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Hypertrophic cardiomyopathy (HCM) is a very common inherited cardiovascular disease

(CAD) and the incidence is about 1/500 of the common population. It is caused by

more than 1,400 mutations in 11 or more genes encoding the proteins of the cardiac

sarcomere. HCM presents a heterogeneous clinical profile and complex pathophysiology

and HCM is the most important cause of sudden cardiac death (SCD) in young people.

HCM also contributes to functional disability from heart failure and stroke (caused by

atrial fibrillation). Current treatments for HCM (medication, myectomy, and alcohol septal

ablation) are geared toward slowing down the disease progression and symptom relief

and implanted cardiac defibrillator (ICD) to prevent SCD. HCM is, however, entering

a period of tight translational research that holds promise for the major advances in

disease-specific therapy. Main insights into the genetic landscape of HCM have improved

our understanding of molecular pathogenesis and pointed the potential targets for the

development of therapeutic agents. We reviewed the critical discoveries about the

treatments, mechanism of HCM, and their implications for future research.
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INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is a heterogeneous myocardial disease characterized by left
ventricular hypertrophy and in the cases of hypertrophic obstructive cardiomyopathy (HOCM),
it is characterized by asymmetric septal hypertrophy. In the majority of the cases, the average
interventricular septal thickness is 26mm, which cannot be fully explained by the loading
conditions of the left ventricle (1, 2). There are several types of HCM based on the distribution
of hypertrophy: symmetric, asymmetric, apical, and focal (3). In addition to the hypertrophy,
the abnormalities of the mitral valve and subvalvular apparatus lead to the systolic anterior
motion (SAM) and left ventricular outflow tract (LVOT) obstruction in about two-thirds of the
HCM cases, the characteristic features of HOCM, as well as the microvascular dysfunction and
subendocardial ischemia (3). Due to a combination of these factors, patients with HCM frequently
experience reduced exercise capacity, dyspnea, and/or chest pain. HCM is mainly inherited in an
autosomal dominant pattern, linked with mutations (nucleotide sequence variants) in 11 or more
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TABLE 1 | A list of the genes in which the pathogenic mutations are associated

with hypertrophic cardiomyopathy (HCM).

Gene HCM frequence Protein or associated

phenotypes

Sarcomeric proteins

MYH7 40-44% β-myosin heavy chain 7

MYBPC3 35-40% Myosin-binding protein C3

TNNT2 5-15% Troponin T

TNNI3 5% Troponin I

TPM1 3% Tropomyosin α-1 chian

MYL2 1-2% Regulatory myosin light

chain

MYL3 1% Essential myosin light

chain

ACTC1 1% Actin

TNNC1 <1% Troponin C

Z-disk proteins

LBD3 1-5% ZASP-LIM binding domain

3

ACTN2 <1% Alpha-Actinin-2

ANKRD1 <1% Ankyrin repeat

domain-containing

protein-1

CSRP3 <1% Muscle LIM Protein

MYOZ2 <1% Myozenin-2

TCAP <1% Telethonin

VCL <1% Vinculin

NEXT <1% Nexilin

FLNC <1% Filamin C

Sarcomere-associated proteins

DES <1% Desmin

It also includes the proteins and related phenotypes that are involved in these specific

gene mutations and their proportion in the overall HCM.

genes encoding the proteins of myocardial sarcomere structure
(∼60% of all the causes and >90% of the genetically defined
patients), and with beta-myosin heavy chain andmyosin-binding
protein C genes most commonly involved (Table 1; Figure 1)
(4–6). Patients with HCM suffer from the cardiovascular death
rates of 1-2% per year including the sudden cardiac death
(SCD) ∼ 1%, heart failure (HF) ∼ 0.5%, and thromboembolism
∼ 0.1% (2, 3). In recent years, there has been tremendous
development in this field with a translation of the basic science
discoveries into the new therapeutic methods. In this study, we
reviewed the recent development in pharmacological and gene-
based therapies, which we believe will result in a comprehensive
understanding of the treatment of HCM in the future.

PATHOGENESIS

Gene mutation is the initiating pathogenesis of HCM affecting
the proteins by playing a critical role in the function of the
cardiac muscle unit “sarcomeres.” The function of the sarcomere
may weaken due to an abnormality in or shortage of any one
of these proteins, which, in turn, affects the normal myocardial
contractility. It is still not exactly described how the mutations

in the sarcomere-related genes cause hypertrophy of the heart
muscle (7, 8). However, there are several hypotheses that are as
follows (Figure 2):

(1) Mutations in the sarcomere-related genes are associated with
an increased affinity for calcium in themyofilaments, activate
the calmodulin kinase II (CaMKII) pathway, and delay
the downstream targets of the CaMKII sodium channels,
thus increase the intracellular calcium and, thus, forming a
vicious cycle (9–12). This results in the impaired relaxation
and diastolic dysfunction of the myocardium.

(2) Mutations in the sarcomere-related genes in HCM can
lead to inefficient contractility with a resultant increase in
the ATP demand. This impairs the structure and function
of the mitochondria leading to energy supply disorders
(13–16). Microvascular dysfunction further exacerbates the
myocardial energy deficiency of HCM and restricts the
transport of the oxidative metabolites. The imbalance
between the energy supply and demand leads to the
myocardial cells in a state of peroxidation and then
produces various reactive oxygen species (ROS), resulting
in the glutathione acylation of the muscle filaments
[cardiac myosin-binding protein C (cMyBP-C)] (17, 18).
Functionally, this modification increases the myofilament
calcium sensitivity and inhibits the kinetics of cross-bridge
cycling, leading to the diastolic dysfunction and ultimately
aggravating the HCM phenotype (18–21).

(3) Due to the mutations in the sarcomere-related genes, the
accumulation of the harmful proteins results in a toxic
effect on the myocardial contractile devices and myocardial
cells (22).

(4) Sarcomeric protein transcription and posttranslational
modifications, as well as the other modified genes, also
promote the development of HCM. Studies have shown
that polymorphism of angiotensin I can contribute to
the hypertrophic phenotype (23). These modified factors
stimulate non-cardiac cell proliferation such as fibroblasts
(23), thereby promoting the development of HCM. In
conclusion, the functional changes at the cellular and
molecular levels could be target of innovative therapies.

The structural abnormalities of HCM include the following:

(1) Abnormal myofibrils and abnormal arrangement of the
cardiomyocytes (24).

(2) Coronary artery microvascular dysfunction. Thickening of
the blood vessel wall leading to asymptomatic myocardial
ischemia, further inducing myocardial injury and fibrosis
(25, 26). Interstitial connective tissue increases significantly.
Fibrosis is patchy or widely distributed around the cells and
poor remodeling of the myocardial tissue ultimately leads to
irreversible dysfunction such as severe HF and SCD (27, 28).

NOVEL THERAPIES

Calcium Desensitizer
Ca2+ overload, CaMKII, and increased INaL play a very important
role that drive the myocardial remodeling from the earliest stage
of the development of hypertrophy, diastolic dysfunction, and the
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FIGURE 1 | The majority of the cases in adolescents and adults are caused by mutations in the sarcomere protein genes.

FIGURE 2 | The structure of the myocardium and the mechanism of myocardial contraction are the potential targets for HCM therapy. HCM, hypertrophic

cardiomyopathy; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; NCX, sodium/calcium exchange pump; PLB, phospholamban; ROS, reactive oxygen species;

FA, fatty acid.
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TABLE 2 | Table for the novel therapies.

Novel therapies Targets Mechanisms

Blebbistatin Troponin T mutation sensitivityofCa2+↓

Parvalbumin Ca2+ Decrease the

concentration of Ca2+

SERCA2a Ca2+ SERCA2 a protein

expression increased

Diltiazem L-type calcium

channels

Upregulation of the SR

protein

TABLE 3 | Table for metabolic therapy.

Novel therapies Targets Mechanisms

Perhexiline CPT1/2 shifting LCFA→ glucose

Mavacamten β-myosin heavy chain stabilizes the super relaxed state

Omecamtiv mecarbil Ca2+ accelerating ATP generation

arrhythmogenic substrate (5, 6). There are many studies aimed at
an increased calcium sensitivity (Figure 2).

Blebbistatin
Blebbistatin is an inhibitor of actin-myosin interaction
functioning independently of Ca2+ influx (29). Studies have
shown that blebbistatin, in a mouse model of HCM caused
by troponin T mutation, can reduce the sensitivity of Ca2+ to
myofilaments and the incidence of arrhythmias; meanwhile,
several studies Grillo et al. also reported that reducing the
sensitivity of Ca2+ to myofilaments can be a target for the HCM
treatment (29–32).

Parvalbumin
Parvalbumin is a Ca2+ buffering molecule not expressed in
the cardiomyocytes; when the concentration of Ca2+ increases,
parvalbumin will release Mg2+ and binds to Ca2+. Piguet et
al. and Coutu et al. found that parvalbumin can correct the
myocardial diastolic dysfunction in the rat and mouse HCM
models (33, 34).

SERCA2a
In a mouse model of HCM caused by a tropomyosin mutation,
SERCA2a, an SR protein, was transported by the adenovirus
to 1-day-old mice. After several weeks, The sarco/endoplasmic
reticulum calcium ATPase 2a isoform (SERCA2a) protein
expression increased in the heart of the mouse and significantly
improved the morphology of the heart. In HCM mice knocked
out with SERCA2a inhibitory protein, phosphoprotein gene
[phospholamban (PLN)] can also increase the absorption of
Ca2+ by the sarcoplasmic reticulum (SR) and improve the
phenotype (35).

Diltiazem
Diltiazem can inhibit the L-type calcium channels (34). Early
application of diltiazem caused the upregulation of the SR protein
and eased the development of the HCMphenotype (36). In recent

years, a study by Ho CY et al. found that diltiazemmay relieve left
ventricular remodeling in the asymptomatic sarcomere mutation
carriers (NCT00319982) (37). The summarized novel therapies
can be seen in Table 2.

METABOLIC REGULATION-ENERGY
EXPENDITURE HYPOTHESIS

In HCM, the mutations in the sarcomere gene result in reduced
contractile efficiency of the sarcomere and an increase in
ATP consumption. The characteristic of the HCM substrate
metabolism is the preferential use of fatty acid (FA) oxidation,
but in order to adapt to the consumption of more ATP, energy
metabolism transfers to glucose metabolism to produce more
ATP. This increased glucose metabolism, however, results in the
accumulation of pyruvate and lactate produced by glycolysis,
which is harmful to the myocardium (Figure 2).

Perhexiline
Perhexiline improves the energy production efficiency by
transferring the substrate utilization from the free fatty acids
(FFAs) to glucose and improves the symptoms, exercise capacity
(VO2max), and function of heart in the patients with systolic
heart failure caused by the ischemic and non-ischemic factors
that are very effective (38). Perhexiline promotes the use of
carbohydrates as the substrate for the myocardial energy by
inhibiting carnitine palmitoyltransferase 1 (CPT1); meanwhile,
CPT2 resulting in increased efficiency of the myocardial oxygen
utilization (39). Perhexiline would be likely to induce an
increase of at least 13% efficiency of the myocardial oxygen
utilization (40). Perhexiline appears to exert the important anti-
inflammatory (in part via nicotinamide adenine dinucleotide
phosphate oxidase inhibition) and nitric oxide-potentiating
effects that may occur independently of CPT inhibition
(NCT00500552) (41).

Mavacamten
During the period of myosin force production, there is an
autoinhibited state, also referred to as a super-relaxed state.
With certain myosin mutations, the HCM sarcomere spends
lesser time in this state, resulting in the hyperactivation and
excess utilization of ATP. The small molecule mavacamten
stabilizes this inhibited state, effectively extend the time that
myosin is inhibited. Mavacamten is specific for β-myosin
heavy chain. Many studies in the mouse HCM models have
pointed out that the early treatment of phenotype-negative HCM
mice can prevent HCM hypertrophy and other features (42).
Administration to the HCM mice reduced the hypertrophic
phenotype and reduced the expression of the fibrotic genes
(43). The gradient of 8 out of 21 participating patients had
significantly reduced LVOT to<30mmHg. It also resulted in the
reduced serum N-terminal pro B-type natriuretic peptide (NT-
proBNP) levels in patients with HCM. This is the biomarker
associated with increased wall stress and myocardial injury
(NCT03470545) (43). The trial was designed to evaluate the
dose of mavacamten in the non-obstructive HCM. This study
found that the mavacamten treatment group had no significant
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TABLE 4 | Table for the gene therapy.

Method Medicinal product Targeted Results Research status

Genome editing CRISPR/Cas9 mutated gene repaired by homology-directed

repair with a repair template

genetic correction in HCM hiPSC1-3 (55–57),

and correct HCM caused by a GAGT-deletion

in exon 16 of the MYBPC3 gene (58).

Exonskipping antisense

oligonucleotide

exonic splicing enhancer

sequences of an inframe

mutated exon

preventing binding of proteins

involved in the splicing process

in newborn mice abolished cardiac

dysfunction and prevented the development

of leftventricularhypertrophy (59).

CRISPR/Cas9 mutated DNA sequence Permanently cut in-frame the

mutated exon.

Allele-specific silencing specific RNA interferene

molecule

mutant mRNA knocked-down mutant mRNA eliminate the mutant allele and delay the

progression of cardiomyopathy in

Myh6-targeted knock-in mice (63).

RNA trans-splicing specific RNA interferene

molecule

pre-mRNA competes with cis-splicing successful 5′trans-splicing in the context of

HCM in cardiomyocytes and in vivo in

Mybpc3-targeted knock-in mice and hiPSC

(61, 62, 64).

Gene replacement full-length cDNA mutated DNA functional full-length protein in Mybpc3-targeted knock-in mice/hiPSCs,

which were retrieved from an HCM patient

carrying a truncating MYBPC3 muta -tion

(49, 65, 66).

toxicity compared to the placebo group, proving that the drug
was well-tolerated (NCT03442764) (44).

Omecamtiv Mecarbil
Omecamtiv mecarbil (OM) is being tested in treating
hypercontractility by accelerating ATP generation, thus
increasing myosin head binding to actin, resulting in an
enhanced force-producing situation (45). The effects of OM
are dependent on the intracellular Ca2+ levels (46). OM has
shown promising clinical practical values, progressing to phase
III trials (NCT02929329). The summarized metabolic therapy
can be seen in Table 3.

CARDIAC GENE THERAPY

In the past decades, gene therapy got tremendous development in
the field of HCM. From the current evidence, gene therapy seems
a very promising treatment in HCM caused by the mutations in
the genes that encode the sarcomeric proteins.

The key problem for gene therapy is the effective and safe
delivery of the gene therapy drugs into the body of the patient.
It has been shown that the adeno-associated virus serotype 9
(AAV9) is a very promising candidate for cardiac gene transfer
after systemic delivery in mouse and large animal HCM models
(47). The SERCA2a gene therapy phase II trial also showed a
very exciting result of the safety and feasibility of AAV1-mediated
gene transfer (48). However, this investigation has not shown
significant positive outcomes in the treated patients (49, 50).
The defect of AAV-mediated gene therapy is that the human
body easily generates neutralizing antibodies against AAV. These
neutralizing antibodies seriously impact the outcomes of gene
therapy; another question is an increased readministration rate.
This could be avoided by the pharmacological modulation of
the immune response and/or use of another AAV serotype
(51, 52).

Fortunately, the difficulty of delivering the gene therapy
medicinal product into the body of the patient has been resolved
to some extent. Various methods were developed to suppress the
expression of the genetic defects on the DNA or RNA levels as
well as genome editing (42, 53–58), exon skipping (59, 60), allele-
specific silencing, (61–63) spliceosome-mediated RNA trans-
splicing (61–64), and gene replacement therapy (49, 65, 66).
Due to the advancement in genome modification technologies,
antisense oligonucleotides, clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9, wild-type complementary
DNA (cDNA) (wild-type MYBPC3 cDNA) sequences, and
RNA interference molecules are clustered regularly interspaced.
Specific editing that promotes the genetic mutations of an
individual may lead to the individual-based pharmacological
approaches in HCM. The summarized gene therapy can be seen
in Table 4.

FUTURE DIRECTIONS

Since there are many promising treatments for HCM, it is
still a complex disease that requires further study based on
pathophysiology and genetics. It is necessary to further study the
mechanism of gene mutations and the secondary events caused
by HCM. Thus, we need to develop new therapies based on
gene editing or molecular regulatory pathways. Meanwhile, a
large amount of basic medical research on the pathogenesis and
treatment of HCM needs to be further transformed into clinical
application. In conclusion, HCM is themain hereditary disease of
the heart and the sarcomeric protein gene mutation is the most
common cause of HCM. HCM is hereditary cardiomyopathy.
Continued study and improved understanding of the genetic
mediators of HCM will help to guide the development of
effective targeted therapies, small molecules that can target the
key molecular pathways or events in the heart to prevent the
natural course of HCM. Increasing the treatment options for
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HCM may block the progression of the HCM disease, but
it is not possible to completely correct the mutant gene and
there are still genetic risks. Finally, a better understanding
of the structural and metabolic disorders caused by the gene
mutations is very helpful for developing the new therapies
of HCM.
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