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Phosgene (COCl2) gas is a chemical intermediate of high-volume production

with numerous industrial applications worldwide. Due to its high toxicity,

accidental exposure to phosgene leads to various chemical injuries, primarily

resulting in chemical-induced lung injury due to inhalation. Initially, the illness

is mild and presents as coughing, chest tightness, and wheezing; however,

within a few hours, symptoms progress to chronic respiratory depression,

refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute

to acute respiratory distress syndrome or even death in severe cases. Despite

rapid advances in medicine, effective treatments for phosgene-inhaled

poisoning are lacking. Elucidating the pathophysiology and pathogenesis of

acute inhalation toxicity caused by phosgene is necessary for the

development of appropriate therapeutics. In this review, we discuss extant

literature on relevant mechanisms and therapeutic strategies to highlight

novel ideas for the treatment of phosgene-induced acute lung injury.

KEYWORDS

phosgene, lung, infection and lipids, acute respiratory distress syndrome, pulmonary
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Introduction

Phosgene is a type of poisonous gas that was initially used as a chemical weapon

during World War I (1). It is widely applied in industrial processes, such as the synthesis

of pesticides, plastics, dyes, polyurethanes, and metallurgy, and is indispensable in

pharmaceutical production (2). Although phosgene is no longer used as a chemical

weapon, phosgene-induced casualties still occur due to accidents resulting from
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improper operations. With rapid industrial ization,

approximately 12 million metric tons of phosgene are

produced annually, and it is estimated that such production

will rise to 18.6 million metric tons per year by 2030 (3). Due to

the wide availability and usage of phosgene in chemical

industries, numerous chemical and industrial employees,

welders, and firefighters are at risk of exposure; therefore,

phosgene exposure poses a significant health concern from

both accidental and deliberate release. Nevertheless, specific

medical treatments for the toxic effects of phosgene exposure

are lacking. Accordingly, there is an urgent need to identify

effective treatment strategies (4, 5).

Phosgene exposure predominantly damages the respiratory

system. Phosgene-induced acute lung injury (P-ALI) is

commonly associated with short-term phosgene inhalation (6,

7). Prolonged exposure can cause chronic hypoventilation,

refractory pulmonary edema, and other associated lung

injuries, ultimately resulting in acute respiratory distress

syndrome (ARDS) (8, 9). Therefore, more attention should be

paid to the high risk of mortality in critically ill patients.

Following exposure to phosgene, the main symptoms initially

include a mild dry cough, accompanied by skin or mucous

membrane irritation in the early period (10). However, if the

patient remains in the disease-causing environment or does not

receive effective care, visual symptoms of respiratory irritation

rapidly develop within a few hours, typically presenting as

coughing, chest tightness, and wheezing (5). Following

inhalation of mass amounts or prolonged inhalation, typical

clinical symptoms of ALI, including pulmonary edema, dyspnea,

and hypoxemia, are evident, which may progress into ARDS in

severe cases (11). In the late stage of P-ALI, survivors often

develop chronic lung disease with obstruction of airflow, fibrosis

(12), airway hyperresponsiveness, and impairments in gas

exchange (13, 14).

Statistically, deaths associated with phosgene exposure

predominantly occur in the early stage of severe ALI; as these

patients often require hospitalization (15, 16), numerous studies

have focused on the acute phase. Studies of critical mechanisms

in P-ALI have been conducted for nearly a century (17–19) but

have failed to identify successful treatments for phosgene

exposure. Therefore, most treatments are supportive rather

than curative in nature, alleviating symptoms but not

addressing the cause of the disease (20–22). Thus, exploring

the pathogenesis of P-ALI is crucial for identifying effective

therapeutics and treatment regimens. In this review, we discuss

recent evidence concerning the pathophysiological mechanisms

and therapeutic strategies for P-ALI, as well as potential

applications, to provide a reference for the effective treatment

of P-ALI.
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Characteristics of phosgene toxicity

Phosgene is a volatile, acidic, chloride-fuming liquid with a

boiling point of 8.3°C (47°F) at standard temperature and

pressure. At room temperature, phosgene exists in the form of

gas. Phosgene has a molecular formula of COCl2 and is

approximately 3.5 times denser than air (r = 3.5 g/mL), which

facilitates its deposition in low-lying areas but impedes

dissipation. The diffusion length of phosgene in an aqueous

solution is approximately 8.8 mm, which is 4–8 times the

thickness of the blood–air barrier (23). Phosgene is colorless at

room temperature and smells of “rotten grass,” with unstable

chemical properties. Thus, the lack of obvious symptoms and

alarming odor characteristics exacerbates phosgene toxicity, as

exposed individuals may not immediately be aware of their peril

(24). This increases the probability that an individual may be

exposed to potentially harmful concentrations prior to reaction.

As dangerous exposure becomes evident only when phosgene

inhalation is associated with severe symptoms, the morbidity

rate of phosgene poisoning remains high.

P-ALI is characterized by toxic pulmonary edema after 6–24

h of exposure, and its severity is dependent on the concentration

× exposure duration (C × t) (25). In this regard, the severity of

edema is not solely determined by the concentration of inhaled

phosgene, and chronic exposure to low concentrations may be

worse than acute exposure to high concentrations (26). At a

lower to moderate C (<50 ppm·min for dogs or rats), pulmonary

edema will occur within 15–20 h after inhalation, a period

typically described as the clinical asymptomatic latency or,

more accurately, the clinical latency. Depending on C × t, the

transition from asymptomatic pulmonary edema to potentially

fatal pulmonary edema occurs precipitously within a few hours.

At higher concentrations (>150 ppm·min for dogs or rats),

phosgene exposure can lead to life-threatening and latent non-

cardiogenic pulmonary edema (27, 28).
Pathophysiological mechanisms
of P-ALI

The mechanisms underscoring P-ALI are still poorly

understood but have been suggested to include direct

interaction and deterioration of lung surfactants resulting in

impairment of the epithelial-endothelial barrier and changes in

lung mechanics due to neuronal damage induced by free radicals

(20), causing tissue destruction and mediator release (29).

Phosgene is a low-water-soluble acylating agent, which inhibits

its solubility in aqueous solutions lining the respiratory tract.
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Phosgene directly damages the respiratory tract and trachea (30)

as it rapidly dissolves in amphiphilic fluids such as lung

surfactants and reacts via acylation with nucleophilic moieties,

causing irreversible changes in the cell membrane and

intracellular structures. At sufficiently high concentrations,

phosgene gas can harm the surfactant layer and deplete the

surfactant activity of glutathione, contributing to elevated

reactive oxygen species (ROS) generation and diffusion into

the tissue layer, thereby impairing the tissue layer (e.g., epithelial

cells, endothelial cells, neurons, and blood constituents) (31).

Phosgene can undergo heterolysis and homolysis to form a

highly reactive carbamoyl monochloride radical, leading to

alteration and dysfunction of proteins and phospholipids and

the production of harmful ROS and nitrogen species (4).

The alveolar surface is lined with a complex and highly

surface-active substance, known as pulmonary surface-active

substance, which consists of approximately 90% lipids and

5%–10% surfactant-specific proteins that protect the alveoli

from collapse at the end of expiration by reducing surface

tension (32). Phosphatidylglycerol is present at an unusually

high percentage in the surfactant and can reflect the state of

alveolar damage, where it primarily serves as a precursor for

cardiolipin (33). Secreted phospholipase A2 of group IIA

(sPLA2-IIA) is a crucial enzyme involved in the production of

lyso-PC and fatty acids in the lung through surfactant

phospholipid hydrolysis (34). On the other hand, given that

surfactant phospholipids inhibit sPLA2-IIA expression by

alveolar macrophages, hydrolysis of these phospholipids by

sPLA2-IIA leads to the removal of sPLA2-IIA inhibition and,
Frontiers in Immunology 03
as a consequence, to the establishment of a vicious circle (35).

Phosgene is a bifunctional electrophillic molecule that reacts

with nucleophillic groups of cellular macromolecules such as

phospholipids (36), proteins (37), and DNA (38). After

phosgene inhalation, there may be a 1-h latency period,

contributing to the degradation of lung surfactant, production

of phospholipids metabolites, and infiltration of inflammatory

cells into lung tissue (39). As phospholipid depletion continues,

pulmonary permeability is impaired, causing continuous

accumulation of high protein exudates within the lung, which

eventually contributes to a permeability-type pulmonary edema

(40). Furthermore, phosgene interferes with lipid peroxidation,

which may also have an impact on the endothelium with

multiple consequences on lung injury (4), and increased

permeability could also disrupt the immune barrier, leading to

further entry of pathogenic microorganisms into the host. The

hydrophobicity of phosgene exacerbates its toxicity, often

leading to delayed toxidrome, as the upper respiratory tract is

moderately irritated. By the time symptoms appear, significant

damage has occurred. Indeed, direct interactions of phosgene

with the pulmonary surfactant contribute to atelectasis. This

interaction is due to surfactant dysfunction and imbalances of

Starling’s and Laplace’s laws (30) caused by increased interstitial

pressure. Collectively, these events further destabilize the alveoli.

Moreover, loss and depletion of phospholipids are important

pathogenic mechanisms of P-ALI.

It is generally acknowledged that two pathological processes

are involved in P-ALI, including primary lung injury (direct

injury to the lung air-blood barrier) and secondary lung injury
FIGURE 1

Pathological processes involved in phosgene-induced acute lung injury. Two pathological processes are involved: Immediate injury: Phosgene
exposure damages the lungs, leading to necrosis of club cells and ciliated epithelial cells that cover the trachea, bronchus, and alveoli. Delayed
injury: Uncontrolled inflammatory responses result in a cytokine storm, which leads to a cascade-like inflammatory reaction, secondary
biological attack, and further aggravation of the epithelial-endothelial barrier (created with BioRender.com).
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(consequential inflammatory reactions) (41) (Figure 1). In the

early stage of inhalation, phosgene-induced acylation of

surfactants leads to surfactant depletion and exhaustion.

Phosgene then reacts with the proteins, lipids, and nucleic

acids in the alveolar tissue, thereby increasing alveolar surface

tension and resulting in atelectasis (42). This eventually damages

endothelial, epithelial, and innate immune cells, causing

inflammation and epithelial-endothelial barrier dysfunction

(42, 43). In the late stage, the disease progresses to refractory

hypoxemia, pulmonary inflammatory infiltration, diffuse

hemorrhage, and edema. The uncontrolled inflammatory

reaction eventually leads to inflammatory waterfall-like

changes in the lungs, resulting in ARDS (44, 45). In addition,

phosgene can cross the blood-gas barrier and enter the capillary

circulation, subsequently damaging red blood cells (RBCs).

Increased fragility of RBCs, oxidative damage to RBC

membranes, injury to plasma plasmalogens, and the onset of

delayed but severe lung injury have been observed in mouse

models of P-ALI (43).
Cellular and molecular mechanisms
of P-ALI

The precise cellular and molecular mechanisms underlying

P-ALI are complex processes that have yet to be fully elucidated.

In this regard, various cell types contribute to the occurrence

and/or progression of P-ALI, including immune cells, epithelial

cells, endothelial cells, and pulmonary neurons (Figure 2).
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Damage to the epithelial–endothelial
barrier

The biophysical structure of the host pulmonary defense

response is intrinsically related to the ability of alveolar epithelial

and capillary endothelial cells to form a barrier (referred to as the

epithelial–endothelial barrier), which helps to regulate the

immune response and protects the lungs against injuries and

infections. Inhalation of phosgene leads to lesions of the

pulmonary alveolus–capillary membrane (epithelial–

endothelial barrier), which increases permeability to liquids

and solutes, causing aggregation of liquid in the pulmonary

alveoli and interstitium. This results in severe hypoxemia with

key pathological and physiological changes such as osmotic

pulmonary edema (27). The incipient pathogenesis of

phosgene-induced ALI/ARDS commences with the loss of

surfactant function, which is induced by a direct chemical

reaction between surfactants and phosphine (46), especially in

epithelial and endothelial cells. Phosgene can also react with

water in the lungs to form hydrochloric acid and carbon dioxide

or undergo acylation reactions, or with amino (-NH2), hydroxyl

(-OH) and sulfhydryl (-SH) groups in acylation reactions. These

chemical processes produce chloride derivatives that can react

with proteins in the pulmonary alveoli and disrupt the blood-air

barrier, leading to ALI or ARDS (7).

These disorders are characterized by endothelial and

epithelial cell damage, surfactant dysfunction, loss of alveolar

epithelial barrier integrity, and destruction of epithelial tight

junctions. Upon phosgene inhalation, chemical processes

produce large amounts of nucleophilic, highly reactive
FIGURE 2

The mechanisms of phosgene-induced acute lung injury. Damage to the epithelial–endothelial barrier (upper layer), alteration of the immune
microenvironment (middle layer) and stimulation of pulmonary neurons (bottom layer) (created with BioRender.com).
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substances that infiltrate the alveoli, resulting in transient

destabilization of alveolar surfactant and abnormal tension

and collapse (47). This affects the function of immune cells,

particularly macrophages, such as immune surveillance, cellular

debris, and clearance of apoptosis after excessive surfactant

depletion, stimulating massive recruitment and apoptosis of

macrophages and neutrophils, and apoptotic immune cells

may be secondary to necrosis, which could exacerbate lung

injury. Furthermore, an imbalance in Starling forces composed

of the colloid oncotic pressure and the hydrostatic

hemodynamic pressure leads to partial infiltration of the lung’s

alveolar and interstitial spaces, resulting in hyperpermeable

(high surface tension) pulmonary edema (41, 48). Other

studies have suggested that the mechanism of phosgene injury

and increased vascular permeability is possibly caused by

oxidative damage, associated with oxidants and arachidonic

acid production (49). With increasing exposure time, leakage

of serofibrin fluid increases and fills the alveolar space and

extends into the bronchi and bronchioles and widens the

perivascular space (Figure 3). Collectively, these mechanisms

exacerbate alveolar epithelial permeability and lead to massive

pulmonary edema, pulmonary fibrosis, or even death in some

cases (50, 51). The most prominent histological changes are

observed in alveolar epithelial, capillary endothelial, and

adjacent interstitial tissues (27, 52) (Figure 4). Proteomic

analysis and transmission electron microscopy have revealed

that phosgene inhalation causes global proteomic modulations

and marked ultrastructural changes in both alveolar epithelial

cells (53) and capillary endothelial cells (54) in co-

culture systems.

Moreover, a high concentration of phosgene can penetrate

the lung surface and enter the active layers of the alveoli to

deplete glutathione, leading to increased production of ROS,

which can diffuse into the tissue layers and damage deeper cells

(44). In summary, phosgene toxicity in human alveolar epithelial

and capillary endothelial cells can elicit a significant immune
Frontiers in Immunology 05
response and lead to clinical disorders, causing immediate

symptoms in the early stages of P-ALI.
Alteration of the immune
microenvironment

After the initial phosphine-mediated damage, there is a large

influx of inflammatory cells into the lungs, which may

exacerbate the damage (55), especially after the impairment of

the epithelial-endothelial barrier. P-ALI is a life-threatening

syndrome characterized by an explosive cascade of

inflammation in the lungs. Under these conditions,

interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a)
levels are several times higher after phosgene inhalation than

under normal physiological conditions (56). Other

inflammatory factors such as IL-4, IL-6, IL-8, and IL-10 are

also involved in cellular events and play essential roles in

phosgene-induced pulmonary injury. In previous studies, we

examined alterations in pro- and anti-inflammatory cytokines

and observed that decreasing inflammatory cytokine production

and neutrophil accumulation reduced phosgene-induced ALI

pathogenesis (52, 57). Of note, TNF-ɑ, IL-6 and IL-1b in both

the serum and BALF were significantly upregulated, while anti-

inflammatory cytokine IL-4 was decreased in P-ALI, which

indicated these above inflammatory factors may play a key

role in the pathology of P-ALI (56). In summary, anti-

inflammatory treatment may represent a novel therapeutic

modality for phosgene-induced ALI.

In the early stages of lung injury, extensive changes in

immune cel ls al ter the regulat ion of the immune

microenvironment. Some phagocytic cells, such as heterophil

granulocytes, accumulate and release toxic products, including

oxyradicals (58). These toxic products, released by necrotic tissue

and polymorphonuclear cells, can cause bronchoconstriction and

exacerbate hypoxia. In a model of phosgene-induced lung injury,
FIGURE 3

Putative mechanism of the endothelial-epithelial barrier damaged in phosgene-induced acute lung injury (created with BioRender.com).
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mechanisms of innate immune defense, such as the formation of

neutrophil extracellular traps and histone release, can lead tomore

severe alveolar injury. The alteration of the immune system also

generates ROS, leukocyte proteases, chemokines, and cytokines,

which are effective against pathogens but may worsen the alveolar

injury. These indicate that alterations in the immune environment

may affect the process or prognosis of P-ALI or ARDS.

Collectively, these findings suggest that anti-inflammatory

therapy may be considered a therapeutic approach for the

treatment of P-ALI.
Stimulation of pulmonary neurons

Pulmonary neurogenic inflammation occurs when pulmonary

neurons release inflammatory substances. Neurogenic pulmonary

edema has been confirmed as a key causative factor of P-ALI.

Following exposure, nociception and protection are achieved by

activating afferent nerve fibers innervating the whistling tract.

Sensory nerve endings are widely distributed on these afferent

nerve fibers at all levels of the airway wall. Rothlin recognized

that phosgene-induced pulmonary edema is caused by a reflex-

mediated vascular response and was the first to hypothesize vagal

neurogenic pathogenesis for such edema (59). Vagal C-fibers

constitute the majority of vagal afferents innervating the lower

respiratory tract (60). Under sufficient concentrations, phosgene

can penetrate the tissue layer and stimulate pulmonary neurons,
Frontiers in Immunology 06
which subsequently react with key cellular components of epithelial

and endothelial cells. Phosgene can directly or indirectly stimulate

Ca2+ channels in pulmonary neurons, contributing to cell

depolarization and neurotransmitter release, leading to vascular

smooth muscle cell constriction and early phosgene-induced

vasoconstriction. Concurrent with neuronal stimulation,

phosgene-induced ROS form potent mediators (leukotriene,

angiotensinogen and endothelin-1) that stimulate epithelial and

endothelial cells to induce and release vascular tension and vascular

permeability, promoting both short- and long-term microvascular

contraction (4). This leads to increased capillary pressure,

hydrostatic stress, and fulminant pulmonary edema. Neuronal-

induced changes often precede pathological changes in studies of

pulmonary edema. Inhalation exposure to phosgene can result in

typical pulmonary vagal C-fiber stimulation symptoms, such as

apnea, bradycardia, or cholinergic symptoms (46, 61). Therefore,

the mechanisms of phosgene-induced pulmonary responses (i.e.,

vasoconstriction) may be mediated by neurogenic stimulation.
Treatment

Despite the widespread industrial use of phosgene, there are

currently no FDA-licensed therapeutics or evidence-based

treatment guidelines for managing exposed individuals (4, 29,

62). At present, the therapeutic approach to P-ALI focuses on

ameliorating clinical symptoms, including oxygen therapy,
A B

FIGURE 4

Rat lung tissues were compared to assess the difference between (A) healthy and (B) phosgene-induced acute lung injury after 24 hours of
exposure. Rats were euthanized under ether anesthesia, and lung tissue from each experimental group was processed for histopathological
evaluation (×100).
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mechanical ventilation, aggressive pulmonary toilets, and

avoidance of circulatory volume overload. Current treatments

only improve lung ventilation but cannot improve or reverse

pathological processes or lung injury. Although multiple studies

have employed animal models, identifying active prevention

strategies during the early stages of exposure is essential.
Oxygen inhalation and mechanical
ventilation therapy

The main life-threatening factors associated with phosgene-

induced ALI and ARDS are oxygen deficiency and asphyxia.

Oxygen therapy improved pulmonary pathology when

administered at any concentration and time delay and was

therefore extensively promoted as a supportive treatment in

the early days of P-ALI, especially during World War I (63).

However, growing evidence suggests that increasing oxygen

exposure in tissues above normal levels may lead to the

production of detrimental ROS, which may be more harmful,

especially in the early asymptomatic phase of phosgene

poisoning (64). Therefore, multiple studies have focused on

different oxygen-delivery protocols.

Currently, it is well accepted that chronic high-flow oxygen

damages the lungs. Reduced inhaled oxygen for short periods

(up to 24 h) following ALI may contribute to further

physiological deterioration, thereby increasing pulmonary

edema, reducing arterial oxygenation, and worsening survival.

However, it is recommended to delay inhalation of oxygen for P-

ALI until signs or symptoms of hypoxia or a decrease in arterial

oxygenation occur. In this regard, the minimum oxygen

concentration that maintains normal arterial oxygen saturation

without leading to clinical signs of hypoxia is considered

beneficial (21). Intravenous infusion of a hyper-oxygenated

solution has been reported to attenuate ALI by ameliorating

the formation of lung edema, lipid peroxidation, and hypoxemia

associated with phosgenismus, thereby highlighting a novel

protective strategy against ALI (65).

Other measures, such as increasing the fractional

concentration of inspired oxygen (FiO2), using positive end-

expiratory pressure (PEEP), or physical rest, have been suggested

as treatments for chemically induced ALI and ARDS (66).

Parkhouse et al. reported improved survival using protective

ventilation strategies incorporating PEEP following phosgene

exposure. This approach may improve arterial oxygenation in

pulmonary edema by recruiting alveoli, redistributing lung fluid,

and opening and stabilizing atelectatic alveoli (67). Another

study reported that ambient air continuous positive airway

pressure (CPAP) support could improve survival and

ameliorate clinically relevant physiological changes associated

with P-ALI (e.g., changes in arterial oxygenation and respiratory
Frontiers in Immunology 07
rate) (22). Although these tools cannot alleviate the progression

of lung injury, mechanical ventilation plays an indispensable role

in the supportive treatment of P-ALI.

Clinicians should avoid unreasonable or common

symptomatic treatments that may accelerate P-ALI progression.

Preventative and individualized treatment strategies addressing

feedback circulation and mechanical ventilation based on lung

function should be prioritized, along with conservative

fluid management.
Pharmacological treatments

Multiple approaches for drug-related interventions have

been explored in experimental research, most of which involve

anti-inflammatory and sympathomimetics. Nevertheless, almost

none of these treatments have been implemented clinically (5,

68, 69). Following initial phosgene-mediated lung damage,

inflammatory cells rapidly enter the lungs, which may

aggravate lung damage (70). Therefore, many guidelines

suggest that glucocorticoids should be administered as an

indispensable anti-inflammatory treatment. Glucocorticoids

are widely used in managing ALI due to their rapid and

powerful (but nonspecific) anti-inflammatory effects. However,

the use of glucocorticoids in phosgene-poisoning treatment

remains controversial. It is generally concluded that short-

term administration may effectively alleviate damage to the

lung endothel ium and promote the absorpt ion of

glucocorticoids in pulmonary edema. These anti-inflammatory

effects may be exerted via several mechanisms, such as inhibiting

the release of inflammatory cytokines, neutrophil activation,

reducing capillary permeability, and promoting the alveolar

macrophage differentiation into the M2 phenotype (44).

However, given the scope of usage, the adverse effects and side

effects of long-term application should be considered. Moreover,

these approaches have even been reported to be ineffective for P-

ALI (71, 72). Exploratory preclinical evidence has identified

other novel pharmaceutical approaches for preventing P-ALI,

such as neuro-regulators, calcium regulators, antioxidants, and

endothelin receptor antagonists (7, 57, 73–85), which warrant

further investigation (Table 1). To some extent, these studies

have positively affected treatment, which provided new

perspectives for a deeper understanding of P-ALI pathogenesis.

Inflammation and oxidative stress are key mechanisms

underscoring sublethal phosgene injury. Most pharmacological

treatments focus on anti-inflammatory or antioxidant therapy;

therefore, exploring positive prevention strategies in the early

stages of exposure is advisable. Although all positive data have

traditionally been based on hypothetical pathways clarified by

rodent in vivo studies, these studies provide novel perspectives

for clinical application.
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Mesenchymal Stem Cells (MSCs)

MSCs are non-hematopoietic stem cells with multipotent

differentiation potential in the bone marrow. As a type of

heterogeneous pluripotent progenitor cell, MSCs possess

strong immunoregulatory abilities and aid in the maintenance

and regeneration of various cell types by differentiating into

multiple lineages of mesenchymal tissues. Therefore, MSCs have

been introduced as a potential treatment for ALI and other

pneumonia-associated diseases (86, 87). MSCs redistribute to

inflammatory tissues and organs (88, 89) and play a protective

role by targeting the lesion location, adopting an epithelium-like

phenotype, and alleviating inflammation and collagen

deposition during ALI and ARDS (90, 91). In addition to

immunomodulatory effects, MSCs also differentiate into

pulmonary epithelial cells and endothelial cells, which function

in the repair of the blood barrier and blood gas recovery (92).

In 2015, our research team was the first to verify the

therapeutic effects of MSCs in P-ALI. Mechanistically, this

process is involved in pulmonary air-blood barrier repair and

regulating inflammatory reactions (93). Further studies have

confirmed the related mechanisms of action from various

aspects, including regulation of the proliferation and

differentiation of lung epithelial cells and endogenous lung stem

cells (56) and repair via the proliferation of endogenous lung stem
Frontiers in Immunology 08
cells (94). Althoughmost studies focusing on experimental models

have demonstrated their validity, MSCs provide strong prospects

for treating P-ALI (6, 52, 53, 94–98) (Table 2). MSC-based therapy

has been widely used in the clinical treatment stage of ARDS and

has also achieved very good effects, and it is expected to be studied

in the P-ALI clinic in the near future.

Several issues limit the widespread use of MSCs in clinical

practice. The low homing efficiency of intravenous MSCs is an

obvious problem (99), and the survival rate of MSCs after

entering the body should be considered. In addition, MSC

injection has been associated with a high risk of thrombosis

and embolism (100), and separation and purification technology

are currently unable to satisfy the requirements of large-scale

clinical application (101). Collectively, these factors hinder the

transformation from experimental research to clinical practice.

It is important to note that the P-ALI treatment is focused on

reducing direct damage to the trachea, bronchi, and alveoli from

irritating gases in the early stages of the disease. With the

progression, the therapeutic direction should be focused on

ameliorating inflammatory response, regulating immune

microenvironment and damaged tissue repair. Thus, MSC-

based treatment offers very promising therapeutic prospects

for improved targeted therapies. Future preclinical and clinical

trials are essential to evaluate and optimize therapies to best

address the ongoing challenges in translational MSCs research.
TABLE 1 Summary of the effects and mechanisms of pharmacological-mediated therapy the treatment of P-ALI.

Medication Mechanism of action Route Species Refs.

NOS-2 Inhibitors Preserved epithelial integrity by attenuating the reduction in ZO-1 expression and augmenting
expression of SP-B.

Aerosolized
inhalation

Mouse 7

NLRP3 Inhibiting NLRP3 inflammasome activation and pro-inflammatory factors. Intravenous injection Rat 73

Angiopoietin-1 Attenuation of inflammatory response. Intravenous injection Rat 57, 74,
75

Melatonin with
Ulinastatin

Improved pulmonary edema and attenuated pulmonary inflammation via Wnt/b-catenin pathway. Intraperitoneal
injection

Rat 76

Ulinastatin Decreased the infiltration of blood cells and reduces inflammatory cytokines. Intraperitoneal
injection

Rat 77

N-Acetylcysteine Protected against oxidative stress through acting on Nrf2/GR/GSH pathway. Intraperitoneal
injection

Rat 78

Pentoxifylline Inhibited ICAM-1 differential expression and improved inflammation. Intraperitoneal
injection

Rat 79

CAPE Antioxidant and anti-inflammatory function via blocking translocation of NF-kB p65 to nucleus. Intraperitoneal
injection

Rat 80

Aminophylline Decreased pulmonary capillary permeability and attenuated lipid peroxidation. Intravenous injection Rabbit 81

IBU with PTX Alleviated pulmonary edema and decreased inflammatory responses . Intraperitoneal
injection

Rat 82

DBcAMP Alleviated pulmonary endothelial or epithelial cell contraction via antioxidant effect. Intratracheal
injection

Rabbit 83

nPG with Vitamin E Decreasing lipid peroxidation and increasing lung tissue glutathione. Oral Mouse 84

Colchicine Improved respiratory function by diminishing the incursion of inflammatory cells. Intraperitoneal
injection

Rat 85
frontie
NOS-2, nitric oxide synthase 2; NLRP3, NOD-like receptor protein 3; CAPE, caffeic acid phenethyl ester; IBU, ibuprofen; PTX, pentoxifylline; DBcAMP, post-treatment with dibutyryl
cAMP; nPG, n-propyl gallate.
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Conclusions

Phosgene is a widely used but dangerous chemical product that

can cause serious lung injury, resulting in immediate toxic effects

and incapacitation after unexpected exposure. Nevertheless, the

toxicity of phosgene remains understudied, and its mechanisms of

action remain obscure. To explore new therapeutic approaches and

identify approved drugs that can be harnessed to treat P-ALI, a

deeper understanding of the mechanisms of injury, including those

at the cellular level, is required. More in-depth research is warranted

to understand better the underlying mechanisms that will provide

survival benefits and can be extrapolated to humans. Despite

considerable progress, a single therapeutic seems unlikely to be

sufficient for improving the various direct and secondary toxic

effects of phosgene inhalation.
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TABLE 2 Summary of MSCs-mediated therapy used in vivo in the treatment of P-ALI.

Therapeutic approach Outcomes Mechanism Refs.

MSC-derived exosomes, intratracheally
injection

Adjusted indexes of respiratory function; Ameliorated respiratory function through suppressing matrix
metalloproteinase-9 synthesis, and improving synthesis of SP-C.

6

Reduced TNF-a, IL-1b and IL-6, but increased IL-
10.

Exogenous MSCs, intravenous
treatments

Reduced epithelial permeability and disruption of
tight junction protein in phosgene-exposed lung.

Homed to sites of lung injury, reduced epithelial permeability
likely by blocking wnt3/b-catenin signaling.

52

MSCs transfected with CXCR7, via tail
vein

Improved pulmonary histopathology and repaired
tissue;

Promoted differentiation into AT II cells and alleviated the 53

Attenuated pulmonary inflammation. lung inflammation more effectively.

Exogenous MSCs, intraperitoneally
injected

Enhanced the proliferation of club cells, promoted
lung injury repair.

Enhanced the proliferation of club cells partly via activating
Notch signaling pathway.

94

MSCs over-expression of heat shock
protein (HSP) 70, trachea
administration

Regulated MSCs antiapoptotic and migration
ability;

Enhanced MSCs viability through the PI3k/AKT mediated
signaling pathway.

95

Reduced TNF-a, up-regulated IL-10.

MSCs transfected with miRNA-378a-5p,
tracheal infusion

More effective by repairing alveolar epithelial cells; Restored respiratory indexes and regulated pro- and anti-
inflammatory response.

96

Improving permeability of vascular endothelial cells
compared with MSCs alone.

Angiopoietin-1 infected into MSCs, via
tail vein

Increased level of epithelial cell marker in lung
tissues;

Angiopoietin-1 facilitated homing of MSCs to injure and repaired
epithelial tissue.

97

Regulated pro- and anti-inflammatory response.

MSCs transfected with HSP 60, tracheal
infusion

Alleviated pulmonary edema, regulated
inflammatory responses and immune
microenvironment.

Enhanced the ability of proliferation, anti-apoptosis, migration
and the curative effect of MSCs.

98
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MSC, mesenchymal stem cell; HSP, heat shock protein; TNF, tumor necrosis factor; IL, interleukin.
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