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Abstract: LED (Light-Emitting Diode) presents advantages such as luminescence, reliability, durabil-
ity compared with conventional lighting. It has been widely applied for life, healthcare, smart farm,
industry, and lighting from indoor to the automotive headlamp. However, the LED is vulnerable to
thermal damage originated from the high junction temperature, especially in high power applications.
Hence, it requires precise qualification on the optical power and the junction temperature from the
pilot line to secure reliability. In this study, the photo-thermal sensor is proposed by employing a
sheet-type thermocouple composed of photo-absorbent metal film and thermocouple. This sensor
aims low-cost qualification in pilot line for high-power luminous devices and optical monitoring of
costly luminaire such as automobile LED headlamp. The sensor is designed to detect the increased
temperature response of LED hot spots from the transferred thermal power and absorbed optical
power. The temperature response of each sheet-type thermocouple is utilized as a signal output of
the absorbed optical power and hot spot temperature based on the introduced sensor equation. The
proposed thermal sensor is evaluated by comparing the experiment with the measured reference
value from the integrating sphere and the attached thermocouple at a junction. The experiment result
reveals 3% of the maximum error for the optical power of 645 mW.

Keywords: photo-thermal sensor; light absorption; high-power LED; surface temperature

1. Introduction

The LED has significantly been developed based on its advantages such as small
volume, impact resistance, high reliability, long life, and low power consumption, and
it became a remarkable measure for convenient use, energy-saving, and environmental
protection. Recently, the high-power LED industry has widened its application from
indoor lighting to the health care, display, architectural industry, and even automotive
headlights; however, thermal reliability of high-power LED is required more than ever
due to the high integration and miniaturization of the package. The optical power and
the hot spot temperature of the LED must be qualified in the pilot line and tested robustly
to secure the functions without failure. In terms of its optical performance, however, the
total optical power must be increased with higher input power and integration of the light
source, which results in instability of the thermal system and reduction in lifetime and
lighting performance [1]. Recent studies have been focused on the thermal management
of the LED application. Ha et al. [2] pointed out that the performance of high-power
LEDs strongly depended on the junction temperature, and the operation at high junction
temperature causes degradation of both optical power and lifetime. Wu et al. [3] estimated
the dissipation of heat in the high-power COB (Chip-on-Board) LEDs by evaluating the
junction temperature and thermal resistance on different gaps.

The hot spot temperature was also compared with an infrared thermal imaging camera
measurement, but the result is still questionable due to the additional light loss on the
phosphor layer, which can cause measuring error. Christensen and Zhao present a thermal
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network model integrated with a sub-model of a structure of LED in finite element to
predict the die temperatures [4,5]. Cheng et al. [6] present a thermal management method
for an array of the high-power LED based on a multi-fin design of heat sink and the finite
element method to obtain the optimal configuration with an improved lifetime. Zhang
et al. [7] carried out an optimal design and thermal simulation of the high-power LED
array combined with the heat sink and microchannel. Xi and Schubert [8] presented
the junction temperature of the GaN ultraviolet LED based on the proposed method
using the temperature coefficient of the forward voltage. Lee et al. [9] also estimated
the junction temperature based on a measurement of the thermal resistance employing a
micro-temperature sensor as a real-time monitoring method for the junction temperatures.
Keppens et al. [10] present measurement results of the current-voltage characteristics in
commercial high-power LEDs. The measured results are modeled in terms of variation in
the bandgap with temperature and show a linear temperature dependence of their forward
voltages when the drive current is applied within the pre-determined current range. Even
though the voltage intercept can be deduced from the bandgap, the accurate junction
temperature is obtained only if two or more calibration measurements under a specific drive
current are conducted. Alshahed et al. [11] present the compact thermal model extraction
of package based on the measurement using their test chip with multiple heating and
elements for sensing temperature to estimate the distribution of temperature in packaged
chips. They showed that ultrathin semiconductors below 20 µm dramatically increased
temperature, and they successfully measured in the time and frequency domain. The
results showed that the temperature variations were strongly dependent on the frequency
of heat pulsating. Chen et al. [12] explored the reason for the higher measurement than the
phosphor temperature. They inserted the bead of the thermocouple into the phosphor layer,
and they found that the thermocouple reveals a much higher temperature than the actual
phosphor temperature due to the light energy absorption of the thermocouple corresponds
to 20% of optical power at the supplied current of 350 mA. The over-estimated temperature
of thermocouples causes severe temperature measurement error for the luminous devices
and is highly related to the absorption coefficient of its material which has different
values along with the wavelength [13]. Figure 1 shows light absorption ratios of typical
metal materials.

Figure 1. Optical absorption ratio of general metal materials.

The energy and optical efficiency of the lighting application using luminous devices
also have been researched to enhance their advantages on green technology. Wang et al.
investigate a design of aluminum nitride (AlN) based substrate for high-power LED to
improve heat dissipation and its efficiency of multi-chip LED by taking advantage from
hybrid substrate design, such as simple assembly on a printed circuit board, providing
the subsidiary protection of ceramic and decrease of production cost [14]. Lee et al. [15]
present a phosphor-in-glass (PIG) material with characteristics of high efficiency and
conductance, which is employed as an optical element for white conversion in laser-diode
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(LD)-driven white-light systems. Their optimized PIG showed promising performance
with lower component temperature and high efficiency in white-light extraction. Park
et al. [16] present the experiment result of enhanced light extraction material of the LED.
They applied ZrO2 nanoparticles of average particle size with 10 nm to the adhesive layer
as an enhancer of refractive index and light scattering additives to increase the luminous
efficacy and luminous flux of the white-LED in the form of polymer matrix nanocomposites.

In this study, a new type of photo-thermal sensor is introduced, aiming low-cost
qualification in pilot line for high-power luminous devices and optical monitoring of
costly luminaire such as automobile LED headlamp, and a compact method of both optical
power and temperature measurement is achieved by employing the photo-thermal sensor.
The principle of the introduced photo-thermal sensor is based on photo-absorbent heat
from the optical power of the luminous device. The photo-thermal sensor consists of a
couple of sheet-type thermocouples which can measure the temperature increase from the
transferred thermal energy and absorbed optical energy on the hot spot of the luminous
devices. Because two sheet-type thermocouples are designed to have the same thermal
property and different optical absorbance coefficients, measured temperature responses of
each sensor provide temperature difference which contains information of actual optical
energy term. This net temperature between two sheet-type thermocouples is utilized as an
output of a photo-thermal sensor which can measure the optical power and estimate the
actual hot spot temperature of the luminous device. The proposed measuring method is
evaluated by the measured optical power using the commercial integrating sphere and the
actual temperature of the LED hot spot from an attached thermocouple.

2. Sensor Design
2.1. Photo–Thermal Sensor

The temperature measurement of the LED is significantly affected by the optical power
absorption, and it leads to over-estimated temperature originated from additional thermal
power input of the absorbed optical power. Eventually, the measurement error from light
absorption makes it harder to manage the thermal system of the LEDs. To reduce the
over-estimating error in indirect measurement and achieve the optical power measurement
for the thermal management, the novel concept of the photo-thermal sensor is introduced
with a couple of same sheet-type thermocouples that have a different light absorption
coefficient each other. The difference of responses between two thermocouples is utilized
as the sensor output of the photo-thermal sensor, which can present optical power history.

The configuration of a photo-thermal sensor is depicted in Figure 2. In the figure, L,
As, ε, k, and h denote the thickness, surface area, emissivity, thermal conductivity, and
convective heat transfer coefficient of the metal sheet under the ambient temperature of Ta.
Moreover, the temperatures are denoted as Ts f for the LED surface, Tst for the top surface
of the sheet, and Tsb for the bottom surface. The sensor is composed of two radiative
thermocouples, consisting of a thin metal sheet and a K-type thermocouple for each one.
The metal sheet is utilized to quantify the absorbed optical power, which can be obtained by
the physical calibration with the actual optical power output of the LED which is denoted
as Pototal .

As shown in Figure 2, each thermocouple experiences four major thermal power trans-
fers, conduction, convection, radiation, and the direct absorption of optical power which
are denoted as Pc, Pcv, Pr, and Po. Each number in the subscription indicates the sensor
number of sheet-type thermocouple. In the heat equation, however, the conduction through
the air medium and radiation term are dependent Ts f which is one of the measurement
parameters. Therefore, the photo-thermal sensor is composed of a couple of thermocouple
sensors to eliminate the variable of LED surface temperature from the sensor heat equation.
The LED surface temperature can be removed by subtracting the temperature response
of two thermocouples that have the same thermal property, only having different light
absorption coefficients α. The output difference between two thermocouples is a key signal
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of the proposed photo-thermal sensor, which is intentionally provided by modifying the
light absorption coefficient of a single thermocouple with a black dot on the metal sheet.

Figure 2. Schematics of the photo-thermal sensor.

2.2. Heat Equation of the Photo–Thermal Sensor

The implementation of the photo-thermal sensor is based on the assumption that
the sensor can be modeled as a lumped system accompanying the light absorption term.
The dynamic thermal model with the lumped capacitance [17] is employed to derive the
governing equation of the photo-thermal sensor under the following Biot number criterion.

Rcond
Rconv

=
L/kAs

1/hAs
=

hL
k

= Bi � 1 (1)

where, As is the surface area of the metal sheet, Rcond and Rconv are the conductive and
convective thermal resistances.

The dimensional and thermal variables of the photo-thermal sensor are presented in
Table 1. The aluminum is adopted as a material of metal sheet because of its high thermal
conductivity with a thin thickness which satisfies the Biot number criterion of 7.9 × 10−7

and the assumption of representative sensing temperature denoted as Ts of Equation (2).

Table 1. Dimensional and thermal properties of the sensor.

Variables As L k h

Value 1 mm2 10 µm 205 W/(mK) 6.73 W/(m2K)

The thermal model of a single thermocouple in Figure 3a can be simplified into lumped
capacitance model of Figure 3b with an assumption of representative sensing temperature
and energy equation of lumped capacitance model using conductive, radiative, and photo-
thermal heat input and convective heat dissipation through the ambient as follows:

Ts ≈ Tsb = Tst (2)

dE
dt

= Ct
dTs

dt
=

.
Ein −

.
Eout +

.
Egen = Pc + Pr + Po + Pcv (3)

Ct
dTs
dt = 1

Rs f−s

(
Ts f − Ts

)
+ Fs f−sεAsσ

(
T4

s f − T4
s

)
+ Fs f−sαPototal

+hAs(Ts − Ta)
(4)

where the σ, Ct, and Rs f−s denote Stefan–Boltzmann constant, heat capacitance, and
thermal resistance between the LED surface and metal sheet of the lumped model.
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Figure 3. The lumped capacitance model of a single sheet-type thermocouple: (a) single thermocou-
ple; (b) simplified thermal lumped capacitance model.

Radiation term can be linearized by introducing characteristic temperature, Tchar =
(Ts,1 + Ts,2)/2 and temperature difference, Tnet = Ts,1 − Ts,2 as described. The view factor
of the LED surface to the metal sheet denoted as Fs f−s is also introduced to consider the
geometric effect of both the radiative heat transfer and the light absorption. The heat
input change caused by both the sensor location and the surface area difference can be
implemented to heat equation by adopting the Equations (A1) and (A2) of view factor
expression for arbitrary sized finite rectangles in the aligned parallel configuration of
Figure A1 (Appendix A) [18].

Ct
dTs,1

dt = 1
Rs f−s

(
Ts f − Ts,1

)
+ Fs f−sεAsσ

(
T4

s f − T4
s,1

)
+ Fs f−sα1Pototal

+hAs(Ts,1 − Ta)
(5)

Ct
dTs,2

dt = 1
Rs f−s

(
Ts f − Ts,2

)
+ Fs f−sεAsσ

(
T4

s f − T4
s,2

)
+ Fs f−sα2Pototal

+hAs(Ts,2 − Ta)
(6)

As a result, the entire heat equation for a photo-thermal sensor is derived by subtract-
ing Equation (6) from Equation (5) based on the assumption that two thermocouples have
the same thermal properties and boundaries except for the light absorption coefficient as
α1 and α2

Ct
d
dt (Ts,1 − Ts,2) +

1
Rs f−s

(Ts,1 − Ts,2) + hAs(Ts,1 − Ts,2)

+Fs f−sεAsσ
(

T4
s,1 − T4

s,2

)
= Fs f−s(α1 − α2)Pototal

(7)

Ct
d
dt Tnet +

1
Rs f−s

Tnet + hAsTnet + Fs f−sεAsσ·4T3
charTnet

= Fs f−s(α1 − α2)Pototal

(8)

where Tnet denotes temperature difference between sheet-type thermocouples.

3. Experiment and Results
3.1. Experimental Setup

The three different experiments on the photo-thermal sensor were carried out to
characterize the thermal behavior of each thermocouple and to evaluate the performance of
its measurement on the optical power and the LED surface temperature. Figure 4 illustrates
the experimental setups for the photo-thermal sensor, and each setup aims to the validation
of assumptions for the sensor heat equation. To produce the correct temperature difference
between sheet-type thermocouple, as described in Equations (7) and (8), the photo-thermal
sensor should be satisfied with the assumption that the two radiative type thermocouples
show the same temperature response under the same direct heat input condition without
the modification of light absorption coefficient.
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Figure 4. Experimental setup: (a) direct heat input test; (b) sensor response test setup.

In Figure 4a, the infrared (IR) laser source and optical parts in the experimental
setup were utilized to liberate the heat directly to the metal sheet of each sensor. The
metal mask with the 1 mm2 size of the squared hole was also placed between the IR
laser source and metal sheet to prevent the additional heat liberation from the LED to the
photo-thermal sensor.

In the sensor response test, as shown in Figure 4b, the steady-state temperature re-
sponse measurement along the sensor location from the LED was carried out to investigate
the response of thermocouples influenced by the measuring distance. The same experi-
mental setup was also employed to obtain the real-time sensor response under the stepped
increase of the LED input power. Each result from these experiment setups was used
to evaluate the effect of sensor distance on heat equation and to derive the sensitivity of
the introduced photo-thermal optical power sensor. The evaluation of the sensor was
performed by comparing the sensor response of step power input with measured optical
power from the commercial integrating sphere (CAS 140CT, Instrument Systems, Munich,
Germany). The commercial high power white light LED package (CBT-90-W, Luminus,
Sunnyvale, USA) of Table 2 was employed in the experiments to investigate the thermal
behavior of the introduced photo-thermal sensor and carry out its evaluation [19]. Each
single thermocouple was fabricated by a pre-calibrated K-type thermocouple and a thin
metal sheet of 10 µm thickness with 1 mm2 of the area size containing 99.9% of aluminum,
as shown in Figure 5a. Moreover, Figure 5b depicts the detailed configuration of the setup
for photo-thermal measurement. A pair of the sheet-type thermocouples are located above
the phosphor of the high-power LED, and temperature responses of each thermocouple are
obtained independently during the measurement to evaluate the photo-thermal behavior.

Table 2. Dimensional and thermal properties of the sensor.

Forward Voltage Range Operating Current Range Emitting Area Chip Type

2.9–3.8 V 0.2–18 A 9 mm2 COB
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Figure 5. Configuration of sensor and measurement: (a) fabricated photo-thermal sensor; (b) photo-
thermal measurement.

3.2. Result and Discussion

As described in Equations (7) and (8), the introduced photo-thermal sensor employs
thermal behavior of temperature response in thermocouple during the measurement,
which is originated from the exchange of thermal energy between the sensor and the
LED surface. The measurement of optical power is based on the difference in sensor
response between thermocouples resulting from the difference in thermal input caused
by the amount of light absorption only. Figure 6a compares the sensor response upon
the direct heating experiment using two thermocouples without modification of light
absorption. The responses show almost the same results within a maximum error of 0.7%,
which indicates that the difference in thermal property between sensors can be ignored.

Figure 6. Sensor response results: (a) direct heating test; (b) sensor distance test.

The introduced photo-thermal sensor also shows a unique concave steady-state tem-
perature distribution along with the sensor distance. As described in the derivation of the
heat equation, it can be explained that the distribution is originated from the changes in
thermal resistance (Rs f−s) and optical power density, determined by the geometric config-
uration between the sensor and the LED. The view factor is introduced as Equation (A1)
to implement these features to the heat equation. The measurement of steady-state tem-
perature distribution along the sensor location was carried out by utilizing a precision
stage shown in Figure 4b and comparing it with simulation results from the heat equation.
As a result, the experiment and the analysis results of the single thermocouple showed
almost identical results with unique temperature change. The maximum temperature
deviation between the experiment and analysis results was 1.1 K at 0.5 mm, indicating that
the introduced heat equation of the sensor can simulate the change of temperature response
along with the sensor location within the maximum error of 1.3%, as shown in Figure 6b.
In this study, the sensor was located at a distance of 0.5 mm from the LED surface.

Figures 7–9 present the experimental results of the optical power and surface tempera-
ture measurements of the LED for the evaluation of the proposed photo-thermal sensor.
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Figure 7a,b describe the temperature measurement results of thermocouples and photo-
thermal sensor response under the stepped power input change for the sensor calibration.
The sensor response was obtained during the input power is changed in 10 steps from
0.03 to 2.06 W, and the regression analysis was carried out to derive the physical relation
between the response of the photo-thermal sensor and the measured optical power from
the integrating sphere. In Figure 7c, as and bs denote the calibration factor and bias of
photo-thermal sensor, and the calibration result shows good linearity between the sensor
response and measured optical power with 0.996 of R2 as shown in the figure. This calibra-
tion result was utilized in the experiments to evaluate the proposed photo-thermal sensor
in Figures 8 and 9.

Figure 7. Characterization results: (a) temperature responses; (b) photo-thermal sensor response;
(c) calibration result.

Figure 8. Measured temperature and optical power under the step power input of 1.8 W: (a) apparent temperature readings;
(b) measured optical power; (c) estimated surface temperature of the LED.

Figure 9. Measured temperature and optical power under the step power input of 5.5W: (a) apparent temperature readings;
(b) measured optical power; (c) estimated surface temperature of the LED.
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The evaluation of the proposed photo-thermal sensor was carried out based on the
comparisons of the optical power measurement and the LED surface temperature esti-
mation from a photo-thermal sensor with the pre-measured optical power and surface
temperature result from an integrating sphere and attached thermocouple by the junction.
As shown in Figures 8a and 9a, each thermocouple depicts an overestimated tempera-
ture result caused by light absorption under the step input power conditions of 1.8 W
and 5.5 W. The measurement of optical power is also performed by utilizing the photo-
thermal sensor based on the calibration result from Figure 7c. The pre-measured optical
power from the integrating sphere was 223.8 and 645.2 mW for 1.8 and 5.5 W of inputs,
respectively. As presented in Figures 8b and 9b, the real-time optical power measurement
employing the proposed sensor shows a good result with 3.9% and 3% of maximum errors.
Figures 8c and 9c show the comparison result between the estimated and measured surface
temperature of the LED. The estimated LED surface temperature was also obtained through
the Figure 4a for a single thermocouple by utilizing the measured optical power and the
temperature responses of Figures 8a,b and 9a,b in a real-time fashion.

4. Conclusions

In this study, the compact measurements of the LED optical power and the hot spot
temperature of the LED are introduced by employing a photo-thermal sensor based on
the photo-absorbent power of the thermocouple. For this purpose, a pair of sheet-type
thermocouples are designed and fabricated to compose a photo-thermal sensor realizing
real-time measurement with the simplified sensor equation and minimized ambient effect.
The modeling of the sensor equation is established based on the lumped capacitance model
of each sheet-type thermocouples with consideration of the view factor and additional
optical power absorption term. The fabricated photo-thermal sensor was calibrated and
evaluated by measuring the optical power and the surface temperature of the LED. From
the results, the following achievements are obtained.

First, the response of stepped input power shows high linearity with the regression
R2 value of 0.996 with the predetermined optical power of LED. Second, the optical
power measurement and surface temperature estimation produce good results with the
maximum error of 3.9% (9.2 mW) and 3% (11 mW) for 1.8 and 5.5 W of step input powers
and maximum differences in surface temperature estimation as 1.1 and 3.2 K for each
input power cases. The evaluation result indicates that the introduced photo-thermal
sensor is expected to be capable of a novel, compact measurement method for the crucial
performances of LED applications in a real-time fashion [20].

Author Contributions: Conceptualization, Y.-Y.K. and S.-K.L.; methodology, Y.-Y.K. and J.-Y.J.;
software, Y.-Y.K. and J.-M.K.; validation, Y.-Y.K. and J.-M.K.; formal analysis, J.-Y.J.; investigation,
Y.-Y.K.; resources, Y.-Y.K. and J.-Y.J.; writing—original draft preparation, Y.-Y.K.; writing—review
and editing, J.-Y.J.; visualization, Y.-Y.K.; supervision, S.-K.L.; funding acquisition, S.-K.L. and Y.-Y.K.
All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Development of Core Technologies for Transportation
Systems-Green Car program (10070201) funded by the MOTIE of Korea and National Research Foun-
dation of Korea (NRF) granted by the Korea government (MSIT) (Grant No. 2018R1D1A1B07049492)
and GIST Research Institute (GRI) granted by the GIST in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 4690 10 of 12

Appendix A. View Factor Calculation between Two Parallel Surfaces

Figure A1. The geometric configuration between the LED surface and the metal sheet.

Fs f−s =
1

(x2 − x1)(y2 − y1)

2

∑
l=1

2

∑
k=1

2

∑
j=1

2

∑
i=1

(−1)(i+j+k+l)G
(

xi, yj, ηk, ξl
)

(A1)

G =
1

2π


(y − η)

√
(x − ξ)2 + z2 tan−1

{
y−η√

(x−η)2+z2

}

+(x − ξ)
√
(y − η)2 + z2 tan−1

{
x−ξ√

(y−η)2+z2

}
− z2

2 ln
[
(x − ξ)2 + (y − η)2 + z2

]


(A2)

where x, y ζ, η are coordinates of each point in the metal sheet and LED surface area with
the distance between the LED and metal sheet denoted as z.

Appendix B. Linearization of Radiation Term

Fs f−sεAsσ
(

T4
s,1 − T4

s,2

)
= Fs f−sεAsσ

(
T2

s,1 + T2
s,2

)
(Ts,1 + Ts,2)(Ts,1 − Ts,2)

= Fs f−sεAsσ
(
2T2

char
)
(2Tchar)(Ts,1 − Ts,2)

= Fs f−sεAsσ·4T3
char·Tnet

(A3)

Tchar =
Ts,1 + Ts,2

2
(A4)

Figure A2 depicts the simulated error distribution of the linearized radiation term
within the range from 273 to 423 K for each sensor. The result indicates that the lin-
earized radiation term can be utilized within 2% of error for conventional temperature
difference range.
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Figure A2. Error distribution of linearized radiation term (273–423 K).
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