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Measurements of population activity in alert animals have demonstrated that the intrinsic
response state of the cortex has profound effects on the neuronal representation of
sensory inputs, raising the possibility that cortical state could influence the behavioral
performance in perceptual learning (PL). PL is a process by which sensory experience
leads to gradual and semi-permanent improvements in perceptual judgment, and it is
generally agreed that these improvements are modulated by sensory cortical areas.
Although the precise neural mechanisms underlying the improved perceptual judgment
remain unclear, cortical state has been shown to impact the behavioral outcome of PL.
We discuss several ways in which cortical state might influence PL based on the recent
evidence for state-dependent modulation of sensory encoding. Conversely, training in a
certain perceptual task feeds back to modulate cortical state, suggesting a bi-directional
relationship between cortical state and behavioral outcomes of PL. We highlight the
recent studies that shed light on the mechanism of the interplay between cortical state
and PL.
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INTRODUCTION

Cortical state classically refers to the dynamics of neuronal population activity in a cortical
network (Harris and Thiele, 2011). Transitions of cortical states have been typically described
as changes of spontaneous ongoing network activity. Early studies using electroencephalogram
(EEG) and local field potential (LFP) recordings have revealed two fundamental states that exist
in the neocortex: a synchronized state characterized by large-amplitude, low-frequency (0.2–
10 Hz) spontaneous fluctuations between the up and down phases, and a desynchronized state
characterized by small-amplitude, high-frequency (25–100 Hz) fluctuations whereby neighboring
neurons spike more independently (Steriade et al., 2001). Conventionally, the synchronized state
has been associated with sleeping or anesthetized brain, and the desynchronized state with alert
brain (Steriade et al., 2001). The transition between these two activity states plays a central role in
modulating sensory-evoked population activity in the cortex. Recent studies in head-fixed awake
rodents have demonstrated that waking state actually consists of distinct “substates,” including a
state similar to the synchronized state usually observed during sleep (Figure 1; Poulet and Petersen,
2008; Sachidhanandam et al., 2013; Reimer et al., 2014; Tan et al., 2014; McGinley et al., 2015a,b;
Vinck et al., 2015). These substates exhibit rapid and spontaneous transitions, which reflect global
fluctuation in the levels of arousal and movement, and have a major impact on sensory processing
and behavioral performance. Another line of investigation has been focused on the local changes
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FIGURE 1 | Global and local substates of wakefulness. Sleep and
wakefulness are the two fundamental cortical states. Recent studies have
revealed that, even during wakefulness, the cortical state exhibits transitions
between different sub-states characterized as different levels of arousal
(Gervasoni et al., 2004; Harris and Thiele, 2011; McGinley et al., 2015b).
Substate transitions may occur globally or within specific areas depending on
behavioral demands. A hallmark of a globally aroused state such as
locomotion is cortical desynchronization. Selective attention leads to a local
state transition, which manifests as the desynchronization in cortical areas
responsive to the attended stimuli. Therefore, both global and local state
transitions appear to use similar mechanisms. Advances in recording
techniques and behavioral approaches will provide an increasingly more
elaborate taxonomy of cortical state.

in cortical states during tasks that involve selective attention,
studied in non-human primates (Desimone and Duncan, 1995;
Fries et al., 2001; Cohen and Maunsell, 2009; Gregoriou et al.,
2009; Mitchell et al., 2009; Chalk et al., 2010). Shifts in local
cortical state during selective attention appear to have similar
effects on sensory encoding to those elicited by the global state
changes. Both selective attention and global arousal enhance the
representation of sensory information by increasing evoked firing
rate, decreasing response variability and reducing correlated
noise (Luck et al., 1997; Cohen and Maunsell, 2009; Mitchell et al.,
2009; Reimer et al., 2014; Vinck et al., 2015).This suggests that the
effects of both global and local state transitions might be mediated
by overlapping mechanisms.

How these cortical states are orchestrated to modulate neural
and behavioral plasticity during learning is a fundamental
question in neuroscience. Recent findings of functional MRI
(fMRI) studies in human subjects show that cortical state,
measured as the resting state network activity of the brain has
a significant impact on the performance in perceptual learning
(PL) (Baldassarre et al., 2012; Freyer et al., 2013). Here, we review
how cortical state has been defined in the latest studies, highlight
ways in which cortical state may influence PL and vice-versa,
and discuss an integrative framework that could guide future
investigation.

DEFINITIONS OF CORTICAL STATE IN
THE AWAKE BRAIN

Cortical state has been defined operationally on different spatial
scales (from a specific area to the entire cortex) and temporal
scales (tens of milliseconds to seconds) even in the awake brain.

At the neuronal level, shifts in cortical state manifest as a
transition between up (depolarized) and down (hyperpolarized)
phases of membrane potential, which arises from fluctuations
in the synaptic input. Cortical state has also been defined
based on population-level fluctuations in synchrony or the LFP
power during spontaneous activity (Harris and Thiele, 2011).
Simultaneous measurements of membrane potential, LFP and
behavioral state (e.g., movement, muscle tone, pupil diameter)
in head-fixed mice have revealed that neuronal and brain-wide
state fluctuations are generally correlated and that pupil dilation
is indicative of desynchronized or “aroused” state (Reimer et al.,
2014; McGinley et al., 2015a; Vinck et al., 2015). Cortical state
monitored in these studies is associated with fluctuations in
the global behavioral state such as arousal and locomotion. In
studies that used ensemble spiking activity recording, cortical
state has been defined based on fluctuations of the synchrony
(Luczak et al., 2013; Pachitariu et al., 2015; Scholvinck et al.,
2015) and the strength (Arandia-Romero et al., 2016; Engel
et al., 2016; Beaman et al., 2017; Gutnisky et al., 2017) of
population activity in a local cortical area. Attempts have been
made to correlate trial-to-trial fluctuation of spontaneous and
evoked population activity to sensory encoding and behavioral
responses. This line of work shows that cortical state can
exhibit rapid trial-to-trial shifts, modulate sensory encoding
and impact perceptual behavior (Arandia-Romero et al., 2016;
Engel et al., 2016; Beaman et al., 2017; Gutnisky et al., 2017).
Despite the differences in experimental settings and ways in
which cortical state was defined (e.g., synchrony-based vs.
strength-based definitions), these studies agree on a general
point: certain patterns of ongoing network activity reflecting
a cortical state enhance sensory encoding, and transitions in
cortical state correlate well with fluctuations in encoded sensory
information and the behavioral report. Thus, cortical response
is not exclusively determined by external stimulus but by the
interaction between the sensory stimulus and internal state
reflected in the spontaneous population activity. How does
cortical state impact learning? Here, we will attempt to answer
this question by focusing on PL, in which sensory cortex has been
shown to play an important role (Caras and Sanes, 2017).

CORTICAL STATE AND PERCEPTUAL
LEARNING

Perceptual learning is a form of implicit learning and distinct
from declarative learning that requires the use of the medial
temporal lobe (Gilbert and Sigman, 2007; Watanabe and
Sasaki, 2015). PL is characterized by a gradual, long-term
improvement in perceptual judgement. Neural plasticity
mechanisms associated with PL are thought to be specific to the
trained stimulus and task. However, recent studies demonstrated
that perceptual improvement in one task can transfer to other
tasks (Xiao et al., 2008; Zhang et al., 2010). Therefore it is
still under debate whether and under what circumstances PL
generalizes to other tasks and sensory features. Many studies
have reported cortical changes associated with PL, including
prominent map expansion, increases in receptive field size,
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sharpening and amplification of tuning curves to the trained
feature and reduction of correlated variability among neurons
in early sensory cortex (Recanzone et al., 1993; Schoups et al.,
2001; Ni et al., 2018). However, these changes are not always
observed in early sensory cortex (Ghose et al., 2002) but rather
in the intermediate sensory cortex or the sensory-motor area
(Yang and Maunsell, 2004; Law and Gold, 2008) and do not
necessarily correlate with performance improvement. Moreover,
the involvement of early sensory cortex in itself does not explain
the context-specificity of PL. Performance improvement within
one task does not transfer to another task that uses the same set
of stimuli in a different context, suggesting that the outcome of
PL is under “top-down” influence (Ahissar and Hochstein, 1993;
Gilbert and Sigman, 2007).

Neural mechanisms that underlie behavioral improvement
associated with PL remain undefined. Depending on the task
design, species and sensory modality, different mechanisms
have been put forward. In tasks that require discrimination
or detection of primary features of stimulus, the performance
improvement has been associated with enhanced representation
of the relevant features. On the other hand, tasks that are based
on emergent properties of cortex such as context-specific sensory
coding, remarkable changes in the top-down influence have been
observed while the neural plasticity at the level of individual
sensory neurons appeared to be modest (Crist et al., 2001).
Another potential mechanism for the neural plasticity during PL
involves reweighting connections between sensory and decision
cortical areas via trial-by-trial feedback signals (Dosher and Lu,
1998; Seitz and Watanabe, 2005; Law and Gold, 2009). This leads
to an improved “read-out” of sensory evidence by a decision unit
and a reduced internal noise (Dosher and Lu, 1998). A similar
model applied to feedforward connections between thalamus
and early sensory cortex also captures behavioral improvements
during PL (Bejjanki et al., 2011). Therefore cortical state may
impact PL via enhancing the representation of task-relevant
sensory input, improving context-dependent recruitment of
relevant circuits and reducing internal noise. In the following
section, we will discuss the impact of cortical state on sensory
encoding as a potential mechanism for PL. Importantly cortical
state is subject to various forms of modulation. We will review
the evidence supporting that top-down feedback signals from
“higher” cortical areas modulate cortical state and how such
modulation might occur during PL (Gilbert and Sigman, 2007;
Law and Gold, 2009).

THE IMPACT OF CORTICAL STATE ON
STIMULUS ENCODING

An intuitive way by which cortical state might affect PL is
through modulating neural activity in the cortical area that
encodes task-relevant features. Typical PL involves training
subjects to discriminate perceptually demanding stimuli that are
repeatedly presented for extended periods of time. Neuronal
responses to repetitive sensory stimuli are not static but
dynamically modulated by the ongoing spontaneous activity.
Recent studies using population recording techniques have

revealed that spontaneous activity is structured in spatial and
temporal domains. The amplitude and variability of sensory-
evoked responses are correlated with the intrinsic response state
in the sensory cortex to such an extent that the evoked responses
can be predicted from the pre-stimulus on-going activity (Curto
et al., 2009; Scholvinck et al., 2015). Stimulus statistics is
another factor that affects the internal cortical state during
the presentation of a sensory input. For example, unexpected
brief stimuli evoke robust responses regardless of cortical states,
although the response amplitude is smaller in desynchronized
states (Castro-Alamancos, 2004; Otazu et al., 2009). Responses
to stimuli with high repetition frequencies show a more complex
state-dependence. While the response to the first stimulus in a
train with a high repetition frequency is elevated in synchronized
states compared to desynchronized states, responses adapt more
strongly in a synchronized state (Castro-Alamancos, 2004).
These observations suggest that sensory stimuli presented with
repetition may lead to enhanced neuronal representation in a
desynchronized state. Across modalities, temporally extended
stimuli are more faithfully represented in desynchronized than
synchronized states, which might be beneficial for animals
with behavioral needs to analyze fine details of continuous
sensory inputs (Goard and Dan, 2009; Marguet and Harris,
2011).

State-dependent improvement in sensory encoding can be
observed at the population level. Network-level changes have
been measured recently using population recording techniques,
which demonstrated that the amount of sensory information
encoded in population activity was significantly higher in
desynchronized states (Pachitariu et al., 2015; Beaman et al.,
2017). A potential explanation for the improved population
decoding in these studies is a decrease in the correlated
variability among neuronal population during desynchronized
state. In vivo measurements in different cortical areas show
that the pairwise correlated variability is on average about 0.1–
0.2, although it can vary significantly depending on internal
cortical state (Cohen and Kohn, 2011; Ecker et al., 2014).
Recurrent network models of anatomically inspired connectivity
yield a similar value (Shadlen et al., 1996). This correlated
variability severely limits the amount of information encoded
by neuronal population as it cannot be removed by simply
pooling responses across neurons. Although the relationship
between cortical state and the correlated variability is still
under debate, many studies have observed that the correlated
variability is reduced in a desynchronized state, which would
lead to improved population coding (Pachitariu et al., 2015;
Scholvinck et al., 2015; Gutnisky et al., 2017). An elegant study
has revealed that the reduction in correlated variability is a
common mechanism for improved performance during PL and
attention, although these processes occur on different time scales
(Ni et al., 2018).

Circuit mechanisms by which state-dependent changes in
pairwise correlations are implemented during PL remain poorly
understood. Globally desynchronized states, such as arousal and
locomotion, enhance sensory-evoked responses and reduce the
correlated noise among neurons, leading to increases in encoded
sensory information. However, such global states do not explain
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the neural changes that occur locally within relevant brain
areas during some PL tasks. Moreover, it is unclear whether
desynchronization leads directly to decorrelation, because the
relationship between spiking synchrony and the correlated
variability is not straightforward. It is possible to have a
decorrelated cortical network with two highly synchronized
groups of neurons if the two populations cancel each other
out, as would be in the case of populations of excitatory and
inhibitory neurons (Harris and Thiele, 2011). Indeed, theoretical
models support that inhibition might play a critical role in
active decorrelation of cortical neurons (Renart et al., 2010;
Tetzlaff et al., 2012; Kanashiro et al., 2017). Long-range cortico-
cortical and neuromodulatory projections have been shown to
provide synaptic inputs to local inhibitory interneurons in target
sensory cortical areas (Letzkus et al., 2011; Lee et al., 2013; Pi
et al., 2013; Zhang et al., 2014). These interneurons are likely to
be recruited in PL, and may serve to mediate state-dependent
modulation of neuronal correlations during this learning process.
Accumulating experimental evidence supports the roles of the
interneurons in different forms of learning. Whether inhibitory
interneurons are indeed important for decorrelation of cortical
network over the course of PL is an important avenue for future
investigation.

MODULATION OF CORTICAL STATE BY
PERCEPTUAL LEARNING

As we explore our surroundings, we are constantly bombarded
with sensory stimuli. Depending on the behavioral context and
outcome, some sensory stimuli are filtered out while others are
registered for further processing, suggesting that cortical state
is not static but dynamically modulated by ongoing behavioral
demands. While, as discussed above, certain cortical states have
been shown to enhance sensory encoding and facilitate PL,
it is important to note that PL in turn modulates cortical
state in a context-specific manner. How does the brain assess
behavioral context and update cortical state accordingly? To
understand the context-dependent modulation of cortical state
during PL, it would be necessary to determine at what time
point in a trial such modulation occurs in relation to the
switching of the context. In a pioneering study, animals were
trained for two different visual PL tasks that involved the
same set of stimuli (Li et al., 2004). It is clear from this
work that when cued to the task to be performed before
the stimulus onset, the difference in the response arises at
the outset of the neurons’ responses, indicating that the top-
down information conveying the task instruction sets the
cortex to a state that then enables analysis of the stimulus
in a task-relevant fashion. In a recent study, the cortical
state defined by the population activity during a delay period
prior to the presentation of the test stimulus, switches to
a “low activity” mode, and this shift in state showed trial-
by-trial correlation with encoded sensory information and
behavioral performance in an orientation discrimination task
(Gutnisky et al., 2017). These studies suggest that signals
carrying information about behavioral outcome propagate back

to early sensory cortex, and that this “top-down” influence
(e.g., expectation or prediction) sets cortical state in preparation
for the ongoing behavioral demand. Studies using two-photon
calcium imaging have revealed diverse sources of long-range
projections to early sensory cortex, including those from
higher cortical areas, higher thalamic nuclei and amygdala,
which carry information about context, behavioral outcome and
physiologically relevant sensory cues (Makino and Komiyama,
2015; Burgess et al., 2016; Kwon et al., 2016; Roth et al.,
2016).

A widely studied instance of top-down influence is spatial
attention. In the majority of PL tasks that involve active
engagement of subjects, attention is required for behavioral
improvement. It is generally agreed that attention enhances
performance in perceptual tasks by increasing the neuronal
gain and reducing the correlated noise shared among similarly
tuned neurons, thereby leading to improved sensory coding
and enhanced performance (Cohen and Maunsell, 2009;
Rabinowitz et al., 2015). It has also been reported that
attention modulates network oscillation. Attention decreases
low frequency fluctuation while increasing the fluctuation at
gamma frequencies (25–100 Hz) in task-relevant brain areas,
reflecting local cortical desynchronization (Fries et al., 2001;
Gregoriou et al., 2009; Mitchell et al., 2009). A recent study
investigated changes in synchronous spiking in a visual cortex
during a visual task that required spatial attention (Engel et al.,
2016). By modeling the transition between vigorous and faint
spiking states, this study demonstrated that the impacts of
spatial attention on firing rate and the transition dynamics
can be separated. Importantly, the local modulation of the
state transition predicted the behavioral performance in the
task.

These observations suggest that various forms of the
top-down influence set cortical state into a mode that
enables efficient sensory processing and perceptual improvement
through desynchronizing cortical network and reducing the
correlated variability. As a potential mechanism of top-down
influence, enhanced selective attention during PL modulates
cortical state such that population coding of relevant sensory
input is improved, which leads to behavioral improvements
(Byers and Serences, 2014; Ni et al., 2018). In addition to
this “permissive” role, it is possible that some cortical states
may play a causal role by actively mediating or driving the
neural plasticity underlying PL. Theoretical works suggest that
shifts in network oscillations such as the increase in gamma
power might organize neurons into a cell assembly that is
capable of registering and evaluating sensory inputs during an
ongoing task (Borgers et al., 2008). The increase in gamma
power has been shown to correlate with enhanced coupling
between cortical areas during attention (Gregoriou et al., 2009).
Therefore, it still remains to be determined whether cortical
state plays a direct causal role or merely allows performance
improvements during PL. In order to establish the necessity
of a certain cortical state for behavioral outcome of PL, one
needs to manipulate cortical state in behaving subjects and
test its effect on sensory encoding and performance during PL.
This is an important area of ongoing and future investigation.
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FUTURE OUTLOOK

A tremendous progress has been made in our understanding of
cortical state and how cortical state and PL impact each other.
However, there are important gaps to be filled. While recent
studies have revealed fine spatiotemporal structures in cortical
state, it remains poorly understood how neurons of different
cell-types orchestrate their activity during shifts in cortical state.
As discussed above, inhibitory interneurons are thought to be
important effectors during cortical state changes. In addition,
excitatory neurons in the neocortex have specific projection
targets. How are neurons of different cell-types, defined by
neurotransmitter and projection patterns, involved in cortical
state changes? To fill this important gap, experimental efforts
need to be made to measure cell type-specific activity patterns
during cortical state transitions.

Many labs have demonstrated a tight correlation between
cortical state and sensory processing during various perceptual
tasks. More attempts need to be made to establish a causal
relationship between changes in cortical state and behavioral
changes during PL. Optogenetic manipulation to add or suppress
activity during a certain cortical state in behaving animals would
be a powerful approach to test the causality of cortical state for
sensory processing and perception on a trial-by-trial basis.

It is important to note that PL involves plasticity in several
different brain areas. Although it is debatable which brain area(s)
causes perceptual improvement, interaction between different
cortical areas is likely to be critical for PL. Therefore, studies
examining the impact of cortical state on PL and vice versa
should consider the long-range pathways that connect different
cortical areas. To this end, genetic tools for directly manipulating
specific long-range pathways may be combined with recording
of cortical state during perceptual tasks. Advances in multi-
areal, single-neuron imaging in behaving animals would allow
us to define how cortical state transitions are coordinated across
brain areas and whether a specific coordination is important
for PL.
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