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Exponentially-enhanced quantum sensing with
non-Hermitian lattice dynamics
Alexander McDonald 1,2✉ & Aashish A. Clerk1

Non-Hermitian systems exhibit markedly different phenomena than their conventional Her-

mitian counterparts. Several such features, such as the non-Hermitian skin effect, are only

present in spatially extended systems. Potential applications of these effects in many-mode

systems however remains largely unexplored. Here, we study how unique features of non-

Hermitian lattice systems can be harnessed to improve Hamiltonian parameter estimation in

a fully quantum setting. While the quintessential non-Hermitian skin effect does not provide

any distinct advantage, alternate effects yield dramatic enhancements. We show that certain

asymmetric non-Hermitian tight-binding models with a Z2 symmetry yield a pronounced

sensing advantage: the quantum Fisher information per photon increases exponentially with

system size. We find that these advantages persist in regimes where non-Markovian and

non-perturbative effects become important. Our setup is directly compatible with a variety of

quantum optical and superconducting circuit platforms, and already yields strong enhance-

ments with as few as three lattice sites.

https://doi.org/10.1038/s41467-020-19090-4 OPEN

1 Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 2Department of Physics, University of Chicago, Chicago, IL 60637,
USA. ✉email: alexmcdonald@uchicago.edu

NATURE COMMUNICATIONS |         (2020) 11:5382 | https://doi.org/10.1038/s41467-020-19090-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19090-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19090-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19090-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19090-4&domain=pdf
http://orcid.org/0000-0002-7257-5853
http://orcid.org/0000-0002-7257-5853
http://orcid.org/0000-0002-7257-5853
http://orcid.org/0000-0002-7257-5853
http://orcid.org/0000-0002-7257-5853
mailto:alexmcdonald@uchicago.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Quantum metrology and sensing aim to improve mea-
surement precision over classical devices by exploiting
uniquely quantum phenomena such as entanglement and

squeezing1–3. It is interesting to ask whether distinct effects
associated with non-Hermitian dynamics can also be used to
improve sensors operating in quantum regimes4–8. In purely
classical settings, mode degeneracies specific to non-Hermitian
systems (so-called exceptional points) have been suggested as a
means for enhanced parametric sensing9. Evidence for enhance-
ment has been demonstrated in several classical-domain experi-
ments involving small coupled mode systems (see e.g., refs. 10–13).
Theory suggests that particular kinds of non-Hermitian effects
could also be useful in truly quantum settings5.

To date, both theory and experiment have focused on non-
Hermitian sensing schemes that utilize at most a few coupled
modes. It is however well known that unusual new phenomena
appear when considering genuinely multi-mode non-Hermitian
dynamics. The paradigmatic example is the so-called “non-Her-
mitian skin effect”14–17, which occurs in several non-Hermitian
tight-binding models18–22. In these systems, all eigenvalues and
wavefunctions of the Hamiltonian exhibit a dramatic sensitivity
to a change of boundary conditions. This extreme sensitivity
would seem to be a potentially powerful resource for parametric
sensing23.

In this work, we show that non-Hermitian lattice dynamics
does indeed provide a unique means for constructing enhanced
sensors; moreover, this advantage persists even when operating in
truly quantum regimes. We study in detail Hamiltonian para-
meter estimation using a one-dimensional lattice model with
asymmetric tunneling (akin to the well-studied Hatano–Nelson
model24). We find, somewhat surprisingly, that the non-
Hermitian skin effect does not provide any advantage over
more traditional sensing protocols. Rather, we find another dis-
tinct non-Hermitian mechanism that enables a dramatic
enhancement of measurement sensitivity: the quantum Fisher
information per photon exhibits an exponential scaling with
system size. We find that the exponential enhancement of mea-
surement sensitivity persists even when considering limitations
associated with the finite propagation time of a large lattice. Even
for parameters large enough to invalidate a full linear response
analysis, we find that our scheme provides a strong advantage: it
achieves a square-root enhancement of the sensitivity (including
noise effects). As we discuss, the underlying mechanism makes
use of both non-reciprocity and an unusual kind of symmetry
breaking.

Results
Key features. While our ideas are general, our analysis focuses on
a system that uses parametric driving to realize non-Hermitian
dynamics; this has the strong advantage of not requiring any
external dissipation or post-selection17,25. Further, we ultimately
focus on dispersive sensing, where the parameter of interest shifts
the frequency of a resonant mode. This is a ubiquitous sensing
strategy, with applications ranging from superconducting qubit
measurement26 to virus detection27. Our proposal is also com-
patible with a number of different experimental platforms in
superconducting quantum circuits and quantum optics, and
ultimately requires one to make a standard homodyne measure-
ment. Finally, while our discussion focuses on large lattices, the
results we present are already interesting in a small system con-
sisting of just three coupled resonators.

Basic ingredients for a non-Hermitian lattice sensor. A key
feature that we will exploit in our new sensor is the dramatically
large and uni-directional response exhibited by certain non-

Hermitian lattice models: perturbing a single lattice site induces a
large change at one end of the chain, but not the other (see e.g.,
refs. 23,28). We start by providing a physically-transparent
explanation of this effect, based on interpreting non-Hermitian
asymmetry in tight-binding matrix elements as directional gain
and loss.

The simplest relevant system is the well-known Hatano–Nelson
model24,29. This is a 1D tight-binding chain with asymmetric
nearest-neighbour hoppings,
Ĥ ¼ iJ

P
nðeAjnþ 1ihnj � e�Ajnihnþ 1jÞ, where J, A are real

and nj i is a position eigenket. The corresponding single-particle
Schrödinger equation is (ℏ= 1 throughout)

_ψn ¼ JeAψn�1 � Je�Aψnþ1; ð1Þ

where ψn= 〈n∣ψ〉. While A formally plays the role of an imaginary
vector potential, it is more usefully thought of as an amplification
factor. Assuming A is positive for definiteness, Eq. (1) describes a
system where a wavefunction’s amplitude grows by eA every time a
particle hops one site to the right, and decays an equal amount e−A

as it travels to the left, regardless of its energy.
With this picture in mind, the form of the real-space

susceptibility (i.e., single particle Green’s function) χ(n, m; t) for
a finite open chain has an intuitive form. Letting
mðtÞj i ¼ e�iĤt mj i, a simple calculation yields (see “Methods”
section):

χðn;m; tÞ � hnjmðtÞi ¼ eAðn�mÞχ0ðn;m; tÞ: ð2Þ

Here, χ0(n, m; t) is the susceptibility matrix when A= 0, i.e., the
Green’s function of a Hermitian tight-binding chain. This quantity
is reciprocal, in the sense that χ0(n, m; t)= (−1)m−nχ0(m, n; t)
(i.e., apart from a phase, there is no asymmetry in rightwards
versus leftwards propagation). The Green’s function χ0(n, m; t)
both describes how particles propagate in the lattice, and also the
response properties of the system (i.e., if you perturb site m at t=
0, how does site n respond at some later time?).

The simple factorization in Eq. (2) makes it clear that there are
two basic processes determining the response. The first is a
distance and direction-dependent amplification/deamplification
factor, whereas the second encodes the dynamics of the
underlying (A= 0) Hermitian tight-binding model. We thus
have a simple intuitive picture for the susceptibility, without
having to make recourse to other seemingly more complicated
non-Hermitian features, such as exceptional points, the non-
Hermitian skin effect, or the Petermann factor30,31. Further,
interpreting non-reciprocity as directional amplification provides
a physical explanation as to why non-Hermitian Hamiltonian are
so sensitive to small perturbations16,18,32. Note that Eq. (2) can be
easily derived via a similarity transformation, which is analogous
to the gauge transformation one would make if A were imaginary
(and hence a real synthetic gauge field)24,29.

While non-Hermitian Hamiltonians are generically sensitive to
small parameter changes, to obtain a true sensing enhancement
requires the “right” kind of perturbation. To achieve this, we will
exploit a second basic ingredient in constructing our sensor:
symmetry breaking. The Hatano–Nelson chain breaks reciprocity
for any A ≠ 0; formally, it picks a preferred amplification
direction, and does not remain invariant (up to a local gauge
change) under a spatial inversion operation nj i ! �nj i. We can
trivially restore this symmetry by considering a system with two
uncoupled Hatano–Nelson chains indexed by σ= ↑, ↓ with
amplification factors A↑, A↓. If we pick A↑=− A↓, then the
composite system restores some of the lost symmetry. Formally,
the two-chain system is invariant up to a local gauge change
under the combined operations nj i ! �nj i (spatial inversion)
and σ ! �σ (pseudospin inversion). Physically, this means that the
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two chains exhibit chiral propagation and amplification in
opposite directions. While this may seem trivial, this kind of
discrete symmetry can persist even for certain forms of interchain
coupling, and has recently been interpreted as a formal Z2
symmetry class with its own distinct non-Hermitian topological
phenomena32. We discuss this symmetry more formally in
“Methods” section.

For our purposes, the interesting feature here will be to
consider breaking this symmetry with an external perturbation
whose magnitude we wish to estimate. As we will see, the
response to this symmetry breaking can be exponentially large in
system size, enabling a new kind of sensor.

Model and measurement protocol. With the motivation of the
previous section, we now consider a sensor comprised of two
Hatano–Nelson chains with an opposite chirality (see Fig. 1a).
There are a variety of means for such realizing non-Hermitian
directional tight-binding models using dissipation33,34; approa-
ches based on feedback control are also possible and have been
recently implemented35. However, for optimal sensing properties
in quantum settings, methods that are both autonomous and
avoid the noise associated with dissipation are desirable. We thus
focus on a dissipation-free method for realizing non-Hermitian
dynamics based on parametric driving17,25. We stress that the
response properties of our sensor will be independent of how the
non-Hermitian dynamics is implemented, and hence apply
equally well to dissipative and feedback-based strategies.

We consider an N-site chain of driven, coupled bosonic modes
described by the fully Hermitian Hamiltonian

ĤB ¼
XN�1

n¼1

iwâynþ1ân þ iΔâynþ1â
y
n þ h:c:

� �
: ð3Þ

Here âj is the photon annihilation operator on site j, w is the
nearest-neighbour hopping term, Δ is the nearest-neighbour two-
photon drive, and we consider open boundary conditions. We
take both w and Δ to be positive and w > Δ. This model describes

a 1D cavity array subject to parametric drives on each bond
(described in a rotating frame set by the external pump
frequency). As discussed extensively in ref. 17, this system could
be realized in both quantum superconducting circuits or
nonlinear quantum optical systems. Note the lack of any on-
site terms corresponds to the parametric driving frequency
matching the resonance frequency of each isolated cavity.

Although not immediately obvious, the dynamics generated by
ĤB corresponds to two copies of the Hatano–Nelson model. In
the basis of local canonical quadrature operators x̂j and p̂j,

defined via âj ¼ ðx̂j þ ip̂jÞ=
ffiffiffi
2

p
, the Hamiltonian reads

ĤB ¼
XN�1

n¼1

�ðw� ΔÞx̂nþ1p̂n þ ðwþ ΔÞp̂nþ1x̂n
� �

: ð4Þ

This then yields the Heisenberg equations of motion

_̂xn ¼ JeAx̂n�1 � Je�Ax̂nþ1; ð5Þ

_̂pn ¼ Je�Ap̂n�1 � JeAp̂nþ1; ð6Þ

where the effective hopping amplitude J and imaginary vector
potential A are related to w and Δ by

J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � Δ2

p
; ð7Þ

e2A � wþ Δ

w� Δ
: ð8Þ

Comparing against Eq. (1), we see that the dynamics of each
canonical quadrature corresponds to that of a Hatano Nelson
model, with opposite chiralities for x̂ and p̂ (Fig. 1). These
orthogonal quadratures correspond to different phases of
photonic excitations, and hence the system exhibits phase-
dependent non-reciprocal amplification17. Note that there is a
constraint on our mapping: the complex wavefunction ampli-
tudes in the Hatano–Nelson model have been replaced by
Hermitian quadrature operators in our system. This will play no
role in what follows.

We now demonstrate how this setup can be used for
Hamiltonian parameter estimation. We add a Hermitian
perturbation ϵV̂ to our Hamiltonian where V̂ is some system
operator; the goal is to estimate ϵ. We also couple the first site of
our lattice to an input-output waveguide as a means to probe its
properties. The simplest protocol is to use this waveguide to drive
the system with a classical tone (i.e., a coherent state), and then
measure the outgoing light in the waveguide (see Fig. 1b). The full
Hamiltonian becomes

Ĥ½ϵ� ¼ ĤB þ ϵV̂ þ Ĥκ � i
ffiffiffi
κ

p
ây1β� h:c:
� �

ð9Þ

Ĥκ describes damping of the first site at a rate κ, due to coupling
to the modes of the waveguide which we treat using standard
input-output theory36. The last term corresponds to a classical
drive with amplitude β= ∣β∣eiθ. Note that we take the drive
frequency to match the resonance frequency of the isolated
cavities; this frequency is zero in our rotating frame.

Using the standard input-output boundary condition, the
output field in the waveguide is given by

B̂
ðoutÞðtÞ ¼ βþ B̂

ðinÞðtÞ
� �

þ
ffiffiffi
κ

p
â1ðtÞ ð10Þ

where B̂
ðinÞ

, the operator equivalent of Gaussian white noise,
describes the noise entering the lattice through the waveguide.
Our goal is to estimate ϵ by making an optimal measurement of
the output field. In what follows, we take ϵ to have units of
frequency and V̂ to be dimensionless.

b

a
X chain

P chain

Δ

�

�

�

�

�

e2A(N–1)

JeA

Je–A

Fig. 1 Generic sensor setup and specific realization. a Basic lattice sensor:
two N-site non-Hermitian tight binding chains, each with opposite chirality.
Each chain has asymmetric hopping: for the top (bottom) chain, hopping to
the right is a factor of e2A larger (smaller) than hopping to the left. The two
lattices are only coupled via a weak symmmetry-breaking perturbation ϵ on
the rightmost site; the goal is to estimate ϵ. A signal entering the top X
chain induces an exponentially large output in the bottom P chain, but only
if ϵ≠ 0. b An array of bosonic cavities coupled via nearest neighbour
hopping w and coherent two-photon drive Δ with a small detuning ϵ on the
last site. This provides a dissipation-free realization of the setup in a, where
the canonical quadratures x̂ and p̂ play the role of the top and bottom
chains, respectively. This system yields an exponentially-enhanced SNR
even when quantum noise effects are included.
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We further specialize to the usual case where ϵ is so small that
it can only be estimated by integrating the output field over a long
timescale τ. If we turn on the drive tone at t= 0, the relevant
temporal mode of the output field to consider is

B̂τðNÞ ¼ 1ffiffiffi
τ

p
Z τ

0
dtB̂

ðoutÞðtÞ ð11Þ

Note that this is normalized to be a canonical bosonic lowering

operator, satisfying ½B̂τðNÞ; B̂y
τðNÞ� ¼ 1. We write an explicit

dependence on the chain size N, as we will be interested in
understanding how things scale as N is increased.

The maximum amount of information available in B̂τðNÞ on ϵ
is quantified by the quantum Fisher information (QFI). The QFI
provides a lower bound on the root mean square error of any
(unbiased) estimate of ϵ regardless of how B̂τðNÞ is measured1.
Calculation of the QFI unfortunately does not in general tell one
the form of the optimal measurement. However, in our linear
Gaussian system, things are much simpler: for large ∣β∣, the
optimal measurement will always correspond to a standard
homodyne measurement37,38. The relevant Hermitian measure-
ment operator has the form

M̂τðNÞ ¼ 1ffiffiffi
2

p e�iϕB̂τðNÞ þ eiϕB̂y
τðNÞ

� �
; ð12Þ

i.e., a quadrature of the output operator B̂τðNÞ along a direction
in phase space determined by the angle ϕ.

We will focus throughout on the large-drive limit, and will be
interested in characterizing the QFI to leading order in ∣β∣. In this
limit, QFI is determined by the statistics of M̂τðNÞ via5,37

QFIτðNÞ ¼ max
ϕ

lim ϵ!0
1
ϵ

SτðN; ϵÞ
N τðN; ϵÞ

� �2
" #

; ð13Þ

where

SτðN; ϵÞ ¼ jhM̂τðNÞiϵ � hM̂τðNÞi0j; ð14Þ

N τðN; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM̂2

τðNÞiϵ � hM̂τðNÞi2ϵ;
q

ð15Þ

are the signal and the noise, respectively, associated with the
measurement. Here, 〈⋅〉z means an average with respect to a state
whose dynamics are governed by Ĥ½z�.

This expression for the QFI coincides with the SNR of an
optimal homodyne measurement, and scales as ∣β∣2; the next-
leading order term is independent of ∣β∣. Note that the QFI only
depends on the noise N τðN; ϵÞ calculated to zeroth order in ϵ.
We stress that the expression for the QFI still depends on the
drive phase θ, as well as the form of the operator V̂ ; in what
follows, we will be interested in optimizing these as well.

Given its role as a fundamental performance metric, it is
tempting to declare that a better sensor has been built if it
increases the QFI. Different measurement strategies however use
resources differently, and one must carefully consider which to
constrain when making comparisons. In our case, we wish to
distinguish a true sensing enhancement from a more trivial effect,
where a different protocol simply results in there being more
photons in the system available to interact with the perturbation
V̂ (as occurs with standard exceptional-point based sensing
schemes5,6). For this reason, we will take as the relevant metric
the QFI scaled by the total average photon number �ntot

5:

�ntot �
X
n

âynân
	 


0 ’
X
n

hâyni0hâni0 / jβj2=κ: ð16Þ

As we consider throughout the large-drive limit, we only keep
the leading-order-in-β contribution to �ntot. This is simply the

photon number associated with the drive-induced displacement
of each cavity annihilation operator. The additional contribution
to �ntot due to amplification of vacuum fluctuations is β-
independent, hence plays no role in the large-drive limit we
consider (see “Methods” section).

Exponential SNR and QFI enhancement. We now focus on
computing the optimal SNR of the measurement operator M̂τðNÞ
for our N site chain in the ϵ→ 0 limit; via Eq. (13), this directly
yields the QFI. In this limit, a SNR ~ 1 will only be achieved for τ
much longer than any internal dynamical timescale. We thus
consider the long-τ limit, effectively ignoring any transient
behaviour and assuming the system is in its steady state. Note that
our system is dynamically stable as long as w > Δ and κ > 0,
ensuring that a steady state exists.

From Eqs. (14), (12), and (10), the first order in ϵ in this limit
reads

SτðN; ϵÞ ¼
ffiffiffiffiffiffiffi
2κτ

p
Re½e�iϕδhâ1i

ss�
�� �� ð17Þ

where

δhâ1i
ss � ϵ lim

ϵ!0

hâ1i
ss
ϵ � hâ1i

ss
0

ϵ

� �
ð18Þ

is the steady state linear response of the site-1 average amplitude
to a non-zero ϵ. This response will be determined by the zero-
frequency susceptibilities (Green’s functions) of the unperturbed
system.

It will be convenient to split up δhâ1i
ss
ϵ into its real and

imaginary parts, or equivalently to think of the dynamics in the
quadrature picture. There are then four different types of
susceptibilities: χαβ[n, m; ω] is the response of the α quadrature
on site n to a force which directly drives the β quadrature on site
m. From Eqs. (5–6) and Eq. (2), we find that the ϵ=
0 susceptibilities are

χxx½n;m;ω� ¼ eAðn�mÞ~χxx½n;m;ω�; ð19Þ

χpp½n;m;ω� ¼ e�Aðn�mÞ~χpp½n;m;ω�; ð20Þ

χxp½n;m;ω� ¼ χpx½n;m;ω� ¼ 0: ð21Þ
Here ~χαβ½n;m;ω� is the susceptibility of a Hermitian N site

tight-binding chain with hopping iJ and amplitude decay rate κ/2
on the first site (see “Methods” section). The above structure
reflects the fact that the dynamics of the x̂ and p̂ quadratures
correspond to two uncoupled copies of the Hatano–Nelson chain
with opposite signed imaginary vector potential A. Hence, x̂
quadrature signals are amplified as they propagate to the right,
and deamplified as they traverse to the left, while the opposite is
true for p̂ quadrature signals. Note that if we started with two
explicit Hatano–Nelson chains, the discussion here would be
identical; x and p would then just index the two different chains.

To proceed, we need to specify the form of the perturbation
Hamiltonian V̂ . Our system exhibits the the non-Hermitian skin
effect (NHSE), implying a strong sensitivity to changes in
boundary conditions. As the unperturbed system is an open
chain, this suggests that an optimal V̂ would induce tunneling
between the first and last site, i.e.,

V̂NHSE ¼ eiφây1âN þ e�iφâyNâ1; ð22Þ

with φ an arbitrary phase. As we show in “Methods” section, this
choice of V̂ does not result in an enhanced sensitivity if one uses
the proper metric of QFI/�ntot (or equivalently SNR/

ffiffiffiffiffiffiffi
�ntot

p
). While

the signal produced by V̂NHSE is large, this is simply because our
system is an amplifier with a large end-to-end gain. The number
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of photons on the last site (and hence �ntot) will be amplified
equally by this gain. As a result, QFI/�ntot does not show any
enhancement as one increases the system size N, nor any
enhancement over a conventional, single-cavity dispersive
detector. We are thus left with a depressing conclusion: the
non-Hermitian skin effect does not provide any true advantage in
sensing. Note also that V̂NHSE does not break the Z2 symmetry of
the unperturbed system (see “Methods” section).

Luckily, this is not the end of the story. Enhanced sensing is
possible with our system, if we chose a V̂ that fully exploits the
opposite chiralities of our two (effective) Hatano–Nelson chains.
Consider the innocuous-looking purely local perturbation

V̂N ¼ âyNâN ; ð23Þ
so that ϵ now corresponds to a small change in the resonance
frequency of the last site. This perturbation does indeed break the
Z2 symmetry of the unperturbed system. To understand how V̂N
affects the dynamics of the lattice, it is best to re-examine the
equations of motion in the x̂ and p̂ basis. They remain the same
everywhere except the last site N, where they now read

_̂xN ¼ JeAx̂N�1 þ ϵp̂N ; ð24Þ

_̂pN ¼ Je�Ap̂N�1 � ϵx̂N : ð25Þ
Recall that without the perturbation present, the dynamics of

the x̂ and p̂ quadratures are completely independent (c.f. Eqs. (5)
and (6)). The dispersive shift ϵ on site N now effectively couples
the two non-Hermitian chains, thereby breaking phase-
dependent non-reciprocity (see Fig. 1). While the intuitive
picture of directional amplification remains unchanged in the
rest of the lattice, a wavepacket with a well- defined global phase
can now scatter off of the perturbation ϵ and change its phase in
the process. The role of ϵ is reminiscent to that of a magnetic
impurity in the quantum spin Hall effect: in both cases the
propagation direction of a particle is determined by some internal
degree of freedom, which the impurity can change39.

We next judiciously choose the phase of the drive β to be real
and the measurement angle ϕ= π/2. Equivalently, we apply a
driving force �

ffiffiffiffiffi
2κ

p
jβj to x̂1 and consider the corresponding

response of its canonically conjugate quadrature p̂1. When ϵ= 0,
this off-diagonal susceptibility vanishes, see Eq. (21). To first
order in ϵ, it becomes non-zero. We further take N to be odd in
what follows, as this guarantees (via the chiral symmetry of our
unperturbed system) that the lattice will have a resonant mode at
zero frequency. This then provides a further resonant enhance-
ment of our system’s zero frequency response properties. Note

that for an even N, we would still have the same exponential
enhancement quoted in Eqs. (19–20); in this case however, there
is no resonant mode at zero frequency, causing a suppression of
susceptibilities by a multiplicative factor of κ/(2J) (see Eqs. (96–
97)).

With these optimized choices, first order perturbation theory
yields:

SτðN; ϵÞ ¼
ffiffiffiffiffi
κτ

p
j
ffiffiffiffiffi
2κ

p
βj jδχpx½1; 1; 0�jð Þ

¼
ffiffiffiffiffiffiffi
2κτ

p ffiffiffi
κ

p
jβj jχpp½1;N; 0�ϵχxx½N; 1; 0�jð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8κτ�nN

p ϵ

κ

��� ���eAðN�1Þ:

ð26Þ

Here �nN denotes the leading-order-in-β average photon
number of the last site in the lattice, and is given by:

�nN ¼ âNh iss0
�� ��2 ¼ κjβj2 χxx½N; 1; 0�j j2 / e2AðN�1Þ ð27Þ

For large A, the average photon number on site N is exponentially
larger than that on other sites. Writing �nN ¼ ZðAÞ�ntot we have
ZðAÞ ¼ 1�Oðe�4AÞ (see “Methods” section). We thus obtain:

SτðN; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ZðAÞκτ�ntot

p ϵ

κ

��� ���eAðN�1Þ: ð28Þ

Equation (28) is a central result of this work: it shows that even
when the total photon number �ntot is held fixed, our system
exhibits a signal power that grows exponentially with system size.

For an intuitive picture, consider the propagation of x-
quadrature photons injected from the waveguide into site 1, as
depicted in Fig. 2. These photons will propagate to the last site N,
with an amplitude χxx[N, 1; ω] ∝ eA(N−1). Photons that then
scatter off the perturbation ϵV̂N will change phase, so that they
now correspond to the p quadrature (c.f. Eq. (25)). They can then
propagate back to the first lattice site with an amplitude − ϵχpp

[1, N; ω]∝ eA(N−1). This simple scattering process (involving
both x and p quadrature propagation) leads to a parametrically
large signal in p̂1.

The above heuristic picture also explains why the signal is
amplified more than the average photon number �ntot: the average
photon number only involves amplification along one traversal of
the chain, whereas the signal magnitude involves two traversals
(forward and back). This directly explains the extra large factor of
eA(N−1) in Eq. (28). We stress that this exponential signal
enhancement would also occur in dissipative realizations of our
doubled Hatano–Nelson chain.

The final step in characterizing our sensor is to examine its
noise properties. Naively, one might expect that the same
dynamics responsible for our signal enhancement would also

a

0

= 0 ≠ 0

X (in)

P (out)

X (in)

P (out)

Forward propagation

Reflection

Backward propagation

b

Forward propagation

Reflection

Backward propagation

Time

� e2A(N–1)

� � �

Im �

Im �

Re �

Re � –Je–A –JeA

JeA
� JeA

Fig. 2 Schematic of measurement dynamics. a A classical drive is injected into the leftmost lattice site via a waveguide (coupling rate κ). The drive
amplitude is real (blue wavepacket), corresponding to an x̂ quadrature excitation. As the wavepacket propagates rightwards, its amplitude grows ∝ eA(N−1)

until it reaches the last site N. If ϵ= 0, the wavepacket scatters off the open boundary without changing quadrature. It is thus deamplified as it propagates
back to the first site. As a result, for ϵ= 0 there is no amplification of the drive or of injected noise. b For non-zero ϵ, a wavepacket can scatter off the
boundary and change quadrature (olive wavepacket). It then is also amplified as it propagates back to the waveguide, and leaves the waveguide with a net
amplification factor e2A(N−1). The result is a SNR and quantum Fisher information which grow exponentially with system size even when the total
intracavity photon number is held fixed.
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exponentially amplify fluctuations in the output field. This is not
the case: as already discussed, calculating the QFI only requires
computing the noise to zeroth order in ϵ, see Eq. (13). Without
the perturbation, the two effective Hatano–Nelson chains are
completely decoupled. Thus, any noise entering through the
waveguide will undergo equal amounts of amplification and
deamplification before exiting the lattice. For the ideal case of
zero internal loss, this means that the noise temperature of the
output field will be identical to that of the input field. As a result,
the noise in the homodyne current is

N τðN; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nth þ

1
2

r
ð29Þ

with �nth representing the number of thermal quanta in the
input field.

Combining these two results, our signal-to-noise ratio is

SNRτðN; ϵÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðAÞ�ntot κτ
2�nth þ 1

s
j ϵ
κ
jeAðN�1Þ

¼
ffiffiffiffiffiffiffiffiffiffi
ZðAÞ

p
eAðN�1Þ SNRτð1; ϵÞ;

ð30Þ

where SNRτ(1, ϵ) is the signal-to-noise ratio of a ubiquitous
single-mode dispersive detector36,40. As we have stressed,
SNRτ(N, ϵ) also represents the QFI of our system. We see that
the SNR and QFI can be exponentially enhanced by either
increasing system size N or amplification factor A, all the while
maintaining a fixed total photon number �ntot. This is the central
result of our work. The crucial ingredients here are the inherent
chiral amplification present in a Hatano–Nelson chain, the
effective symmetry breaking that occurs when coupling the two
opposite-chirality chains in our sensor, and the lack of any
amplified output noise in the unperturbed system.

This result might give one pause and, hence, several comments
are in order. First, note that the large SNR achieved here is not
contingent on approaching a parametric instability: our system is
dynamically stable for any value of ϵ and A. Our enhancement is
also not due to a large change in the spectrum of our chain: the
spectrum of our non-Hermitian Hamiltonian is independent of A
and not exponentially sensitive to ϵ. Rather, coupling the two
chains with opposite chirality has caused a large change in the
wavefunctions of order ϵe2A(N−1) (see Supplementary Note 3).
Second, the mechanism we discuss here is useful even in small
systems, as the fixed photon number QFI has an exponential
dependence on A; an arbitrarily large QFI can thus be achieved
with only three lattice sites. We further emphasize that the
spatially-dependent amplification is a crucial aspect of our
scheme. Indeed, the signal-to-noise ratio for a single-mode cavity
amplifier can never achieve this sort of sensing enhancement,
since the signal and noise are amplified in a similar manner40.
Finally, we stress that this enhanced QFI in no way requires or is
even related to the existence of an exceptional point in our
dynamical matrix.

It is also worth stressing that our mechanism is completely
distinct from other recently introduced methods that use
parametric amplifiers to enhance dispersive sensing40–42. These
works exploit noise squeezing as the basic mechanism for
enhancing the SNR and QFI. Unfortunately, in many practical
settings this squeezing is difficult to exploit, as one becomes
extremely sensitive to the added noise of amplification stages that
follow the primary measurement (i.e., one needs following
amplifiers to be quantum limited). In contrast, our scheme does
not rely on squeezing the measurement noise, but instead
effectively amplifies the signal power at fixed total photon
number. The output noise has the same magnitude as the input
noise, and hence taking advantage of our enhanced QFI does not

need following amplification stages to be quantum limited. This
represents a significant practical advantage. We also note that
Ref. 5 studied non-Hermitian quantum sensing that exploits non-
reciprocity, but in a very different physical setting and using
completely distinct underlying mechanism. Reference 5 focused
on a zero-dimensional gain-loss dimer system. As a result, the
sensing schemes in5 do not exploit propagation in an extended
system (as we do), and cannot have interesting scaling with
system size (as there is no notion of system size).

We end this section by pointing out that the N dependence of
the QFI in Eq. (30) does not violate standard Heisenberg-limit
constraints1, as the setting here is different. The usual Heisenberg
limit applies to N sensor systems which each interact indepen-
dently with the parameter of interest; the QFI here scales as best
as ∝ N2, a result which requires entanglement. In contrast, each of
the N modes in our system is not an independent sensor
interacting independently with the dispersive perturbation, as the
sites are coupled. The enhanced scaling we find is not the result of
entanglement: we stress that the input light to our system is just a
coherent state. Instead, the enhancement is a consequence of our
system’s unusual mechanism for non-reciprocal amplification.

Non-Markovian effects. We now relax the assumption that the
parameter ϵ is infinitely weak. For concreteness, we assume the
sensing target is to distinguish the case ϵ= 0 from the case ϵ=
ϵ0 ≠ 0. This kind of discrimination is relevant in many practical
situations, for example the dispersive measurement of the state of
a qubit36. We assume that ϵ0 is small enough such that linear
response is still valid, but not so small that measurement will be
infinitely long compared to internal system timescales. We thus
need to understand the finite-frequency response and noise
properties of our non-Hermitian lattice sensor, and how these
non-Markovian corrections impact overall sensitivity.

In this section, we will characterize our sensor by its
measurement time τM: what is the minimum integration time
to achieve a SNR of unity? Heuristically, τM is the minimum
amount of time required to distinguish between ϵ= 0 and ϵ= ϵ0.
In the limit ϵ0→ 0, τM will be much longer than any internal
sensor timescale, and we can use the long-time limit SNR
expression derived in the previous section (c.f. Eq. (30)). We
define τ�MðNÞ to be this ϵ0→ 0 expression for the measurement
time. Assuming that the input field has only vacuum noise, we
find:

τ�MðNÞ ¼ 1
16ZðAÞ�ntotκ

κ

ϵ0

� �2

e�2AðN�1Þ: ð31Þ

The obviously attractive feature here is the exponential
reduction of τM with increasing lattice size N (but at fixed total
photon number).

As N or ϵ0 is increased, τ�MðNÞ will become increasing smaller,
and at some point will become comparable to internal system
timescales. At this point, the long-time limit assumption used to
derive this expression becomes invalid. There are two distinct
relevant timescales that govern the dynamics of our sensor. The
first trt(N) determines the ballistic propagation time to traverse
the lattice end to end:

trtðNÞ ¼ N
J
; ð32Þ

The second tesc(N) involves the coupling to the waveguide: how
quickly does a particle that is delocalized in the lattice leak out to
the waveguide. A simple Fermi’s Golden Rule estimate yields the
scale:

tescðNÞ ¼ N þ 1
κ

ð33Þ
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Both these timescales increase with system size. As a result, non-
Markovian effects associated with internal dynamics become
increasingly important with increasing N. The crucial question is
how this physics modified or places a limit on the exponential-in-
N measurement enhancement predicted by Eqs. (30) and (31).
For large enough N the measurement will be so fast that these
internal timescales matter. Do they simply put a bound on the
measurement time, or does performance continue to increase
with increasing N?

We first consider the limit J≫ κ; the only relevant dynamical
timescale is then tesc(N), the time it takes a delocalized photon to
escape the lattice. In this regime, the level spacing of lattice
resonances is much larger than their widths. We can thus
accurately approximate the relevant low-frequency behaviour of
lattice susceptibilities by the contribution from the zero-
frequency resonance (whose width is 1/tesc(N)). Assuming as
always that N is odd, we have:

χxx½N; 1;ω� � 2iN

N þ 1
eAðN�1Þ

ωþ i κ
Nþ1

ð34Þ

χpp½1;N;ω� � �2i�N

N þ 1
eAðN�1Þ

ωþ i κ
Nþ1

: ð35Þ

Note crucially that the residue at the poles are exponentially
large in system size; this directly reflects the amplification physics
we have discussed previously. Because of these factors, the above
response functions are not simply equivalent to those of a single-
mode system with a very small linewidth.

With this approximation, we find that the SNR is given by (see
“Methods” section for details)

SNRτðN; ϵ; J ! 1Þ
¼

ffiffiffiffiffiffiffiffiffiffi
τ

τ�MðNÞ

q
1þ e�

τ
tescðNÞ � 2tescðNÞ

τ ð1� e�
τ

tescðNÞÞ
� � ð36Þ

The bracketed factor represents the non-Markovian correction to
the long-time limit expression. Note that the correction is only to
the magnitude of the signal. As we continue to use linear
response, we only need to compute the homodyne current noise
to zeroth order in ϵ0. This noise is thus always vacuum noise
regardless of the choice of integration time τ.

Using the above expression, we can then directly compute the
measurement time τM in the J→∞ limit. While finding the
measurement time analytically is unfeasible, we can describe its
asymptotic behavior in the strong and weak measurement limit
(see “Methods” section)

τJ¼1
M ðNÞ ¼

τ�MðNÞ; τ�MðNÞ � tescðNÞffiffiffi
6

p
tescðNÞ

ffiffi
½

p
5� τ�MðNÞffiffi

6
p

tescðNÞ; τ�MðNÞ � tescðNÞ

(

/
e�2AðN�1Þ; τ�MðNÞ � tescðNÞ

ðN þ 1Þ4=5e�2AðN�1Þ=5; τ�MðNÞ � tescðNÞ:

(

ð37Þ
We thus find a surprising result: even for fast measurements

where the escape time from the lattice plays a role, the
measurement time continues to improve exponentially with
lattice size N. Intuitively, this is because the deleterious effects of
increasing the escape time tesc= (N+ 1)/κ with increasing N is
more than offset by the exponentially large number of photons
e2A(N−1) that exit through the waveguide when ϵ= ϵ0.

We next consider the case where the hopping amplitude J is
not infinitely larger than all other scales. In this case, we must also
take into account the finite propagation speed v∝ J of particles
the lattice. Because an injected wavepacket must make a round
trip before acquiring any information about the perturbation ϵ,

for times less than 2N/v=N/J= trt(N) we expect the signal to be
approximately zero. After this first round trip, the limiting factor
in obtaining a large signal is once again the escape rate. Including
the effects of a finite J, we find that the SNR is well approximated
by simply adding a cutoff to the J→∞ result in Eq. (36):

SNRτðN; ϵ; JÞ ¼ Θ τ � trtð ÞSNRτðN; ϵ; J ! 1Þ ð38Þ
where Θ(t) is the Heaviside step function. This form reflects the
basic intuition that it is impossible to make a measurement faster
than the propagation time.

Combining these results, we finally find that including the
effects of both internal timescales trt(N) and tesc(N), the
measurement time (to good approximation) is given by

τMðNÞ ¼ maxðτJ¼1
M ðNÞ; trtðNÞÞ ð39Þ

where τJ¼1
M ðNÞ is given in Eq. (31). Thus, as a function of

increasing system size N, the measurement time first decreases
exponentially until it reaches the round-trip time in the lattice,
after which it increases with N. The upshot of our analysis is that
increasing the lattice size still provides an exponential sensing
advantage when including non-Markovian effects. This continues
to be true until the measurement time is reduced to being on par
with the round-trip propagation time trt(N)=N/J.

In Fig. 3, we plot the numerically-calculated measurement time
τM(N) versus lattice size N for a fixed total photon number �ntot
and perturbation size ϵ0/κ; different curves correspond to
different values of the hopping J/κ. We find an excellent
agreement with the analytic approximation given in Eq. (39).
The measurement time follows τJ¼1

M ðNÞ (dark solid line) until it
reaches the round-trip time trt(N) (faint dashed lines), after which
it increases linearly with N.

Beyond linear response. In this final section, we again consider
the sensing problem of distinguishing ϵ= 0 from ϵ= ϵ0; now
however, we analyze the regime where (due to amplification
effects) ϵ0 is too large for a linear response analysis to be valid.
This is in contrast to the previous section, where ϵ0 was small
enough that linear response was still valid, but large enough that
non-Markovian detector effects were important.
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Fig. 3 Measurement time τM(N) versus lattice size N, for different
choices of the hopping amplitudes J. The solid black line is the
measurement time in the J→∞ limit, τJ¼1

M ðNÞ. Faint dashed lines are the
round-trip propagation timescale trt(N)≡N/J. The measurement time
decays exponentially with increasing N, up until τJ¼1

M ðNÞ � trtðNÞ. Further
increases of N cause the measurement time to scale with trt(N), implying
that it increases linearly with N. We take ϵ0= 10−8κ, �ntot ¼ 5 ´ 109 and A=
0.2. We also plot results for odd values of N only, as this guarantees the
existence of a zero-frequency lattice eigenstate and thus an additional
resonant enhancement of our measurement (c.f. main text before Eq. (26)).
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For any ϵ0 the output state of the light leaving the waveguide
will be Gaussian, and the statistics of the measured homodyne
current will be Gaussian. We can thus again quantify our sensor’s
performance by calculating the signal-to-noise ratio. We now
however need to account for the fact that the homodyne current
noise will also depend on ϵ0. The definition of the signal-to-noise
ratio becomes:

SNRτðN; ϵ0Þ �
jhM̂τðNÞiϵ0 � hM̂τðNÞi0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N 2
τðN;0ÞþN 2

τðN;ϵ0Þ
2

q ð40Þ

This SNR quantifies the distinguishability between the Gaussian
homodyne current distributions obtained for ϵ= 0 versus ϵ= ϵ0
(see e.g., refs. 36,43).

As might be expected, the nonlinear dependence of SNR on ϵ0 will
prevent one from indefinitely improving the measurement with
increasing N. The key issue is that beyond linear response, noise
amplification will also play a role. We show in what follows that even
with this complication, our system yields a strong advantage, allowing
one to fundamentally change the scaling of the SNR with ϵ0.

We will focus on the most interesting situation where ϵ0/κ≪ 1,
but where linear response breaks down because of a large
amplification factor (i.e., eA(N−1)ϵ0/κ is not necessarily small).
Further, we take the round-trip time trt(N)=N/J to be small
enough that we can ignore the transient dynamics and consider
only the steady-state response. Formally, we now need to
calculate the output field leaving the waveguide to all orders in
ϵ0. We thus expand the zero frequency quadratures of the output
field as a power series in ϵ0/κ:

X̂
ðoutÞ½0� �

X1
k¼0

ϵ0
κ

� �k
X̂
ðoutÞ
k ð41Þ

P̂
ðoutÞ½0� �

X1
k¼0

ϵ0
κ

� �k
P̂
ðoutÞ
k ð42Þ

To zeroth order in ϵ0, there is no mixing of quadratures, and
input signals are reflected with no net amplification (but just a
trivial sign change):

X̂
ðoutÞ
0 ¼ �X̂

ðinÞ½0�; P̂
ðoutÞ
0 ¼ �P̂

ðinÞ½0�; ð43Þ

Note that throughout this section, we associate the coherent drive

tone amplitude β with the average value of X̂
ðinÞ½0�.

In contrast, the first order contributions correspond to a
process where input fields scatter once off the “impurity” before
returning to the waveguide. This scattering converts one
canonical quadrature to the other, and also results in a net
amplification or deamplification

X̂
ðoutÞ
1 ¼ 4e�2AðN�1ÞP̂

ðinÞ½0� ð44Þ

P̂
ðoutÞ
1 ¼ �4e2AðN�1ÞX̂

ðinÞ½0� ð45Þ

The amplification of X̂
ðinÞ

is exactly the process we discussed
earlier that is responsible for the exponentially-enhanced signal. The

attenuation of P̂
ðinÞ

at this order can be understood analogously.
What about the second order in ϵ0 contributions? Heuristically,

these correspond to input fields scattering off the impurity twice.
While we expect such a process to preserve the identity of each
canonical quadrature, it also has a more surprising feature: it
results in no net amplification or deamplification:

X̂
ðoutÞ
2 ¼ 8X̂

ðinÞ½0�; P̂
ðoutÞ
2 ¼ 8P̂

ðinÞ½0� ð46Þ

This unexpected result can again be traced by to the chiral and
quadrature-dependent nature of gain and loss in our system.
Interacting with the impurity twice implies that an input signal
has performed at least two round-trip traversals of the lattice
(partially as an X, partially as a P). The gain and attenuation for
each of these roundtrips necessarily cancel.

This pattern continues to higher order, and provides a simple
explanation for the full expression we find for the output field: the
net amplification/deamplification factor for each kind of quad-
rature to quadrature scattering process is independent of ϵ0. We
find

X̂
ðoutÞ½0� ¼ Rðϵ0ÞX̂

ðinÞ½0� � Tðϵ0Þe�2AðN�1ÞP̂
ðinÞ½0� ð47Þ

P̂
ðoutÞ½0� ¼ Tðϵ0Þe2AðN�1ÞX̂

ðinÞ½0� þ Rðϵ0ÞP̂
ðinÞ½0� ð48Þ

where

Rðϵ0Þ ¼ �
κ
2

� �2 � ϵ20
κ
2

� �2 þ ϵ20
ð49Þ

Tðϵ0Þ ¼
κϵ0

κ
2

� �2 þ ϵ20
ð50Þ

are elements of an orthogonal scattering matrix describing the
conversion of quadratures (see “Methods” section for details). We
see that quadrature-preserving scattering processes never come
with amplification factors, whereas the amplification factors for
quadrature-changing scattering are independent of ϵ0. Crucially,
there are no amplification factors in denominators in this
expression. This result can be derived via a canonical squeezing
transformation which eliminates the anomalous terms in Eq. (3);
it also reflects the fact that our system is dynamically stable
regardless of the strength of ϵ0.

From these input-output relations, we can readily compute
the SNR. Taking the noise of the input field to be vacuum, we
have:

SNRτðN; ϵ0Þ ¼
ffiffiffiffiffi
8τ

p
jβjjTðϵ0Þje2AðN�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2ðϵ0Þ þ T2ðϵ0Þe4AðN�1Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QðA; ϵ0Þ�ntotκτ

p
jTðϵ0ÞjeAðN�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2ðϵ0Þ þ T2ðϵ0Þe4AðN�1Þ
p

ð51Þ

where �ntot ¼ ð�ntotð0Þ þ �ntotðϵ0ÞÞ=2. Note that a finite ϵ0 now
changes the number of coherent photons present on each lattice
site m, the leading-order correction being δ�nm / ðϵ0=κÞ

2e4AðN�mÞ.
It is no longer necessarily the case that most of the photons reside
on the last site. This ϵ0-induced change in photon number is
incorporated in the definition of the correction factor Q(A, ϵ0): in
what follows we will make a careful choice of A such that Q(A, ϵ)
is of order one.

We see that now, the denominator in Eq. (51) also depends
on the amplification factor A, which corresponds to the
amplification of noise. Because of this, increasing A and/or N
indefinitely is no longer optimal. There remains nonetheless an
advantage in using a carefully chosen amount of amplification.
Ignoring Q(A, ϵ0) and maximizing the SNR Eq. (51) with
respect to the amplification, we see that the optimal choice
corresponds to amplification that simply doubles the output
noise over pure vacuum noise. In the ϵ0≪ κ limit of interest,
the condition is:

e4A
�ðN�1Þ � 1þ R2ðϵ0Þ

T2ðϵ0Þ
� κ2

8ϵ20
ð52Þ
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With this optimized choice of A, the SNR written in terms of ϵ0
is then

SNRτðN; ϵ0Þ ¼ 81=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðA�; ϵ0Þ�ntotκτ

p ffiffiffiffi
ϵ0
κ

r
: ð53Þ

We show in “Methods” section that QðA�; ϵ0Þ ¼ 1�O ϵ20
κ2

� � 1
N�1

� �
.

Comparing against Eq. (26), we see that the optimized
amplification has changed the fundamental scaling of the long-
time SNR from being linear in the small parameter ϵ0/κ to a
square-root dependence. Thus, by extending our analysis beyond
a simple linear-response treatment, we see that the exponential
enhancement of the SNR predicted in Eq. (26) cannot extend
indefinitely: the best one can do is to enhance the SNR (over a
conventional dispersive measurement) by a large factor

ffiffiffiffiffiffiffiffiffi
κ=ϵ0

p
.

This behaviour is plotted in Fig. 4. We again note that this
predicted measurement enhancement does not require a large
number of lattice sites; just three is already enough.

The enhanced square-root dependence of the SNR on ϵ0 is
superficially reminiscent of the behaviour found in non-
Hermitian exceptional point (EP) sensors9. We stress that these
phenomena are completely distinct. For EP sensors, it is the
frequency of a resonance that exhibits a square root dependence,
and not the SNR of a specific measurement (or other metric that
also quantifies fluctuations). Further, EP sensing is based on
operating near a point where the system’s dynamical matrix
becomes defective and normal modes coalesce. In contrast, our
system is not near such a special operating point. As we have
stressed, the mechanism for enhanced SNR in our system is based
on its directional amplification, and its ability to amplify signals
and noise differently.

Discussion
In this work, we have shown how the unique features of non-
Hermitian lattice dynamics can be used for highly enhanced
Hamiltonian parameter estimation and parametric sensing. We
analyzed a concrete setup involving two copies of the

Hatano–Nelson model and a symmetry-breaking perturbation.
The response to the perturbation grows exponentially with system
size, even when the total system photon number is kept fixed. Our
analysis focused on a specific realization of this idea using a chain
of parametrically driven cavities and a standard dispersing cou-
pling to the parameter of interest. Here, even in the presence of
quantum noise effects, the SNR and quantum Fisher information
per photon both grow exponentially with system size. The system
we described could be achieved in a variety of superconducting
circuit and quantum optical platforms, and only requires one to
make a homodyne measurement of the output field leaving the
sensor. We also analyzed effects that go beyond standard linear-
response and Markovian assumptions. Even including higher-
order effects, we show that our scheme allows one to dramatically
enhance the SNR so that it depends on the square root of the
sensing parameter.

Our work highlights the usefulness of multi-mode non-Hermitian
features that go beyond the mere existence of exceptional points. An
open question is whether other unique features attributed to non-
Hermiticity, such as exotic topological phases or chiral mode
switching, are also advantageous to quantum sensing problems.

Methods
Z2 symmetry of a non-Hermitian tight-binding model. We discuss in more
detail the Z2 symmetry that we wish to break to order to obtain an exponentially
large response. We consider two finite, N-site open Hatano–Nelson lattices with
opposite chiralities (i.e., oppositely signed imaginary vector potentials A). The
time-dependent Schrödinger equation reads

_ψ"
n ¼ JeAψ"

n�1 � Je�Aψ"
nþ1 ð54Þ

_ψ#
n ¼ Je�Aψ#

n�1 � JeAψ#
nþ1 ð55Þ

where σ indexes the two chains. These equations of motion are invariant under a
combination of time reversal _ψσ

n ! � _ψσ
n , spatial inversion ψσ

n ! ψσ
Nþ1�n and

pseudospin inversion σ ! �σ.
While this is a seemingly trivial symmetry, we note that the Heisenberg

equations of motion of our dissipation-free realization of the same model

_̂xn ¼ JeAx̂n�1 � Je�Ax̂nþ1; ð56Þ

_̂pn ¼ Je�Ap̂n�1 � JeAp̂nþ1; ð57Þ

are invariant under the same set of symmetries, where x̂n and p̂n play the role of
pseudospin. To describe these symmetries requires using operators acting on the
bosonic Hilbert space. To this end, we consider the antiunitary time reversal
operator T , a unitary rotation operator R and the unitary spatial inversion
operator S whose action on the quadratures reads

T x̂nT �1 ¼ x̂n; T p̂nT
�1 ¼ �p̂n ð58Þ

Rx̂nR�1 ¼ p̂n; Rp̂nR�1 ¼ �x̂n ð59Þ

Sx̂nS�1 ¼ x̂Nþ1�n; Sp̂nS�1 ¼ p̂Nþ1�n: ð60Þ
Equivalently, we have

T ânT �1 ¼ ân ð61Þ

RânR�1 ¼ �iân ð62Þ

SânS�1 ¼ âNþ1�n ð63Þ
With these definitions in hand, it is easy to verify that the Hermitian Hamiltonian
which gives the equations of motion Eqs. (56) and (57)

ĤB ¼ J
XN�1

n¼1

�e�Ax̂nþ1p̂n þ eAp̂nþ1x̂n
� �

: ð64Þ

is invariant under the combination of time-reversal, rotation, and spatial inversion.
Similarly, the non-local perturbation

V̂NHSE ¼ eiφây1âN þ e�iφâyN â1 ð65Þ

is invariant under the same combination of symmetries. Time-reversal changes the
phase φ→−φ, V̂NHSE commutes with R and spatial inversion sends ây1âN ! âyN â1.

While this Z2 symmetry can be made formal as we have just shown, it is perhaps
best explained in words: each chain must have a preferred direction for amplification/
propagation, with the direction being opposite in each chain. Hence, the symmetry
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Fig. 4 Non-perturbative signal-to-noise ratio in the long time limit
SNRτ(N, ϵ0)/SNRτ(1, ϵ0), as a function of lattice size N. The SNR initially
increases exponentially with N, as predicted by our linear-response
analysis. For sufficiently large N, linear response breaks down due to the
amplification of noise; this causes the SNR to decrease with N for large N. A
non-trivial maximum is thus reached for an intermediate value of N given by
Eq. (52). For this optimal N and a weak perturbation ϵ0, the SNR scales likeffiffiffiffiffiffiffiffiffiffi
ϵ0=κ

p
(as opposed to the more standard scaling ϵ0/κ) . The parameters

here are A= 0.05, ϵ0= 10−7κ and �ntot ¼ 5´ 109. The plot is only valid for
odd values of N, which ensures an resonant enhancement of the zero-
frequency response (c.f. discussion preceding Eq. (26)).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19090-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5382 | https://doi.org/10.1038/s41467-020-19090-4 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


only involves the chirality in each chain. One can then optimally sense a perturbation
that couples the two chains (as we have discussed). Because the forward amplification
simply contributes to the total photon number, the backwards amplification is most
crucial as it directly contributes to the signal. Exponentially-enhanced sensitivity is
then obtained in a larger class of sensors by lifting the constraint of an exact Z2
symmetry. For instance, one could have two chains of unequal length with ∣A↑∣ ≠ ∣A↓∣
whose QFI per photon is still exponentially large in the length of the chain where
backwards amplification occurs.

Quadrature susceptibility matrices. We first compute the susceptibilities for the
x̂n and p̂n quadratures, defined as ân ¼ ðx̂n þ ip̂nÞ=

ffiffiffi
2

p
. The Heisenberg-Langevin

equations of motion in this basis are

_̂xn ¼ �i½x̂n; ĤB� � δn1
κ

2
x̂n þ

ffiffiffi
κ

p ffiffiffi
2

p
βþ X̂

ðinÞ� �� �
ð66Þ

_̂pn ¼ �i½p̂n; ĤB� � δn1
κ

2
p̂n þ

ffiffiffi
κ

p
P̂
ðinÞ� �

; ð67Þ

where X̂
ðinÞ

and P̂
ðinÞ

are the operator equivalent of Gaussian white noise. They
average to zero, and their second moment is

hX̂ðinÞðtÞX̂ðinÞðt0Þi ¼ �nth þ
1
2

� �
δðt � t0Þ ð68Þ

hP̂ðinÞðtÞP̂ðinÞðt0Þi ¼ �nth þ
1
2

� �
δðt � t0Þ ð69Þ

1
2
hfX̂ðinÞðtÞ; P̂ðinÞðt0Þgi ¼ 0 ð70Þ

where �nth is the number of thermal quanta in the input field. We now focus on the
case where �nth ¼ 0, with generalizations to finite-temperature inputs being
straightforward.

An immense simplification arises by making a local Bogoliubov (squeezing)
transformation, such that the Hamiltonian preserves the total number of these new
quasiparticles. The dynamical matrix of in this new basis is then explicitly

Hermitian. Defining new canonically conjugate quadrature operators ~̂xn and ~̂pn by

x̂n ¼ eAðn�n0Þ~̂xn ð71Þ

p̂n ¼ e�Aðn�n0Þ~̂pn ð72Þ

with n0 an arbitrary real number, we have

ĤB ¼ J
XN�1

n¼1

�~̂xnþ1~̂pj þ ~̂pnþ1~̂xj
� �

ð73Þ

¼ iJ
XN�1

n¼1

~̂a
y
nþ1~̂an � h:c:

� �
ð74Þ

with ~̂an ¼ ð~̂xn þ i~̂pnÞ=
ffiffiffi
2

p
a transformed canonical annihilation opreator. The

parameter n0 does not enter the Hamiltonian since ĤB is invariant under a uniform
local squeezing operation that does not mix quadratures
x̂n ! e�An0 x̂n; p̂n ! eAn0 p̂n . In this section, it will be convenient to set n0= 1, so
that the annihilation operators on the first stie remain unchanged ~̂a1 ¼ â1.

The Heisenberg-Langevin equations of motion in this new basis read

_̂~xn ¼ �i½~̂xn; ĤB� � δn1
κ

2
~̂xn þ

ffiffiffi
κ

p ffiffiffi
2

p
βþ X̂

ðinÞ� �� �
; ð75Þ

_̂~pn ¼ �i½~̂pn; ĤB� � δn1
κ

2
~̂pn þ

ffiffiffi
κ

p
P̂
ðinÞ� �

: ð76Þ

As expected, the response properties of ~̂xn and ~̂pn are then determined by a
completely Hermitian matrix (other than the waveguide-induced decay on the
first site).

Using the squeezing transformations Eqs. (71–72) and the fact that the
dynamics of the x̂ and p̂ quadratures are uncoupled, the relevant
quadrature–quadrature susceptibilities read

χxxðn;m; tÞ ¼ �ih½x̂nðtÞ; p̂mð0Þ�i ¼ eAðn�mÞ~χxxðn;m; tÞ ð77Þ

χppðn;m; tÞ ¼ ih½p̂nðtÞ; x̂mð0Þ�i ¼ e�Aðn�mÞ~χppðn;m; tÞ ð78Þ

χxpðn;m; tÞ ¼ ih½x̂nðtÞ; x̂mð0Þ�i ¼ 0 ð79Þ

χpxðn;m; tÞ ¼ �ih½p̂nðtÞ; p̂mð0Þ�i ¼ 0 ð80Þ

where ~χαβðn;m; tÞ are quadrature response functions of a standard (i.e., reciprocal
and particle-conserving) tight-binding chain with a waveguide attached to the first
site. Note that our convention differs from that used in the condensed matter
community, where χαβ(n, m; t) is the response of quadrature α to a force which
couples to β in the Hamiltonian. Computing the quadrature-quadrature

susceptibilities χαβ(n, m; t) of our non-reciprocal system is then no more
complicated than finding the susceptibilities of a reciprocal tight-binding chain
~χxxðn;m; tÞ and ~χppðn;m; tÞ.

The susceptibilities of the Hatano–Nelson model Eq. (1) are computed in a similar
manner. There, instead of a local squeezing transformation, one makes a so called
imaginary gauge transformation nj i ! eAðn�j0Þ nj i and nh j ! e�Aðn�j0Þ nh j. In this
new gauge, the Hamiltonian is Hermitian and completely independent of A. The
factorization of Eq. (2) as χðn;m; tÞ ¼ eAðn�mÞ~χðn;m; tÞ immediately follows.

Particle-conserving susceptibilities. Although so far we have only considered
quadrature-quadrature response functions, the fact that we can map our Hamil-
tonian onto a particle conserving one makes it much simpler to keep track of the
dynamics of the single squeezed mode ~̂an . Indeed, we have

~χxxðn;m; tÞ ¼ ~χppðn;m; tÞ ¼ Re ~χðn;m; tÞ ð81Þ

~χpxðn;m; tÞ ¼ �~χxpðn;m; tÞ ¼ Im ~χðn;m; tÞ ð82Þ
where

~χðn;m; tÞ ¼ h½~̂anðtÞ; ~̂a
y
mð0Þ�i : ð83Þ

Because our Hamiltonian is quadratic in boson opeators and conserves total
quasiparticle number, we can readily use the single-particle formalism to find the
relevant susceptibilities. If we let nj i denote a position eigenket, we then have

~χðn;m; tÞ ¼ nh je�it ~H�iκ2ð Þ mj i ð84Þ

with

~H ¼ iJ
XN�1

n¼1

nþ 1j i nh j � h:c:

 !
ð85Þ

κ ¼ κ 1j i 1h j ð86Þ
It is more convenient to write the susceptibilities in the frequency domain:

~χ½n;m;ω� ¼
Z 1

0
dtχðn;m; tÞeiωt ð87Þ

¼ nh j i

ω1� ~H þ i κ2
mj i ð88Þ

We’ll first compute the susceptibilities without the effects of ϵ or κ, that is

~χ0½n;m;ω� ¼ nh j i

ω1� ~H
mj i ð89Þ

Written out explicitly, the matrix elements of the susceptibility for a finite open
chain then satisfy the difference equation

i~χ0½n� 1;m;ω� � ω

J
~χ0½n;m;ω� � i~χ0½nþ 1;m;ω� ¼ � iδnm

J
ð90Þ

with boundary conditions ~χ0½0;m;ω� ¼ ~χ0½N þ 1;m;ω� ¼ 0. The exact form of the
susceptibility matrix is known; here for the sake of completeness we quickly sketch
how to obtain it. First, we note that Eq. (90) has the form of a translationally
invariant Green’s function problem in the index space n, with −iδnm/J acting as a
source term. The general solution will then consist of a linear combination of the
source free solution and a convolution (in the index space n) of the source with the
homogeneous solution.

The source free solution, which satisfies

i~χsf0 ½n� 1;m;ω� � ω

J
~χsf0 ½n;m;ω� � i~χsf0 ½nþ 1;m;ω� ¼ 0 ð91Þ

is precisely (up to a factor of i) the recursion relation that defines Tn(ω/2J) and
Un(ω/2J), the Chebyshev polynomials of the first and second kind, respectively.
Since U−1(ω/2J)= 0, and given our boundary condition ~χ0½0;m;ω� ¼ 0, we
conclude that the source free solution is

~χsf0 ½n;m;ω� ¼ cmi
nUn�1

ω

2J

� �
ð92Þ

with cm a constant that will be used to satisfy the second boundary condition. The
full solution to Eq. (90) is then

~χ0½n;mω� ¼ cmi
nUn�1

ω

2J

� �
� i
J
in�mUn�m�1

ω

2J

� �
Θðn�mÞ ð93Þ

with Θ(n−m) the Heaviside step function (where Θ(0)= 0). Enforcing the second
boundary condition ~χ0½N þ 1;m;ω� ¼ 0 yields

~χ0½n;m;ω� ¼ i1þn�m
Uminðn;mÞ�1

ω
2J

� �
UN�maxðn;mÞ

ω
2J

� �
JUN

ω
2J

� � ð94Þ

We now turn our attention to computing the response functions in the presence
of the waveguide on the first site. Formally, this introduces a local term −κ/
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2δn,1δm,1 to the the dynamical matrix. The full susceptibilities ~χ½n;m;ω� can then
readily be solved algebraically using Dyson’s equation

~χ½n;m;ω� ¼ ~χ0½n;m;ω� � κ

2
~χ0½n; 1;ω�~χ½1;m;ω�

¼ ~χ0½n;m;ω� �
κ
2 ~χ0½n; 1;ω�~χ0½1;m;ω�

1þ κ
2 ~χ0½1; 1;ω�

:
ð95Þ

Since there is only a driving force on the first site and we are only interested in
the response on the first site, we must only compute ~χ½n; 1;ω� and ~χ½1;m;ω�:

~χ½n; 1;ω� ¼ in
UN�n

ω
2J

� �
JUN

ω
2J

� �
þ i κ2UN�1

ω
2J

� � ð96Þ

~χ½1;m;ω� ¼ �i�m
UN�m

ω
2J

� �
JUN

ω
2J

� �
þ i κ2UN�1

ω
2J

� � ð97Þ

Because ~χpxðn;m; tÞ ¼ �~χxpðn;m; tÞ ¼ 0, from Eq. (82) we conclude that
~χ½n;m;ω� ¼ ~χxx½n;m;ω� ¼ ~χpp½n;m;ω�. With this result and Eqs. (77–78), we now
have all the relevant quadrature–quadrature susceptibilities.

QFI for V̂NHSE . We are now in a position to compute QFIτðNÞ=�ntot for any choice
of perturbation V̂ . Recall that that in the large β limit of interest, the QFI coincides
with SNR squared, optimizing over the homodyne angle ϕ (see Eqs. (13)). As is
written in the main text, see Eq. (17), the steady-state signal takes the form

SτðN; ϵÞ ¼
ffiffiffiffiffi
κτ

p
jRe½e�iϕðδhx̂1i

ss þ iδhp̂1i
ssÞ� ð98Þ

with δhx̂1i
ss and δhp̂1i

ss the steady state linear response of the site-1 average
quadrature amplitude to a non-zero ϵ. The signal will depend on the phase of the
coherent drive β which we take to be real, as in the main text. Our conclusion that
V̂NHSE does not have an exponentially large QFI/�ntot is independent of the phase of
β, as will become evident. This choice of phase is equivalent to driving the x̂1
quadrature with a force �

ffiffiffiffiffi
2κ

p
β, so that the signal is

SτðN; ϵÞ ¼ κβ
ffiffiffiffiffi
2τ

p
jRe½e�iϕðδχxx½1; 1; 0� þ iδχpx½1; 1;ω�Þ� ð99Þ

The form of the responses δχxx[1, 1; 0] and δχpx[1, 1; 0] will depend on V̂ . For the
non-local hopping perturbation

V̂NHSE ¼ eiφây1âN þ e�iφâyN â1 ð100Þ

the change to the equations of motion induced by ϵ to the quadratures on the first
site read:

δ _̂x1 ¼ ϵ sinφ x̂N þ cosφ p̂N
� �

ð101Þ

δ _̂p1 ¼ ϵ � cosφ x̂N þ sinφ p̂N
� �

: ð102Þ
First order perturbation theory then yields

δχxx½1; 1; 0� ¼ χxx ½1; 1; 0�ðϵ sinφÞχxx½N; 1; 0� ð103Þ

δχpx½1; 1; 0� ¼ χpp½1; 1; 0�ð�ϵ cosφÞχxx½N; 1; 0� ð104Þ
where χαα[n,m; ω] the susceptibilities of the unperturbed system, which we computed
in the previous sections. The salient feature is that χxx[n, m; ω] ∝ eA(n−m) and χpp

[n, m; ω] ∝ e−A(n−m) due to the phase-dependent chiral propagation. With the factor
of χxx[N, ; 0], it would appear that we have we do in fact have an exponentially large
response. Yet it precisely this terms which controls the number of coherent photons
on site N, since �nN ¼ κjβj2jχxx½N; 1; 0�j2. Expressing the signal in terms of �nN gives

SτðN; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8τκ�nN

p
j ϵ
κ
jj sinðφ� ϕÞ ð105Þ

where we have used χxx[1, 1; 0]= χpp[1, 1; 0]= 2/κ for a chain with a odd number of
sites. The form of Eq. (105) makes it evident that SNR=

ffiffiffiffiffiffiffi
�ntot

p
does not scale

exponentially with system size, and therefore neither does QFI=�ntot.
Despite the perturbation having coupled the two effective Hatano–Nelson

chains with an amplitude of ϵ cosφ (see Eqs. (101) and (102)), this is not enough to
ensure a large SNR=

ffiffiffiffiffiffiffi
�ntot

p
. The non-local form of V̂NHSE implies that a wavepacket

only experiences unidirectional amplification before exiting the waveguide. In
contrast, the perturbation V̂N ¼ âyN âN studied throughout the main text allows for
amplification before and after interacting with ϵ.
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