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Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated
with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, car-
diovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes
in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes
to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeu-
tic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in
CKD.
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Introduction
The prevalence and incidence of chronic kidney disease
(CKD) is increasing worldwide.1 CKD is characterized
by progressive renal fibrosis and a gradual decline in
the glomerular filtration rate (GFR), ultimately leading
to end-stage renal disease. Hypoxia is a pathological
condition in which the body or organs lack an adequate
oxygen supply, which can also occur due to excessive
energy demands in the context of a continuous blood
supply. Although almost 20% of the blood volume cir-
culates in the human kidney, the organ remains in the
critical state of hypoxia physiologically. The formation
of hypoxia status is determined by various factors,
including local oxygen tension, cellular energy require-
ments, and cellular intrinsic resistance to hypoxia. In
the kidney, proximal tubular cells are the most sensitive
to hypoxic injury,2 while the extent of tubule injury
determines the prognosis of kidney disease. Meanwhile,
in response to hypoxia, pericytes detach from the vessel
walls and differentiate into activated myofibroblasts in
the interstitial space, ultimately leading to the develop-
ment of renal fibrosis.3 In addition, hypoxia also induces
endothelial activation, followed by leukocyte stasis and
blocking blood flow to peritubular capillaries, ultimately
leading to loss of capillary structure and exacerbating
hypoxia and loss of nephrons.4

In this review, we describe the roles of hypoxia in
CKD and discuss the characteristics of oxygen supply
and metabolism in the kidney. Specifically, we empha-
size the effect of hypoxia on the progression of CKD
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and CKD-related complications. Finally, the potential
therapeutic approaches that target chronic hypoxia in
CKD and its challenges will be discussed.
Characteristics of oxygen homeostasis and
factors leading to hypoxia in CKD
Organ tolerance to hypoxia depends on the blood sup-
ply. In fact, the kidney is intrinsically susceptible to hyp-
oxia. It only uses no more than 10% of the oxygen
delivered by the renal artery.5 Most of the blood in the
kidney is transported to the renal cortex, while only
10%�15% of blood is sent to the renal medulla. In the
kidney, arterial and venous vessels run in close parallel.
The oxygen shunt between arterial and venous vessels
can bypass the blood circulation and make the oxygen
tension in renal tissue relatively low, approximately 10
mmHg in the renal medulla.6 The oxygen tension of
the renal cortex varied widely, and the average partial
pressure of oxygen was approximately 30 mmHg, which
decreased significantly with the change in renal perfu-
sion. Oxygen supply in the tubulointerstitium relies
heavily on postglomerular capillary flow. Thus,
upstream obstruction can result in microcirculation
damage to immediately decrease oxygen tension in the
tubulointerstitial compartment. In addition, the sensi-
tivity of different cell types to hypoxia depends on vari-
ous factors, such as the cellular metabolic rate and the
activity of hypoxia-inducible factor (HIF) pathways
(Figure 1). Recently, the physiological factors that render
the kidney susceptible to hypoxia have also been sum-
marized and discussed.7

In CKD, hypoxia and decreased oxygen tension are
common. Haemodialysis patients, in particular, showed
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Figure 1. Characteristics of oxygen supply and metabolism in the kidney. The oxygen shunt bypasses the loop to keep oxygen
tension comparatively low in the renal medulla. Oxygen is delivered to the kidney to generate ATP via mitochondrial oxidative phos-
phorylation. Upstream obstruction leads to microcirculation damage to decrease oxygen tension. In CKD, hypoxia and decreased
oxygen tension are common. When the oxygen supply is inadequate, many cells shift from aerobic to anaerobic metabolism, and
glycolysis becomes the primary mode of energy production. Chronic hypoxia also results in changes in gene expression patterns.
Various HIF-independent pathways promote ATP conservation by limiting energy-consuming processes, such as cell division, ribo-
some biogenesis, mRNA translation, and ion channel activity. Abbreviations: ATP, adenosine triphosphate; CKD, chronic kidney dis-
ease; HIF, hypoxia inducible factor.
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different characteristics of oxygen homeostasis, with
abnormalities along the entire oxygen cascade and
impaired diffusive and convective oxygen transport.8

Chronic renal hypoxia is caused by numerous factors in
patients with CKD (Figure 2), including: (1) Loss of peri-
tubular capillaries. Loss of peritubular capillaries is not
only a result of hypoxia but also contributes to the pro-
gression of CKD by exacerbating hypoxia.9 (2) Fibrosis
of the tubulointerstitium. Interstitial fibrosis reduces
the efficiency of oxygen diffusion because of the longer
distance between capillaries and tubular cells. Hypoxia
also induces the accumulation of extracellular matrix,
which further widens the diffusion distance between
functional blood vessels and nephrons, aggravating hyp-
oxia.10 (3) Decrease in peritubular capillary beds. Both
the obstruction of peritubular capillaries in damaged
glomeruli and an imbalance of vasoactive substances
(activation of renin-angiotensin system, endothelin,
etc.) will result in a downstream decrease in tubulointer-
stitial blood flow. Glomerular hyperfiltration is a condi-
tion that increases renal oxygen demand, leading to an
imbalance between tubular workload and oxygen deliv-
ery in early CKD. (4) Oxidative stress is another impor-
tant factor leading to excessive oxygen demand.11 (5)
Inflammation plays a key role in the development of
chronic hypoxia. Mechanistically, inflammatory cyto-
kines, including interleukins 1 and 6, angiotensin II,
and transforming growth factor b, can result in exces-
sive accumulation of extracellular matrix, which can dis-
rupt and replace functional parenchyma, leading to
interstitial fibrosis.12 (6) Anaemia can also reduce oxy-
gen delivery to the kidney.13 (7) Hypoxia induced by
obstructive sleep apnoea. Obstructive sleep apnoea-
related hypoxia produces a range of harmful systemic
effects, including oxidative stress, inflammation, and
sympathetic activation, that collectively worsen the pro-
gression of renal disease. In turn, CKD can result in
increased severity of sleep apnoea by inducing uremic
neuropathy and myopathy, altered chemosensitivity,
and hypervolemia.14

Beyond tubulointerstitial hypoxia, glomerular hyp-
oxia can also occur in CKD. Glomerular sclerosis or the
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Figure 2. Factors leading to renal hypoxia in CKD. Glomerular hypoxia occurs in CKD. Glomerular hyperfiltration and oxidative
stress are conditions that increase oxygen demand. Glomerular injury results in a decrease in GFR and leads to tubulointerstitial
injury via hypoxic damage. Tubular atrophy triggers a decrease in GFR via tubuloglomerular feedback. Loss of peritubular capillaries
is not only a consequence of hypoxia but also promotes the progression of CKD. Fibrosis of the tubulointerstitium and anaemia
reduce the efficiency of oxygen diffusion. Reduction in peritubular capillary flow results in a downstream decrease in tubulointersti-
tial blood flow to cause ischaemic injury. Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.
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collapsing of glomerular capillaries may directly cause
damage to tubules by reducing peritubular capillaries
and oxygen supply. In contrast, tubulointerstitial injury
could also inevitably cause the functional or structural
loss of glomeruli. Tubular atrophy leads to increased
fluid delivery to the macula densa, resulting in
decreased GFR via tubule glomerular feedback. Addi-
tionally, tubulointerstitial fibrosis reduces blood supply
to peritubular capillaries, leading to ischaemic injury of
the nephron and further reduction of GFR.15

Thus, accumulating evidence indicates that hypoxia
plays a crucial role in the progression of CKD. When
the oxygen supply is insufficient, many cells switch
from aerobic to anaerobic metabolism, and glycolysis
becomes the main method of energy production.16 Gly-
colysis is an inefficient form of energy production, pro-
ducing only 2 mol of adenosine triphosphate (ATP) per
mol of glucose, compared to approximately 36 mol
ATP/mol glucose during aerobic respiration. Chronic
hypoxia also results in changes in gene expression
www.thelancet.com Vol 77 Month March, 2022
patterns. Generally, HIF stabilization and transcrip-
tional activation of hypoxia-induced genes are the core
mechanisms of adaptation to hypoxia.17 Meanwhile,
multiple HIF-independent pathways promote ATP con-
servation by limiting energy-consuming processes, such
as ribosome biogenesis, cell division, ion channel activ-
ity, and mRNA translation. In addition, metabolic
abnormalities or the accumulation of intermediates
induced by an imbalance of oxygen supply and demand
were recently found to play critical roles in kidney
injury, which has been summarized and discussed by
other researchers.18,19 In addition to hypoxia directly,
renal repair secondary to renal injury also results in a
condition of relative hypoxia, which may stimulate aero-
bic glycolysis. Interestingly, some evidence suggests
that renal injury increases the need for renal repair,
which may stimulate aerobic glycolysis and help cell
proliferation.20 Therefore, understanding the exact
characteristics of oxygen homeostasis will be critical to
improve the strategy of CKD prevention and treatment.
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Figure 3. Effects and mechanisms of hypoxia on the progression of CKD. Hypoxia induces fibrosis in various ways, including
RAGE, p38 MAPK, EMT, dysregulation of angiogenesis and inflammation. In CKD, fibroblasts proliferate and differentiate into myofi-
broblasts and increase ECM synthesis to induce fibrosis. In addition, endothelial transdifferentiation to myofibroblasts induced by
hypoxia is also involved in kidney fibrosis. PTE cells are sensitive to hypoxic environments, and NF-kB, Wnt and Notch-1 signalling
can be activated to trigger inflammatory cytokines, chemokines, adhesion molecules and peritubular inflammation to promote
fibrosis. Hypoxia can induce angiogenesis dysregulation by regulating the gene transcription, mRNA, and protein expression of
VEGF and VEGF receptors to cause renal damage. Recruitment of proinflammatory cells and cytokines, phenotypic transition of T
cells induced by HIF-1a, differentiation and proliferation of regulatory T cells and dendritic cells, etc. are promoters of myofibroblast
activation that affect angiogenesis, resulting in collapsing glomerulopathy, decreased capillary flow, intraluminal capillary pressure,
and endothelial dysfunction, which in turn aggravates hypoxia. Abbreviations: RAGE, receptor for advanced glycation end products;
MAPK, mitogen-activated protein kinase; PTE, proximal tubular epithelial; ECM, extracellular matrix; EMT, epithelial�mesenchymal
transition.
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Effects and mechanisms of hypoxia on the
progression of CKD (Figure 3)

Hypoxia and fibrosis
Packed with mitochondria and dependent on oxidative
phosphorylation, the proximal tubule is particularly vulner-
able to various injuries, including hypoxia. Increasing evi-
dence has demonstrated that in response to hypoxia,
tubular epithelial cells undergo changes and function as
inflammatory and fibrogenic cells (they may undergo tubu-
lar epithelial cell death/atrophy, maladaptive repair, metab-
olism switch, senescence, etc.), with the consequent
production of various bioactive molecules that drive inter-
stitial inflammation and fibrosis.2 Meanwhile, previous
studies have reported that the tubular capillary network
becomes sparse with the progression of tubulointerstitial
fibrosis. Interstitial fibrosis and a decreased capillary net-
work leading to a decreased blood supply and hypoxia are
correlated with declining renal function.21 In a hypoxic
environment, hypoxia response element (HRE [DNA bind-
ing site of HIF])-driven reporter gene activity is increased.22

Endothelial cells are one of the main targets of hypoxia,
which activates the receptor for advanced glycation end
products (RAGE) and stimulates p38 mitogen-activated
protein kinase (MAPK) and nuclear factor-kappa B (NF-
kB) signalling to accelerate renal disease.23 Under hypoxic
injury, endothelial cells differentiate into myofibroblasts
(EndoMT),24 which subsequently increase the production
of extracellular matrix (ECM) and conversely aggravate hyp-
oxia in the kidney. Notably, hypoxia also plays a critical role
in epithelial�mesenchymal transition (EMT) in cultured
human proximal tubular epithelial (PTE) cells.25 PTE cells
www.thelancet.com Vol 77 Month March, 2022
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are rich in mitochondria and sensitive to oxidative phos-
phorylation and transform into a secretory phenotype in a
hypoxic environment.26 Hypoxia not only activates NF-kB
signalling to trigger peritubular inflammation but also acti-
vates Wnt and Notch-1 signalling to promote fibrosis.27

Finally, renal interstitial fibroblasts proliferate and differen-
tiate into myofibroblasts and promote renal scarring by
accelerating extracellular matrix synthesis under hypoxic
conditions.28
Hypoxia and angiogenesis
Peritubular capillary rarefaction can be observed in
CKD animal models. It is also the long-term response
to acute ischaemia�reperfusion injury, contributing to
the development of CKD.29 In CKD, peritubular capil-
lary rarefaction and tubulointerstitial hypoxia contribute
to the dysregulation of angiogenesis. In cultured tis-
sues, angiogenesis is induced by hypoxia by regulating
nitric oxide synthases, vascular endothelial growth fac-
tor (VEGF), and angiopoietins and affecting the prolifer-
ation and migration of endothelial cells.30 Flt-1 is
involved in the activation of VEGF and increased angio-
genesis under hypoxia.31 In addition, HIF regulates
angiogenesis-related genes by increasing the transcrip-
tion of VEGF and internal ribosomal entry sites both in
vitro and in patients with proteinuric
glomerulopathies.32,33 Normally, VEGF-A is expressed
in podocytes, tubular cells and endothelial cells and is
reduced in advanced stages of CKD. VEGF-A-deficient
mice showed endothelial swelling and necrosis, result-
ing in an impaired filtration barrier. Excessive VEGF-A
in podocytes causes collapsing glomerulopathy, which
is ascribed to decreased capillary flow and intraluminal
capillary pressure.34 Vascular endothelial growth factor
receptor (VEGFR) is expressed in endothelial cells in
glomerular and peritubular capillaries. VEGFR expres-
sion is upregulated in CKD patients and leads to endo-
thelial dysfunction.35 Ang-1, located at nephrogenic
mesenchyme, can promote the growth of interstitial
capillaries in mouse metanephric organ culture.36 Over-
expression of Ang-2 can induce glomerular endothelial
apoptosis, downregulate VEGF and nephrin and cause
podocyte injury.36 In CKD patients, Ang-1 is decreased,
while Ang2 is increased. This change is correlated with
endothelial cell apoptosis.37
Hypoxia and inflammation
Hypoxia and inflammation are intertwined at the
molecular, cellular, and clinical levels. On the one hand,
the concept that hypoxia can induce inflammation has
gained general acceptance from studies of the hypoxia
signalling pathway. Ischaemia/hypoxia is one of the
most common causes of the inflammatory response, as
evidenced by the infiltration and activation of inflamma-
tory cells. Increasing evidence has also demonstrated
www.thelancet.com Vol 77 Month March, 2022
that the transcription factor HIF, which is activated in
hypoxic conditions and is considered a reliable indicator
for hypoxia, plays a vital role in inflammation.38 Ben-
Shoshan et al. reported that increased HIF-1a in T cells
induces phenotypic transition from type 1 helper T cells
(Th1) to type 2 helper T cells (Th2) to amplify the
immune response of macrophages and cytotoxic T
cells.39 HIF-1a might negatively regulate the adaptive
immune system to protect tissues by activating the dif-
ferentiation and proliferation of regulatory T cells40 and
increasing adenosine to inhibit effector T cells.41 Hyp-
oxia also participates in dendritic cell injury by interfer-
ing with differentiation, enhancing the link between
hypoxia and immunity. In addition, various proinflam-
matory cells and cytokines are recruited to hypoxic envi-
ronments.42 On the other hand, the increase in
metabolic demands and reduction in metabolic sub-
strates caused by thrombosis and trauma are stimula-
tors of hypoxia in the inflammatory environment.43

HIF-1a and HIF-2a were upregulated in inflammatory
tissues with hypoxia manifestations, further confirming
the interaction between inflammation and hypoxia.44
Hypoxia and complications associated with
CKD

Anaemia
Althoughmany factors may contribute to anaemia in CKD
patients, insufficient erythropoietin (EPO) production is
one of the most important pathological mechanisms. EPO
production is primarily stimulated by hypoxia. When the
body is exposed to hypoxia or undergoes hypoxic condi-
tions, HIF-2a regulates EPO expression in combination
with hypoxia response elements on the EPO gene in the
kidney and liver.45,46 Currently, targeting HIF has been
effective and well tolerated for the correction of anaemia
with CKD, as evidenced from pooled phase 3 clinical trials,
indicating that targeting hypoxia has been successfully
transformed into clinical practice.

In addition, the gene expression for ironmetabolism in
hepatocytes is also regulated by HIF-2 gene expression.47

Iron is an important component of erythropoiesis. Iron
deficiency also occurs in CKD patients due to inadequate
provision or absorption of dietary iron and/or blood
losses.48 HIF-2a not only promotes the synthesis of EPO
in the kidney and liver49 but also regulates iron metabo-
lism by stimulating duodenal cytochrome B (DCYTB) and
divalent metal transporter-1 (DMT1) expression. Fe2+

needs ferroportin (FPN) to enter the circulation and be
transported to the target region by transferrin (TF). Stud-
ies have shown that HIF can upregulate the expression of
TF and FPN and downregulate hepcidin synthesis. As a
result, enterocytes and hepatocytes release more iron
together to meet the requirement of erythropoiesis. In
chronic inflammatory status, elevation of serum hepcidin,
reduction of FPN and hypoferremia might contribute to
5
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the development of anaemia.50 Moreover, hypoxia not only
affects bonemarrow by regulating the maturation and pro-
liferation of erythroid progenitors but also activates the
EPO receptor (EPOR) to regulate haemoglobin synthesis.51

Therefore, the discovery of hypoxia responses and HIF sig-
nalling provides promising therapeutic strategies for hyp-
oxia-related diseases.
Cardiovascular disease (CVD)
CVD is the leading cause of death in patients with CKD.
One of the fundamental functions of the cardiovascular
system is oxygen delivery; therefore, CVD inherently is
linked to hypoxia. Hypoxia is also a promoter of myocar-
dial infarction, cardiac remodelling, atherosclerosis, and
peripheral artery disease in CKD, which has been sum-
marized and discussed. Meanwhile, accumulating evi-
dence has demonstrated that both reduced
endothelium-independent maximal vasodilatation and
loss of vascular tone were observed in uraemic animals
and CKD patients, which were also closely associated
with the severity of uraemia.52,53 These factors affect the
perfusion of tissue to induce hypoxia.

Of note, in the context of CKD, the responses to hyp-
oxia in CVD were also explored systemically. At the molec-
ular level, advances in our knowledge of cellular oxygen
sensing and hypoxia responses and their role in adaptation
to hypoxia have led to the discovery of HIF signalling. HIF
mediates cellular responses to hypoxia at the transcrip-
tional level. Under hypoxic conditions, both HIF-1a and
HIF-2a show increased trends in the heart. HIF-1a can
activate inducible nitric oxide synthase (iNOS) gene
expression by increasing NO synthesis, whereas HIF-2a
induces the expression of arginase-1 (Arg-1) to suppress
NO synthesis. Of note, NO, as a vasodilator, plays a vital
role in regulating vascular tone by regulating cGMP in
smooth muscle cells,54 S-nitrosylation of target proteins,
activation of sarco/endoplasmic reticulum calcium
ATPase and production of cyclic inosine monophos-
phate.55 It is therefore well recognized that hypoxia is a
key instigator in CKD-CVD, and targeting hypoxia is likely
to be a promising therapeutic strategy for CVD.
Sarcopenia
Sarcopenia is the physiological reduction of muscle
mass and strength and is one of the complications of
CKD patients. Multiple factors participate in the patho-
genesis of sarcopenia. Skeletal muscle hypoxia is
believed to be the reason for muscle wasting and con-
tractility reduction.56 Hypoxia induces oxygen delivery
reduction to the muscles. This reduction is more obvi-
ous in anaemia with CKD. Oxygen delivery abnormali-
ties lead to a reduction in energy storage and protein
synthesis to impair muscle contraction. Mechanistically,
HIF-1a deficiency can stimulate the secretion of gluca-
gon-like peptide 1 (GLP-1) in human adipocytes,57
contributing to sarcopenia in hypoxia. In addition, hyp-
oxia induces muscle disuse by activating the HIF-1a and
NF-kB catabolic pathways and inhibiting the anabolic
mammalian target of rapamycin pathway.58,59 Finally,
local protein degradation and proteolytic pathways could
also be activated by cytokines to affect muscles.
Therapeutic approaches that target chronic
hypoxia in CKD

HIF stabilizers
Oxygen-dependent prolyl-hydroxylases (PHDs) are key
regulators of HIF-dependent erythropoiesis, providing
an essential theoretical basis for applying HIF-PHD
inhibitors (HIF-PHIs) to treat renal anaemia. Roxadu-
stat, as a first-in-class orally administered small mole-
cule HIF-PHI, has received approval in China, Japan,
South Korea, Chile, the United Kingdom, and the Euro-
pean Union, although it was not approved by the USA
Food and Drug Administration.60�63 In addition, sev-
eral other HIF-PHIs were also approved for marketing
in Japan, including daprodustat,64 vadadustat,65 and
enarodustat.66 In a recently published meta-analysis
including 2045 patients, HIF-PHIs exerted a medium
to large positive effect on the haemoglobin rate for dialy-
sis-dependent (DD) and nondialysis-dependent (NDD)
CKD patients. Moreover, HIF-PHIs improved the bio-
availability of iron and decreased hepcidin levels, con-
tributing to the improvement of renal anaemia.67

Although HIF-PHI treatment appears to be benefi-
cial,68 there are many debates on the role of HIF activation
in CKD progression. Preclinical studies demonstrated that
HIF signalling activation in the kidney appears to be detri-
mental, as evidenced by the stabilization of HIF-1 by
genetic deletion of vHL in a 5/6 renal ablation model and
the administration of an anti-HIF-1a agent in a unilateral
ureteral obstruction model.69 In addition, HIF activation
seemed to play a role in accelerating cyst growth in the
polycystic kidney disease mouse model.70 In contrast to
these detrimental effects, Schley et al. found that HIF-
PHIs could shift renal mononuclear phagocytes towards a
regulatory, anti-inflammatory phenotype and reduce
mononuclear phagocyte-driven renal inflammation in ade-
nine- and crystal-induced tubulointerstitial nephritis mod-
els.71 Moreover, using a model of ob/ob mice, Sugahara
et al. found that enarodustat protected against glucose and
lipid metabolic disorders and had renoprotective effects on
reducing albuminuria and ameliorating glomerular dam-
age.72 In fact, the effect of HIF activation is likely to
depend on the pathological context, specific cell types, and
timing, which has been summarized and discussed com-
prehensively elsewhere.73,74 Future research is warranted
to further elucidate the effects and mechanisms of HIF-
PHIs on CKD progression.

Additionally, the effects of HIF-PHIs were also
investigated in CKD-associated conditions. Preclinical
www.thelancet.com Vol 77 Month March, 2022
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studies found that HIF-1 was essential for enhancing
vascular smooth muscle cell (VSMC) calcification.75

Moreover, HIF-PHI, which stabilizes HIF-a, also aug-
mented the phosphate-induced osteochondrogenic phe-
notypic switch and led to VSMC calcification.76 For
human studies, a recent clinical trial reported that dap-
rodustat was noninferior to EPO regarding cardiovascu-
lar outcomes in DD CKD patients.77 while in NDD CKD
patients, vadadustat did not meet the prespecified non-
inferiority criterion for cardiovascular safety.78 In the
CKD-associated myopathy model, our group demon-
strated that MK-8617, a novel orally active HIF-PHI,
could ameliorate muscle impairment due to the pro-
moted angiogenesis in the skeletal muscle of CKD
mice.79 More randomized controlled trials will be
needed to ensure the exact safety and effectiveness of
HIF-PHIs on CKD-related complications in the future.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors
SGLT2 is a high-capacity, low-affinity transporter almost
exclusively located in the initial proximal renal tubules,
which plays a vital role in the reabsorption of > 90% of
the glucose filtered at the glomerulus.80 SGLT2 inhibitors
(SGLT2is), a novel class of oral antihyperglycaemic agents
leading to substantial loss of glucose and solutes in the
urine, are currently indicated for type 2 diabetes mellitus
(T2DM).81 More importantly, a recently published meta-
analysis reported that in patients with CKD, the use of
SGLT2i significantly decreased the risk of hospitalization
for heart failure, myocardial infarction, and composite kid-
ney endpoints, regardless of the T2DM status.82 Mean-
while, a prespecified analysis from the DAPA-CKD trial
further demonstrated that the effect of dapagliflozin on
reducing major adverse kidney and cardiovascular events
and all-cause mortality was consistent among patients
with diabetic and nondiabetic CKD, which may strongly
expand their potential clinical applications.83 Currently,
the potential mechanisms of these benefits are being
extensively investigated because they cannot be fully
explained by the improved levels of blood glucose, blood
pressure, or glomerular filtration pressures.84

The characterization of SGLT2 inhibition application is
the rapid eGFR decline during the first few weeks of treat-
ment, after which it gradually returns to the baseline and
delays the progression of eGFR decline.85 The reason for
this effect is not clear, possibly due to attenuation of the
proximal tubular reabsorption workload and subsequent
normalization of tubuloglomerular feedback. However,
studies have also suggested that the reduction in cortical
oxygen consumption by using SGLT2i may also play a
role.86 The shift of glucose, sodium, and fluid transport to
S3 segments, thick ascending limbs, and collecting ducts
in the deep cortex and outer medulla may reduce the oxy-
gen partial pressure in this region.87 Consequently, the
reduced oxygen pressure may mimic systemic hypoxia
and become a stimulus for activating the HIF signalling
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pathway, which may augment erythropoiesis.88 In addi-
tion to these beneficial effects, SGLT2i was also found to
prevent renal capillary rarefaction and subsequent hypoxia
and fibrosis in a murine model of renal ischae-
mia�reperfusion injury.89 Because many renoprotective
benefits of SGLT2i may be associated with their role in
hypoxia signalling, future studies are needed to examine
the exact effects and mechanisms of SGLT2 inhibition on
renal physiology and tissue oxygenation.
Antioxidant drugs
In the context of CKD, oxidative stress is enhanced,
leading to increased oxygen consumption, resulting in
renal hypoxia. In turn, renal hypoxia magnifies oxidative
stress, forming a vicious cycle.11 Amelioration of oxida-
tive stress contributes to the protection of the renal vas-
culature and the normalization of oxygen utilization,
thus improving oxygenation of the kidney.15 Impor-
tantly, antioxidants have become an effective strategy to
treat CKD and CKD-related complications.

Recently, Wu et al.90 investigated the role of a HIF
stabilizer (Roxadustat) in the AKI-to-CKD transition
induced by unilateral kidney ischaemia�reperfusion.
Interestingly, they found that roxadustat markedly alle-
viated kidney fibrosis and enhanced renal vascular
regeneration and redox balance, possibly by activating
the HIF-1a/VEGF-A/VEGF receptor 1 signalling path-
way and driving the expression of the endogenous anti-
oxidant superoxide dismutase 2. Meanwhile, melatonin,
which has antioxidant and anti-inflammatory proper-
ties,91 optimized the therapeutic effects of mesenchy-
mal stem cells in CKD models, including unilateral
ureteral obstruction rats and rats with diabetic
nephropathy.92,93 In addition, as a gaseous signalling
molecule, hydrogen sulphide (H2S) plays an important
role in maintaining the redox status at safe levels by pro-
moting the scavenging of reactive oxygen species and
modifying cysteine residues on key signalling mole-
cules.94 Increasing evidence has demonstrated the
potential for H2S-based therapies in the renal
system.95,96 Of note, one donor of H2S, sodium thiosul-
fate, is currently used in the clinical treatment of calci-
phylaxis in dialysis patients and cisplatin toxicities in
cancer therapy.97 The safety and tolerability of sodium
thiosulfate have also been demonstrated in patients
with acute coronary syndrome (ClinicalTrials.gov identi-
fier NCT03017963), representing a promising subject
for further translational studies. Although the role of
vitamin E (a traditional antioxidant) for kidney diseases
is unlikely to help much,98,99 a recent phase IIb ran-
domized controlled trial found that 400 mg tocotrienol-
rich vitamin E supplementation for 12 months could
ameliorate the progression of diabetic kidney disease
(assessed by serum creatinine and eGFR).100 Therefore,
these results indicated that oxidative stress is a promis-
ing therapeutic target in the context of CKD.
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Figure 4. Schema of the effects and mechanisms of drugs targeting hypoxia in CKD. Under normoxic conditions, the prolyl res-
idues of HIF-a are hydroxylated by PHDs. Hydroxylated HIF-a is recognized by the vHL protein and then undergoes ubiquitination
and degradation via the ubiquitin�proteasome pathway. Under hypoxic conditions, the above processes are inhibited, and HIF-a
accumulates and translocates to the nucleus, thus increasing the expression of the EPO gene and other genes involved in iron
metabolism. HIF-PHIs are stabilizers of HIF-PHDs and have multiple effects on CKD. SGLT2 inhibition attenuates the proximal tubular
workload, normalizes tubuloglomerular feedback, and reduces glomerular hyperfiltration, thus reducing oxygen consumption and
improving tissue oxygenation. SGLT2 blockade shifts some of the transport burden downstream to S3 segments, thick ascending
limbs, and collecting ducts, reducing the oxygen partial pressure in the deep cortex and outer medulla, which may mimic systemic
hypoxia and then activate the HIF pathway. Under unstressed conditions, Nrf2 is bound to Keap1 and subsequently degraded by
the ubiquitin�proteasome pathway. In response to stress, Keap1 is inactivated, resulting in the activation and translocation of Nrf2
to the nucleus. Nrf2 binds to the ARE and activates the transcription of its target genes. Abbreviations: HIF, hypoxia-inducible factor;
PHD, prolyl hydroxylase domain; vHL, von Hippel-Lindau protein; UB, ubiquitin; HIF-PHI, hypoxia-inducible factor prolyl-hydroxylase
inhibitor; HRE, hypoxia response element; EPO, erythropoietin; EPOR, erythropoietin receptor; CKD, chronic kidney disease; SGLT2,
sodium-glucose cotransporter 2; TGF, tubuloglomerular feedback; eGFR, estimated glomerular filtration rate; Keap1, Kelch-like ECH-
associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, antioxidant response element.
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Schema of the effects and mechanisms of drugs tar-
geting hypoxia in CKD are shown in Figure 4. Clearly,
their clinical efficacy, especially the long-term outcome
on patient survival, urgently needs to be determined via
large-scale clinical trials.
Assessment of hypoxia in CKD
To date, no gold standard or feasible method is available
to accurately assess hypoxia in CKD. The techniques for
the assessment of hypoxia in tissues clinically include
pimonidazole staining, microelectrode-dependent
measurements, analyses of the HIF pathway, and two-
photon phosphorescence lifetime microscopy of oxygen
in living animals and blood oxygenation level-dependent
magnetic resonance imaging and positron emission
tomography computed tomography.101 However, the
above available methods to assess hypoxia in tissues
have several limitations, including low accuracy and
specificity, high discrepancies between different analy-
ses of hypoxia, high operating cost and difficult imple-
mentation. Currently, an analysis of HIF stabilization/
HIF transcriptional activity is widely used to represent
hypoxia, although it is an indirect method. Obviously,
the effects of hypoxia on cells and tissues should be dis-
tinguished from HIF activation, as HIF transcriptional
activity may be potentially biased by nonhypoxic regula-
tion during kidney disease.102
Outstanding questions
Accumulating data have suggested that hypoxia is not
only a key instigator of AKI but also a critical mediator
of the progression of CKD. The severity and length of
hypoxia determines the prognosis of kidney disease.
Therefore, further elucidating the exact responses of
kidney to hypoxia is of great significance to understand
the pathophysiology of renal disease. Fortunately, the
www.thelancet.com Vol 77 Month March, 2022
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mechanisms of cell sensing and responding to oxygen
change has been largely recognized in the last three dec-
ades, which had stimulated the development of novel
therapy for renal anemia.

However, numerous challenging questions remain to
be addressed in future studies. First, what are the exact
molecular and metabolic responses of the kidney to hyp-
oxia and its relationship with kidney inflammation? Sec-
ond, why different cell types undergo the different
response to hypoxia in kidney? Third, are there measur-
able biomarkers or methods to monitor the response in
the earlier stage of hypoxia, which could predict the out-
come of kidney injury responding to hypoxia? Forth, given
the beneficial efficacy of HIF-PHIs in correcting anemia,
what is the long-term effect of this new class of drugs on
the development of AKI and progression of CKD? Last but
the least, due to the potential off target effects of HIF-
PHIs, concerns should also be given to the long-term side
effects beyond their beneficial erythropoiesis.
Search strategy and selection criteria
Data for this Review were identified by searches of
PubMed and references from relevant articles using the
search terms “Hypoxia”, “Hypoxia-inducible factor”,
“Fibrosis”, “Inflammation”, “Anaemia”, “CKD”, and
“Chronic kidney disease”. Only articles published in
English and up to February 22th, 2022 were included.
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