanism by which PFAS affects
the fidelity of sperm production, that is; whether PFAS exposure
gives rise to defects in sperm morphology or sperm count. This
reasoning is plausible since sperm morphology and motility are
primarily determined during sperm production and maturation
in adulthood. In contrast, the capacity for sperm production is
determined during the fetal period of sexual organ development
(130). Furthermore, the relationship between sperm count/
concentration and PFOA exposure suggests an effect on Sertoli
cell development during the fetal period, as failure of Sertoli cell
maturation and consequential inabi l i ty to support
spermatogenesis invariably results in lower rates of sperm cell
production (185). This is supported by evidence demonstrating
that in vitro PFAS exposure disturbs Sertoli cell function by
altering the gap junction network with implications for the
intracellular communication and cell-cell interactions (186–
188) that are necessary for the support of spermatogenesis
(189–192). Abnormal Sertoli cell development during the
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initial in utero stages of male reproductive tract development will
also, in turn, impact Leydig cell function and subsequent
masculinization events (193).

An in vitro study using a human stem cell model of
spermatogenesis discovered a reduction in both spermatogonia
and primary spermatocyte markers when cultures were treated
with a mixture of PFOA, PFOS, and PFNA at levels consistent
with general population exposure and occupationally exposed
individuals, suggesting a potential long-term effect on fertility
through exhausting the spermatogonial stem cell pool, rather
than directly affecting cell viability (194). In agreement with this
notion, an in vivo study in mice revealed a reduction in sperm
count and testicular weight upon treatment with PFOS over five
weeks (195), while in a zebrafish study the gonadal structure of
juvenile males was altered by a 5-month treatment period with
PFOS, ultimately resulting in fewer spermatogonia (196). Such
results have been attributed to a combination of increased
apoptosis and reduced proliferation of germ cells (195).
However, the effects of PFAS exposure on the reproductive
Frontiers in Endocrinology | www.frontiersin.org 11
system differ depending on the specific PFAS and the
toxicokinetics of the species studied (197). For example, PFOA
mainly accumulates in the plasma and liver of rats, with the half-
life in female rats at 1 day being much shorter than in males at 15
days (106). By comparison, high PFOS accumulation has been
detected in the liver and lungs of humans (20, 198), with no
differences in elimination between genders (12). Another
mechanism by which PFAS mediated testicular issues may
arise is through the binding of fatty acid binding-proteins
(FABP), a family of proteins that bind fatty acids to enhance
their solubility, and to aid in both the intracellular and
extracellular transport of fatty acids (199). The most common
FABP is albumin, which binds and transports fatty acids within
the plasma and interstitial fluid (200, 201). There are distinct
types of FABP, with each type exhibiting certain tissue
distribution patterns and named accordingly (202). For
example, mammalian testicular cells express high levels of the
Fabp9 gene (also known as testes FABP) (202), and Fabp12 gene
expression has been detected in adult rat testis (203). Due to the
FIGURE 3 | Proposed mechanisms of PFAS action pertaining to the male reproductive system. PFAS have the potential to enter the body through multiple routes.
Following entry, PFAS are capable of binding to fatty acid binding proteins and transport proteins in the blood such as human serum albumin (HSA) and thereafter
are thought to be transported throughout the body eliciting harmful endocrine effects via two possible mechanisms: disturbing steroidogenesis (e.g. via allosteric
inhibition of vital enzymes) or directly interfering with steroid hormone receptors. This results in altered levels of reproductive hormones such as luteinizing hormone
(LH), follicle stimulating hormone (FSH), sex hormone binding globulin (SHBG), testosterone (T) and insulin-like peptide 3 (INSL3), which has subsequent effects on
male reproductive processes. PFAS also accumulate in protein rich tissues, including the testes, which is facilitated by the high expression of fatty acid binding
proteins. Here, PFAS impact testicular cell function, namely Leydig and Sertoli cells. Altered Leydig cell function leads to reduced testosterone production resulting in
altered sexual development, increased incidence of hyperplasia and adenomas and increased risk of cryptorchidism in the fetus. This reduction in testosterone leads
to attendant impacts on Sertoli cell function by reducing Sertoli cell differentiation and precipitating compromise of spermatogenesis, reduced sperm count and
altered sexual development. Gap junctions between Sertoli cells and developing germ cells are also affected by PFAS, which reduces communication between the
cells, negatively affecting spermatogenesis and resulting in a range of defects in the mature spermatozoa.
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distinct distribution and expression patterns of FABP encoding
loci, it is suggested they may play a role in cell proliferation and
differentiation (199, 204), specifically spermatogenesis in the
testes (203). Therefore, the testes are a vulnerable organ for
PFAS-mediated damage, owing to their abundant expression of
FABPs that have a propensity to bind the perfluoroalkyl chains
and lead to sequestration of PFAS.
REMEDIATION OF ENVIRONMENTAL
PFAS CONTAMINATION

Extensive worldwide use of PFAS has led to pervasive
contamination of land and water, which demand remediation
if we are to have any prospect of combating the adverse health
outcomes attributed to these chemicals, both in humans and
wildlife. Environmental matrices that require targeting for
remediation include groundwater, drinking and surface water,
as well as soil and sediments (66, 205). However, this diversity of
substrates provides unique challenges considering that different
PFAS do not all interact with different matrices in the same
manner (206), nor do they behave like other environmental
contaminants (207). It is thus imperative that chemical features
specific to PFAS are taken into consideration when designing
remediation strategies to ensure thorough and long-lasting
removal is achieved. Similarly, the logistics of the treatment,
accessibility, and safety measures need to be taken into
consideration. Regrettably, options for PFAS remediation
remain limited, with most current technologies having
originally been developed for the removal of other
contaminants (208). Thus, there is considerable scope for the
development of novel technologies to facilitate PFAS
remediation, perhaps even employing a combination of
treatment processes tailored to the site and/or PFAS profile to
achieve the most cost-effective and efficient treatment process for
each site (209). Illustrated in Figure 4 are three remediation
strategies that can be employed for effective treatment of PFAS
water contamination (210–216). A novel technique has been
proposed that utilizes plant proteins for effective removal of
PFAS water contamination, through the pump-and-treat method
(217). Such proteins contain both charged and uncharged
residues on their surface, which allows them to form bonds
with ligands through electrostatic interactions and/or
hydrophobic/hydrophilic interactions (218), providing a
method by which they could potentially remove PFAS
contamination from water. Previous studies have shown PFOS
forms a strong salt bridge with HSA, resulting in a high
adsorption ratio of 45:1 PFOS to HSA (219). Building on these
observations, Turner et al. (217) investigated the sequestration
efficacy of six plant protein isolates and found that hemp protein
has the highest removal rate for total PFAS at 92.5%, along with
soy and pea proteins (around 82%), which is comparable to the
granular activated carbon technique (95%). This technique
provides a means by which plant proteins could be employed
to reduce PFAS contamination within the body and thus
warrants further investigation.
Frontiers in Endocrinology | www.frontiersin.org 12
REMOVING PFAS ACCUMULATION IN
THE HUMAN BODY

Unlike other environmental toxicants, such as parabens (220),
the body cannot metabolize or facilitate the rapid removal of
PFAS. Thus far, there has been limited investigation into the
possibility of sequestering PFAS chemicals to reduce
bioaccumulation within contaminated individuals in order to
mitigate negative health outcomes. However, the adaption of
existing techniques developed for other environmental
contaminants may provide opportunities by which to reduce
PFAS accumulation. Unfortunately, most of these techniques are
only newly recognized and as such are still at an early stage of
research with inadequate evidence of efficacy (221).

One process investigated for detoxification in humans is the
exploitation of the body’s natural excretion through perspiration,
with an assortment of toxicants shown to be excreted in this
manner, such as metals (222), phthalates (223) and bisphenol A
(224). Studies have reported that induced perspiration treatment in
individuals with toxicant accumulation, specifical ly
polychlorinated biphenyls (PCBs) compounds, results in a
statistically significant reduction in body burden (225, 226).
Although promising, based on the limited available evidence, it
seems that PFAS may not be readily excreted through sweat (227).
Conversely, shorter half-lives are observed in women, which are
proposed to result from increased PFAS elimination through
menstruation, pregnancy or lactation (1, 109, 228). Accordingly,
studies have shown regular phlebotomy or blood donation can also
increase the elimination of PFAS (229, 230). Lorber et al. showed
males undergoing regular blood withdrawals had 40% lower
PFHxS, PFOA and PFOS levels in comparison to males in the
general population (231), and suggested a 9% reduction in
circulating blood volume was required to achieve significant
reductions in PFAS levels. Additionally, evidence shows that bile
acid sequestrants, such as cholestyramine, bind to PFAS toxicants
within the gastrointestinal tract, thus preventing enterohepatic
recirculation and increasing excretion of cholesterol and PFAS
(227, 232). One case study with a single individual with high
PFAS contamination showed increased levels of PFAS in stool
samples following treatmentwithcholestyramine,with serumlevels
subsequently reducing with continued treatment (227). Ducatman
and colleagues recently substantiated this evidence by analyzing the
C8 Health Project Data (43) in which they found a reduction in
serum PFAS levels (especially PFOS from 19 to 1 ng/mL) in
individuals reporting to take regular cholestyramine medication,
althoughdataonduration andmedicationdosage administeredwas
not reported (233).Of course, additional investigations are required
to further corroborate these findings, but thus far evidence from
these studies implies that utilizing cholestyramine treatment may
allow for enhanced toxicant elimination.
CONCLUSION

Increasing awareness of the potential health implications of
PFAS and realization of the extent of environmental
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contamination has led to a rising demand for research into
definitive health risks and effective remediation strategies.
Animal models have been widely employed to investigate in
vitro and in vivo consequences of PFAS exposure, as well as the
toxicology of these chemicals. Such studies complement a
growing body of evidence from human epidemiological studies.
However, the literature abounds with conflicting evidence, and as
such, it remains challenging to draw accurate conclusions
regarding the causality of PFAS related health issues. This
situation is exacerbated by the repeated demonstration that
outcomes differ depending on factors such as the specific PFAS
chemical(s) (of which there are over 4,700), stage of development
(i.e., during fetal development or in later life) and duration of
Frontiers in Endocrinology | www.frontiersin.org 13
exposure, level and mix of contamination, route of exposure, and
interaction with other environmental contaminants and
toxicants, all of which are influenced by geographical location.
These factors present significant difficulties for researchers in
planning, executing, and interpreting studies, and thus hinder
our ability to directly compare PFAS exposure studies. While
standardization therefore remains an essential priority for future
research, the identification of appropriate cellular model(s) with
which to directly investigate and unlock the interaction of PFAS
with the male reproductive system would also be advantageous.
In addition, agreement is needed regarding endpoint measures,
in which subtle changes, such as decreases in fertility or
metabolic sequelae, may be used as early markers of PFAS-
A

B

C

FIGURE 4 | Schematic diagram of three possible treatment mechanisms for PFAS contaminated water. (A) Carbon-rich sorbents such as granular activated carbon
(GAC) have a long history of being utilised to remove a variety of organic contaminants from water and as such are by far the best studied and most widely used
sorption technology for treating PFAS contaminated water sources (208). Granular activated carbon has been shown to reliably remove PFOS with over 90%
efficiency (59, 210) and is thus now the reference point for comparison of all new PFAS water sorption technologies. This technology can be employed to treat water
before it reaches consumers, either as a single strategy, or as part of an integrated treatment programme. This treatment often involves the pump and treat method
in which groundwater is extracted and filtered (208, 211), with the sorbent then being disposed of in landfill sites, provided certain risk criteria are met and the
chemicals remain sequestered. International conventions state that waste materials containing > 50 mg/kg of PFAS must be treated in such a way as to destroy
these chemicals, which is often accomplished by incinerating at high temperatures (over 1100°C) (208, 212). (B) Ion exchange uses anion exchange to target a wider
range of PFAS, allowing for more efficient removal. Removal occurs via electrostatic interactions between the charged functional groups of PFAS chemicals and ions
supported on an immobilized synthetic structure (213). In comparison to activated carbon treatment, this method has been shown to be more effective in removing
PFAS, particularly the short chain variants (205). However, the efficiency of ion exchange technologies is dependent on several factors, such as the chemical
composition of PFAS functional group, PFAS chain length and the ion exchange functional groups (the more hydrophobic, the better the sorption capacity of all
chain lengths) (213). The success of almost all remediation strategies employed has been shown to depend on the perfluoroalkyl chain length, with increased efficacy
seen with smaller chain length (214). (C) However, simply removing PFAS from water does not destroy the chemical, hence why further processing or incineration is
required, making removal techniques lengthy and potentially hazardous. Sonochemical degradation has been shown to destroy aqueous PFOA and PFOA in
laboratory conditions (213), demonstrating sonic irradiation can be effectively employed to reduce PFAS contamination at environmentally relevant levels (215). The
degradation patterns of PFAS chemicals are influenced by their functional groups and chain lengths as well as physical variables such as temperature and pH (216).
Utilizing the method of groundwater pumping is seen as a potentially endless endeavor due to continual contamination from untreated water sources. This, in turn,
raises questions as to whether the pump and treat method is sustainable in the long-term treatment of PFAS contamination due to extensive resources and energy
required (208).
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mediated health effects, rather than more extreme factors such as
tumors. In this regard, the male reproductive system offers
notable advantages as a sensitive marker of human disease and
may ultimately provide a unique opportunity for assessing the
emerging threat to human health posed by PFAS exposure.
Indeed, this model draws on a growing body of evidence of a
strong association between a male’s general health and
reproductive potential, with infertility being strongly correlated
with future health concerns such as testicular cancer, ischemic
heart disease and diabetes.
FUTURE PERSPECTIVES

We contend that the identification of a reliable indicator of PFAS
exposure would allow for the identification of reproductive
health conditions resulting from PFAS bioaccumulation and
aid in identifying, with certainty, the mechanisms by which
PFAS impacts male reproductive health. Exploiting male
reproductive function and sperm biology as a non-invasive
means by which to investigate health outcomes is justified due
to the responsiveness and sensitivity of the male reproductive
system to environmental toxicants. Indeed, previous studies have
employed this system as a marker to define the health effects of
environmental factors such as acrylamide (234, 235), mobile
phone radiation (236), and heat (237, 238). Additionally, the
male reproductive system is known to be an early indicator for
the onset of chronic diseases such as coronary and inflammatory
diseases, making it a suitable indicator of general health. Strong
associations have been seen between PFAS exposure and
testicular dysfunction, indicating the male reproductive system
is vulnerable to PFAS-mediated damage. In this context, perhaps
the most suitable human cohorts to study are those that have
Frontiers in Endocrinology | www.frontiersin.org 14
received occupational PFAS exposure, such as firefighters, to
determine the common effects of exposure and gain insight into
possible mechanisms of action. It would then be pertinent to study
individuals with idiopathic infertility to identify if any clear
associations can be drawn between their diagnosis and PFAS
levels, through assessment of detailed life history and daily
routine/exposure information. These factors could then be used
to screen for affected individuals within the general population. In
addition to elucidating the toxicological effects ofPFASchemicals in
humans, there is aneed fordataonawider rangeofPFAS inorder to
regulate, legislate and ban those that are harmful, thus preventing
further contamination from replacement PFAS, which may be just
as harmful as the legacy variants.
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