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Abstract: Viruses are among the most intriguing nanostructures found in nature. Their atomically
precise shapes and unique biological properties, especially in protecting and transferring genetic
information, have enabled a plethora of biomedical applications. On the other hand, structural DNA
nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale
structures. They can be extended to user defined devices to exhibit a wide range of static, as well as
dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials.
Such structures exhibit the best features of both worlds by combining the biological properties of
viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes
can act as “structured” genomic material and direct the formation of virus capsid proteins or be
encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the
examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-
mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced
stability, immunocompatibility and delivery properties. This development also paves the way for
DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell
activation.

Keywords: DNA nanotechnology; DNA origami; virus; capsid; protein; nanofabrication; biomedicine;
self-assembly; vaccine

1. Introduction

One of the major branches in the bionanotechnology field searches for innovative
strategies to be used in medicine and therapeutics. Long-term goals include modern
drug and vaccine development, the creation of programmable nanocarriers with targeted
delivery of therapeutic cargoes, and the fabrication of nanoscale devices for diagnostics. It
becomes notoriously difficult to create such minuscule and multifunctional apparatuses
from the top-down, and thus the groundbreaking solutions are often found from the realm
of molecular self-assembly [1]. For example, native viruses and virus capsid proteins (CPs)
are inherently functional and atomically precise, and the full viral capsid forms through
CP-CP interactions, thus packaging the viral genome (DNA or RNA) into it [2] (Figure 1a).
These versatile properties can be harnessed in creating multi-purpose biotemplates for
various uses [2]. On the other hand, besides the naturally occurring family of viruses
and proteins, there is a legion of artificial and customizable ångström-scale accurate nano-
objects, such as de novo-designed proteins [3] and DNA nanostructures [4]. Arguably,
the former is hugely important, but their design requires massive computational power.
Therefore, in this review, the latter are considered, as DNA nanotechnology provides
an easily accessible route to nanofabrication [5], and the custom DNA shapes can act
as “structured” genomic material for a variety of virus assemblies (Figure 1b). Indeed,
the coupling of viruses and DNA nano-objects may yield novel hybrid structures with
intriguing user-defined features, described later in this review.

Nanomaterials 2021, 11, 1413. https://doi.org/10.3390/nano11061413 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3142-3191
https://orcid.org/0000-0002-8282-2379
https://orcid.org/0000-0003-2762-1555
https://doi.org/10.3390/nano11061413
https://doi.org/10.3390/nano11061413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11061413
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11061413?type=check_update&version=2


Nanomaterials 2021, 11, 1413 2 of 15

Viral proteins and DNA molecules have also proven to be highly controllable and
programmable in a synthetic environment. These structures can be modified using various
techniques, which makes both viruses and DNA applicable nanomaterials for functional
nanoassemblies. Eminent examples of commonly employed viruses in nanotechnology are
various plant viruses [6,7], such as tobacco mosaic virus (TMV) and cowpea chlorotic mottle
virus (CCMV), whereas lattice-constructed MDa-scale ‘DNA origami’ [8,9] with nanoscale
dimensions represent the most frequently used artificial DNA objects. DNA origami is
based on folding a long single-stranded DNA into virtually any shape, geometry and
topology with the help of dozens of short staple strands [5,8–10], and currently there exist
extensive primers for designing and creating custom structures [11,12]. Recently, DNA
nanostructure assembly toolbox has been expanded with wireframe structures [13,14],
automated design methods [15,16], GDa-scale objects [17], micrometer-scale fractal assem-
blies [18] and constructs with up to 10,000 individual and unique strand components [19],
thus lowering the barriers for synthesizing objects at the size range of viruses and cellular
organelles. Besides the discrete objects, well-ordered DNA origami-based 2D lattices can
reach ~10 cm2 surface areas [20] and 3D DNA crystals millimeter scale dimensions [21,22].
So far, these versatile DNA nanoshapes have found applications in biomedicine, diag-
nostics and therapeutics [23,24], nanofabrication [25,26], molecular electronics [27,28] and
super-resolution imaging [29], and as nanorulers [30], plasmonic or photonic appara-
tuses [31,32], precise nanoscopic measurement tools [33], tunable nanopores [34,35] and
dynamic/robotic devices [36,37].

This development has also enabled a number of DNA-protein assemblies [38], and a
handful of rather innovative examples of hybrid DNA origami-viral protein-complexes.
These complexes have several properties that make them promising tools for prospective
bionanotechnology applications. These hybrids can be considered biocompatible, often
non-toxic, and their structural features can be harnessed in smart targeted delivery, and
they may be able to penetrate in vivo barriers. The structural programmability provides
a plethora of possibilities in designing structures for specific, even dynamic functions.
When considering the cellular intake, the CPs and other proteins with virus-mimicking
properties are mainly employed for enhanced transfection efficiency, whereas the DNA
nanostructures are used for multiple cargo carriers such as drug molecules, imaging rea-
gents or gene transfers. In addition, several research groups have experimented with
coating and decorating DNA origami with viral capsid proteins (CPs), employing various
shapes of origami and different viruses.

In this concise review, we cover the existing literature on DNA nanostructure-virus hy-
brids. In Section 2, we discuss how different factors such as the shape of the DNA origami
affect the encapsulation into CCMV and simian virus 40 (SV40) capsids (Figure 1b, left),
and furthermore, how the encapsulation enhances the cellular delivery of DNA origami.
Moreover, we cover in situ and dynamic TMV assemblies on RNA-functionalized DNA
origami (Figure 1b, middle) and present some basics of virus-DNA origami coupling
(Figure 1b, right). Section 3 focuses on the virus-mimicking approaches, such as lipid,
protein and peptoid coatings of DNA nanostructures and discusses the possibility to
develop DNA origami-based vaccines through programmable antigen-triggered B-cell
activation. In the Conclusion, we briefly introduce some other virus-DNA-related imple-
mentations and provide a summary table of the currently available hybrids, their assembly
and characterization methods and their potential applications.
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Figure 1. Comparison between conventional and DNA origami directed virus assembly. (a) Conventional virus assembly. 
Capsid proteins (CP, red) assemble into a complete native virus capsid through protein-protein interactions and simulta-
neously package the flexible genome (DNA or RNA) into it [39]. (b) DNA origami directed virus assemblies. Left: Virus 
capsid takes a non-native shape as the viral CPs assemble on top of the templating DNA origami that serves as “struc-
tured” genomic material similarly as in Ref. [40]. Middle: Tobacco mosaic virus (TMV) capsid assembles at the specific 
location of the DNA origami template. The capsid forms around the protruding RNA strand that contains a characteristic 
loop as an origin-of-assembly sequence [41]. Right: Virus capsids are bound to DNA origami platforms which are further 
assembled into higher-order structures [42]. (a) reproduced with permission from [39]. Copyright Royal Society of Chem-
istry, 2020. (b) Middle panel reproduced with permission from [41]. Copyright American Chemical Society, 2018. Right 
panel reproduced with permission from [42]. Copyright American Chemical Society, 2010. 

2. Hybrid Nanoassemblies from Viruses and DNA Motifs 
As explained above, virus capsids could serve as accurate components for versatile 

molecular patterning and templates for e.g., dyes, catalysts, inorganic nanoparticles, pol-
ymers and drugs [2,42]. One of the first demonstrations to expand the patterning abilities 
to larger-length scales using DNA was presented by Stephanopoulos et al. [42]. In this 
work, the authors formed hybrid structures by attaching a poly-T-decorated bacterio-
phage MS2 capsid (diameter of ~27 nm) to a ssDNA-modified DNA origami platform 
through hybridization and verified the assembly using atomic force microscopy (AFM) 
and transmission electron microscopy (TEM). The work made use of triangular DNA ori-
gami and various rectangular DNA origami tiles that could be conjugated together, thus 
forming one-dimensional arrays of the capsids (Figure 1b, right). Moreover, as an example 
of cargo loading, the authors used the interior of the capsid to pack fluorescent dyes (Or-
egon Green maleimide) into it, however, functionality was not further shown. Regardless 
of the molecular cargo functionality, this research subtly demonstrated the capability of 
building higher order structures using DNA and viruses, and therefore bridging atomi-
cally precise features to micrometer length scales for arrays of over 10 conjugated tiles. 
Therefore, this pioneering research paved a way for further functional assemblies and ap-
plications introduced in this section. 

2.1. Packaging DNA Origami into Viral Capsids 
Mikkilä et al. [40] coated DNA origami with CCMV CPs via electrostatic interactions 

and demonstrated their enhanced cellular intake. The study focuses on the binding of CPs 
with the DNA origami and how the binding ratio � (defined as by the number of CPs 
divided by the number of DNA base pairs in the sample solution) affects the transfection 
efficiency and the shape of the nanoassembly. These discoveries on transfection efficiency 
are especially interesting from the viewpoint of nanomedicine and nanoimaging. 

The DNA origami used in the study was a 2D rectangular sheet [8] and the CPs for 
the coating were derived from CCMV, which has shown great capacity to accept synthetic 
molecules and protein guest molecules inside its capsid [6]. The CPs were purified from 
the native virus and they held their positive charge in the N-terminus. This important 
feature allows the CPs to bind and self-assemble on the negatively charged DNA origami. 

Figure 1. Comparison between conventional and DNA origami directed virus assembly. (a) Conventional virus assembly.
Capsid proteins (CP, red) assemble into a complete native virus capsid through protein-protein interactions and simul-
taneously package the flexible genome (DNA or RNA) into it [39]. (b) DNA origami directed virus assemblies. Left:
Virus capsid takes a non-native shape as the viral CPs assemble on top of the templating DNA origami that serves as
“structured” genomic material similarly as in Ref. [40]. Middle: Tobacco mosaic virus (TMV) capsid assembles at the
specific location of the DNA origami template. The capsid forms around the protruding RNA strand that contains a
characteristic loop as an origin-of-assembly sequence [41]. Right: Virus capsids are bound to DNA origami platforms which
are further assembled into higher-order structures [42]. (a) reproduced with permission from [39]. Copyright Royal Society
of Chemistry, 2020. (b) Middle panel reproduced with permission from [41]. Copyright American Chemical Society, 2018.
Right panel reproduced with permission from [42]. Copyright American Chemical Society, 2010.

2. Hybrid Nanoassemblies from Viruses and DNA Motifs

As explained above, virus capsids could serve as accurate components for versatile
molecular patterning and templates for e.g., dyes, catalysts, inorganic nanoparticles, poly-
mers and drugs [2,42]. One of the first demonstrations to expand the patterning abilities
to larger-length scales using DNA was presented by Stephanopoulos et al. [42]. In this
work, the authors formed hybrid structures by attaching a poly-T-decorated bacteriophage
MS2 capsid (diameter of ~27 nm) to a ssDNA-modified DNA origami platform through
hybridization and verified the assembly using atomic force microscopy (AFM) and trans-
mission electron microscopy (TEM). The work made use of triangular DNA origami and
various rectangular DNA origami tiles that could be conjugated together, thus forming
one-dimensional arrays of the capsids (Figure 1b, right). Moreover, as an example of cargo
loading, the authors used the interior of the capsid to pack fluorescent dyes (Oregon Green
maleimide) into it, however, functionality was not further shown. Regardless of the molec-
ular cargo functionality, this research subtly demonstrated the capability of building higher
order structures using DNA and viruses, and therefore bridging atomically precise features
to micrometer length scales for arrays of over 10 conjugated tiles. Therefore, this pioneering
research paved a way for further functional assemblies and applications introduced in
this section.

2.1. Packaging DNA Origami into Viral Capsids

Mikkilä et al. [40] coated DNA origami with CCMV CPs via electrostatic interactions
and demonstrated their enhanced cellular intake. The study focuses on the binding of
CPs with the DNA origami and how the binding ratio γ (defined as by the number of CPs
divided by the number of DNA base pairs in the sample solution) affects the transfection
efficiency and the shape of the nanoassembly. These discoveries on transfection efficiency
are especially interesting from the viewpoint of nanomedicine and nanoimaging.

The DNA origami used in the study was a 2D rectangular sheet [8] and the CPs for
the coating were derived from CCMV, which has shown great capacity to accept synthetic
molecules and protein guest molecules inside its capsid [6]. The CPs were purified from
the native virus and they held their positive charge in the N-terminus. This important
feature allows the CPs to bind and self-assemble on the negatively charged DNA origami.
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Binding of the CPs was studied using an electrophoretic mobility shift assay (EMSA).
A decrease in electrophoretic mobility of the DNA origami-CP complex was observed as
the value of γ increased, thus indicating efficient binding of CPs to the DNA origami.

The morphology of the DNA origami-CP complexes was visualized using TEM with
the same γ values as in EMSA. TEM imaging showed that at γ = 0.08 the DNA origami-CP
complexes started to bend in tube-like conformations, while at the ratio of γ = 0 the DNA
origami were observed in their rectangular shape (Figure 2a,b). Half-bent structures of
DNA origami were observed as well. With the value of γ = 0.64 (Figure 2b), the DNA
origami-CP complexes were observed as round rather than tube-like. The changes in the
structure of DNA origami after adding CPs are plausibly happening due to electrostatic
effects. The positively charged CPs most probably reduce the repulsion between the
adjacent DNA helices with a negative charge. It was proposed that these observations
indicate the complete encapsulation of DNA origami.

Transfection efficiency of DNA origami-CP complexes was investigated as well. Sam-
ples with a higher value of γ showed increased aggregates in high content screening
microscopy of the cells that had been incubated by DNA origami-CP complexes. Sam-
ple with γ = 0.64 showed a 13-fold enhancement of entering cells compared to a DNA
origami sample that had no CPs bound to it. This indicates that coating DNA origami with
CCMV CPs significantly enhances their transfection efficiency. The detailed protocol of the
encapsulation is provided by Linko et al. in Ref. [43].

Kopatz et al. [44] studied the packaging of a nearly spherical DNA origami with
simian virus 40 (SV40) CPs called VP1. The aim of the study was to test how well the DNA
origami works as a substrate for the self-assembly of SV40 CPs, and whether it can be fully
and efficiently encapsulated by the CPs. Nucleic acids have limited flexibility and packing
density, and therefore the encapsulation process is difficult when the nucleic acid molecule
does not match with the native viral genome. However, DNA origami as a “structured”
genome provides a solution for this, and it is therefore used in this study.

Three spherical DNA origami designs varying in diameter were employed in the
study. All the three different DNA origami had the same honeycomb structure and were
densely packed. The diameters of the studied DNA origami were 30, 35, and 40 nm, and
these sizes were chosen to resemble the size of the cavity in the native SV40. DNA origami
with a 40-nm diameter formed larger particles together with the capsid when compared to
the native SV40, while DNA origami with a 30-nm diameter yielded particles that were
about the right size, however they came with some irregularities, such as with incomplete
coatings and oval-shaped particles. The DNA origami with a 35-nm diameter was chosen
as the assembly substrate of the SV40 CPs, as together with the capsid, the particle had a
50-nm diameter, which corresponds the one of the native SV40.

The DNA origami-CP particles were analyzed using TEM, agarose gel electrophoresis
(AGE) and cryo-electron microscopy (cryo-EM) single particle analysis. TEM imaging
showed highly uniform and fully coated DNA origami-CP complexes alongside VP1
particles and pure DNA origami in a solution that had a molar ratio of 400 VP1 pentamers
per DNA origami. No partly encapsulated DNA origami were found, indicating that
the assembly process is strongly cooperative. However, empty icosahedral viral capsids
encapsulating no DNA origami were observed, which might be explained by some DNA
origami remaining unfolded. A 54% yield of encapsulated DNA origami was achieved.
The reformed capsid had an icosahedral symmetry (capsid triangulation number T = 7d),
which corresponds to the native SV40 capsid structure. The honeycomb DNA origami
was regularly positioned inside the capsid so that the DNA helices were tilted at a ~6.8◦

angle in relation to the icosahedral three-fold symmetry axis of the capsid (Figure 2d).
The successfully formed DNA origami-CP complexes using 35-nm honeycomb DNA
origami and VP1-proteins of SV40 have a corresponding morphology to the native virus,
therefore it is more likely to possess similar functional qualities as the native virus. This
study illustrates yet another elegant approach to create biohybrid nanoassemblies with
high fidelity.
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Figure 2. DNA origami encapsulation inside virus capsid proteins. (a) Schematic illustration of the formation of DNA-
origami-CCMV CP complexes via electrostatic interactions and enhanced transfection to cells [40]. (b) TEM images of 
DNA origami-CP complexes with various 𝛾 values (from left to right: 𝛾 = 0, 𝛾 = 0.08, 𝛾 = 0.64). (c) Quantification of DNA 
origami–CP positive cells with HCS microscopy (𝛾 increases gradually from samples 1 to 6). Colored open bars indicate 
measurements from individual samples; black-filled bars are calculated mean values of the triplicate samples. (d) Recon-
structed SV40 particles: left, empty capsid; right, SV40 capsid (gray) encapsulated spherical DNA origami (yellow) of 35 
diameter [44]. (e) Class averaged particles images show both the empty capsids and the encapsulated DNA origami in 
different orientations. (a–c) reproduced with permission from [40]. Copyright American Chemical Society, 2014. (d,e) re-
produced with permission from [44]. Copyright Royal Society of Chemistry, 2019. 
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low, helical cylinder (See Figure 3a). Zhou et al. demonstrated that these types of nano-
tubes could be assembled in situ in a controlled manner by immobilizing TMV genome-
mimicking RNA strands on a DNA origami surface before capsid assembly. Their tech-
nique functioned in creating TMV-like CP nanotubes in well-defined assembly patterns 
where the length of the nanotubes is dependent on the length of the used RNA strands. 

To accomplish this, they used a rod-shaped 24-helix bundle (24HB) DNA origami, 16 
nm in width and 100 nm in length, as a folding platform for the in situ assembly process. 
A TMV mimicking RNA strand was then immobilized onto the DNA origami via Watson-
Crick base-pairing before starting the self-assembly process of the CPs. To investigate how 
well the nanotubes would form, they used three different lengths of RNA: 720 nucleotides 
(nt) as short-length (SL), 1230 nt as medium-length (ML) and 1910 nt as long-length (LL). 
The study showed that it is possible to generate TMV-like nanotubes with theoretically 
predictable lengths as the observed nanotubes were all around 30 nm for the SL RNA, 54 
nm for the ML RNA and 86 nm for the LL RNA. Most of the nanotubes were observed to 
vary around 10 nm in length. However, the length distribution of the long RNA strands 
(see Figure 3b) was greater than for their shorter counterparts. The authors suggest that 
this has to do with the degradation of RNA at longer lengths. Furthermore, the yields of 
these DNA origami-CP complexes decreased from ~76% using the SL RNA to ~68% using 
the ML RNA to ~56% using the LL RNA. The authors proposed that this happened likely 
due to larger electrostatic repulsion between the DNA origami and the longer RNA 
strands. 

In the same study, Zhou et al. also created more intricate and programmed structures 
by changing the docking sites of the RNA strands on various DNA origami structures. By 

Figure 2. DNA origami encapsulation inside virus capsid proteins. (a) Schematic illustration of the formation of DNA-
origami-CCMV CP complexes via electrostatic interactions and enhanced transfection to cells [40]. (b) TEM images of
DNA origami-CP complexes with various γ values (from left to right: γ = 0, γ = 0.08, γ = 0.64). (c) Quantification of
DNA origami–CP positive cells with HCS microscopy (γ increases gradually from samples 1 to 6). Colored open bars
indicate measurements from individual samples; black-filled bars are calculated mean values of the triplicate samples.
(d) Reconstructed SV40 particles: left, empty capsid; right, SV40 capsid (gray) encapsulated spherical DNA origami (yellow)
of 35 diameter [44]. (e) Class averaged particles images show both the empty capsids and the encapsulated DNA origami
in different orientations. (a–c) reproduced with permission from [40]. Copyright American Chemical Society, 2014. (d,e)
reproduced with permission from [44]. Copyright Royal Society of Chemistry, 2019.

2.2. In Situ and Dynamic Virus Assemblies on DNA Origami

Zhou et al. [41] studied the in situ assembly of tobacco mosaic viruses (TMVs) onto DNA
origami. The study exploited the natural tendency of viral proteins to assemble around their
own genome, thus encapsulating their genetic material. The RNA genome (or a modified
sequence) of a TMV contains a characteristic loop that serves as an origin-of-assembly
sequence (OAS). The OAS motif first nucleates a double-layer disk composed of TMV
subunits and the capsids keep piling tightly around the RNA, twisting into a hollow, helical
cylinder (See Figure 3a). Zhou et al. demonstrated that these types of nanotubes could be
assembled in situ in a controlled manner by immobilizing TMV genome-mimicking RNA
strands on a DNA origami surface before capsid assembly. Their technique functioned in
creating TMV-like CP nanotubes in well-defined assembly patterns where the length of the
nanotubes is dependent on the length of the used RNA strands.

To accomplish this, they used a rod-shaped 24-helix bundle (24HB) DNA origami,
16 nm in width and 100 nm in length, as a folding platform for the in situ assembly process.
A TMV mimicking RNA strand was then immobilized onto the DNA origami via Watson-
Crick base-pairing before starting the self-assembly process of the CPs. To investigate how
well the nanotubes would form, they used three different lengths of RNA: 720 nucleotides
(nt) as short-length (SL), 1230 nt as medium-length (ML) and 1910 nt as long-length (LL).
The study showed that it is possible to generate TMV-like nanotubes with theoretically
predictable lengths as the observed nanotubes were all around 30 nm for the SL RNA,
54 nm for the ML RNA and 86 nm for the LL RNA. Most of the nanotubes were observed
to vary around 10 nm in length. However, the length distribution of the long RNA strands
(see Figure 3b) was greater than for their shorter counterparts. The authors suggest that this
has to do with the degradation of RNA at longer lengths. Furthermore, the yields of these
DNA origami-CP complexes decreased from ~76% using the SL RNA to ~68% using the
ML RNA to ~56% using the LL RNA. The authors proposed that this happened likely due
to larger electrostatic repulsion between the DNA origami and the longer RNA strands.
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Figure 3. DNA origami-virus hybrids based on Tobacco mosaic viruses (TMV). (a) The in situ assembly process of TMV CPs
around a TMV RNA strand anchored to a DNA origami platform [41]. The origin of assembly (OAS) sequence nucleates the
growth of the nanotube. (b) Assembled TMV-DNA origami hybrids viewed with TEM. The graph on the right shows the
length distribution of assembled tubes around a ~1910-nt long RNA. Scale bars are 50 nm. (c) The in situ assembly of a
TMV rod nestled inside a DNA origami barrel [45]. The assembly is guided by pathing the RNA strand through multiple
binding sites along the DNA origami and then releasing the bound RNA in a stepwise manner. The DNA origami barrel
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Figure 3c. Left: the DNA origami barrel with pathed RNA. Middle: CP rod assembly on the unbound overhang of the RNA.
Right: A finished CP rod inside the hollow of a DNA origami barrel. Scale bar is 50 nm. (a,b) reproduced with permission
from [41]. Copyright American Chemical Society, 2018. (c,d) reproduced with permission from [45]. Copyright American
Chemical Society, 2020.

In the same study, Zhou et al. also created more intricate and programmed structures
by changing the docking sites of the RNA strands on various DNA origami structures.
By crafting two protein nanotubes on opposite ends of a 24HB DNA origami rod, they
managed to form both centrosymmetric and asymmetric structures, where the lengths of
the extending tubes were again defined by the lengths of the corresponding RNA strands.
Besides 24HB, Zhou et al. also used a 2D triangle-shaped DNA origami and a 3D tripod-
shaped DNA origami as assembly platforms. SL, ML and LL RNAs were positioned on
each vertex of the 2D triangular DNA origami leading to the formation of five different
two-dimensional DNA origami-CP structures. For the 3D structure, a maximum of three
~54-nm TMV nanotubes were formed on the vertex, but with only a ~11% yield. Finally,
they also created a DNA origami-CP complex where three short ~30-nm nanotubes were
attached to the ends of the three tripod arms, one for each.

By forming these different structures, Zhou and coworkers demonstrated that this kind
of approach is useful for creating both two- and three-dimensional, highly controllable
DNA origami-CP complexes. They showed that it is possible to create more intricate
complexes by engineering both the number and location of the TMV RNA on the used
DNA origami platforms. Furthermore, tailoring the lengths of the attached TMV nanotubes
by altering the lengths of the used RNA strands could be used to add a further layer of
complexity to creatable structures. This indicates the possibility of forming precise and
highly programmable configurations of DNA origami-CP nanoassemblies.

To further expand on their earlier work, Zhou et al. [45] then investigated the dynamic
assembly of the TMV capsid proteins, again exploiting TMV genome-mimicking RNA
anchored on DNA origami. Instead of just determining an assembly location for the TMV
capsids, they were now able to guide the forming of the nanotubes during the assembly
process by placing “path-points” along the DNA origami platforms. These path-points are
simply ssDNA strands that extend out of the DNA origami, and they are complementary
to certain parts of the virus RNA sequence. The ssDNA strands anchor the respective parts
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of the RNA onto the DNA origami and thus function as a local block for the TMV assembly.
By including a toehold region to the anchor strands, the RNA can then also be released
stepwise from these hindrances via toehold-mediated strand displacement, which provides
a further degree of control over the assembly process.

To demonstrate this, Zhou et al. used a three-dimensional triangular DNA origami
and a hollow rod-shaped barrel DNA origami. The employed TMV genome-mimicking
RNA strand was similar to the ML strand used in their earlier study [41], 1234-nt long
and containing the assembly-triggering OAS. First, the RNA strand was anchored on the
triangular DNA origami on its 3′-end by fully complementary 40-nt capture strands. The
triangular DNA origami was also decorated with 17 pairs of DNA strands to route the RNA
and enable the dynamic assembly of the CP rod. Each of these DNA strands were 29-nt
long, and of those, 13 nucleotides were complementary to the routed RNA. The remaining
16 nt formed the toehold region for release strands.

The OAS triggered the self-assembly of TMV CPs around the RNA strand, and it
continued until the rod reached the first lock-point of RNA. With the help of the stepwise
addition of release-strands, the dynamic assembly proceeded onwards. Based on TEM
visualizations, the lengths of the protein rod and RNA corresponded to the theoretical
growth in each phase based on the length of the released RNA. The protein rod grew from
27 nm in length before none of the routed RNA was released, to 54 nm after the entire RNA
had been released.

Next, they applied this mechanism to the barrel DNA origami in an attempt to arrange
the TMV rod inside the barrel. At first two 40-nt DNA strands were attached to one end of
the barrel to bind 80-nt in the 3′-end of the RNA. The interior of the barrel and the outer
surface on the other end were then decorated with ssDNA path-points. The pathing was
arranged to guide the assembly of the TMV rod inside the barrel. After the TMV subunits
were added, a 24-nm long nanotube could be seen where the free overhang of the RNA
was located. After releasing the RNA from the path-points inside the barrel, Zhou and
colleagues managed to form a complete, 54-nm long TMV nanotube nested within the
DNA origami barrel (see Figure 3c,d). This way Zhou et al. established that this kind
of confined and stepwise pathing approach could be used to place self-assembled CP
structures even into otherwise spatially hindered positions on DNA origami, expanding
the scope of attainable architectures.

3. Virus-Mimicking Approaches Based on DNA Origami Platforms
3.1. Tailored Lipid Coatings

Many viruses are surrounded by continuous lipid bilayer membranes which protect
the enclosed viral nucleocapsids, as well as facilitate the entry of the capsids into host
cells. To achieve similar goals, DNA origami have also been coated by lipids with various
approaches to mimic native viruses.

Perrault and Shih [46] introduced virus-inspired membrane enveloped DNA nano-
octahedrons (DNO) with decreased immune response and enhanced stability for biomed-
ical applications. The DNO is a wireframe DNA origami with a diameter of ~50 nm
decorated with fluorophore-conjugated oligos inside and lipid-conjugated oligos outside.
The lipid-conjugated oligos function as anchors of the unilamellar envelope (Figure 4a).
In addition to the main lipid component (DOPC, 94.2%), the membrane also comprises
PEGylated lipid (PEG-DOPE, 5%) and fluorescent labelled lipid (Rh-DOPE) (0.8%) as fusion
inhibitor and fluorescent marker, respectively. In vitro IL-6 and IL-12 immunoassays show
that the encapsulated DNO (E-DNO) has an immune activation rate two orders of magni-
tude below controls. Furthermore, a splenocyte assay shows that nanostructure activation
of, and uptake by, immune cells can be almost fully attenuated by encapsulation in the lipid
membrane. In vivo pharmacokinetics analysis also indicates a factor of 17 improvement in
bioavailability of the E-DNOs, as they are more stable than the uncoated DNOs.

DNA nanostructures can also bind to charged lipid molecules via electrostatic in-
teractions. Julin et al. [47] complexed DNA origami together with cationic lipids into



Nanomaterials 2021, 11, 1413 8 of 15

lipoplexes and characterized their self-assembly. Three DNA origami designs, 6-helix
bundle (6HB), 60HB [48], and a nanoplate were assembled with cationic lipid molecules
1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The DOTAP binds to the negatively
charged phosphate backbone of DNA molecules electrostatically and, in combination of
hydrophobic interactions, results in a multilamellar lipoplex (Figure 4b). The complex-
ation was carried out in deionized water to reduce the screening effect of counterions
near the DNA nanostructures. The yield of complexation was initially characterized by
electrophoretic mobility shift assay (EMSA) and TEM, while electron tomography (ET)
and cryogenic TEM (cryo-TEM) were employed to study the morphology of the lipoplex
in detail. Moreover, the phosphorus element was clearly detected in the multilamellar
assemblies by energy-dispersive X-ray spectroscopy (EDS). The encapsulated DNA origami
are much more resilient to the digestion of nuclease DNase I. This straightforward and
scalable approach to protect DNA origami could potentially find use in nanomedicine
and biology.

In contrast with mimicking native viruses to coat DNA origami in lipid membranes,
rationally designed DNA nanostructures could also be used as a frame to shape the
liposomes formed inside them. Both monodispersed spherical liposomes [49] and elongated
tubular liposomes [50] have been assembled using DNA origami as a guide.

3.2. Dense Protein Coatings

As a logical extension to using coating approaches with pre-made virus capsid pro-
teins, the ability to use similar, but more tailorable protein coating components for pro-
tecting and functionalizing DNA has also garnered attention in recent years. As a prime
example, Hernandez-Garcia et al. [51] developed a generalized method for coating DNA
structures with engineerable protein polymer bristles of precise amino acid sequence and
length. Their modular de novo protein polymers could be attached to DNA through a
non-electrostatic and nonspecific DNA binding domain (BSso7d), while the other proper-
ties of the polymer could be separately influenced by the chosen bristle-elements (here
hydrophilic C8) linked to the binding domain (Figure 4c). Upon mixing with various 1D
DNA structures or a 2D DNA origami tile, the resulting polypeptides (C8–BSso7d) formed
bristle-like shells around the DNA objects increasing their mechanical stiffness and stability
in solution, without disturbing the initial form of the coated structures. Furthermore, the
protein coatings were semi-permeable to strong sequence specific binders, which meant the
coated DNA structures could retain some of their functionality and enzymatic accessibility.
The coatings were demonstrated to slow down digestion by DNase I enzymes 5-fold. In
contrast to electrostatic binders, the non-electrostatic BSso7d targets DNA specifically, and
thus also avoids issues with negatively charged surfaces and polyelectrolytes.

A similar approach was taken simultaneously by Auvinen et al. [52], who also used
proteins with conjugated binding domains for coatings. In their approach, a synthetic
dendron binding domain was employed to electrostatically bind two different proteins,
either bovine serum albumin (BSA) (Figure 4d) or class II hydrophobin (HFBI), to three-
dimensional 60 HB DNA origami structures. The protein-dendron conjugates consisted of
a well-defined cationic second generation dendron with 27 protonatable amines linked to a
protein via a cysteine-maleimide bond. Both BSA and HFBI yielded dense and uniform
single-layer coatings for the DNA origami test structure. The BSA coating in particular was
shown to significantly improve the nuclease digestion resistance of DNA origami against
DNase I and to enhance transfection rate (by ~2.5 fold) into target cells in vitro, studied
by fluorescence-activated cell sorting (FACS) and confocal microscopy. Notably, the BSA
coating could also attenuate immune activation as observed by following interleukin 6 (IL-
6) production of primary splenocytes isolated from mice. Compared to the semi-permeable
coatings by Hernandez-Garcia et al. [51], the BSA-dendron coatings were more dense and
effectively non-permeable to the digestive enzymes, providing efficient protection against
degradation as a trade-off for accessibility.
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Recently, also fully tailored coating elements have been synthesized. Wang et al. [53]
designed various peptoid-based coating agents with different peptoid sequences (PE1-9)
and studied their effects on dsDNA and an octahedral wireframe DNA structure, with
simulations and experiments in various solution conditions. Attachment of the peptoids to
the DNA frame was facilitated by controlled electrostatic binding. Each peptoid sequence
was designed with cationic moieties (N-(2-aminoethyl)glycine, Nae) either in a “brush”
(PE1-3) or a “block” (PE4-5) conformation, respectively corresponding to either parallel or
orthogonal alignment of peptoids on the DNA frames. Two designs were used as controls
by replacing the cationic monomers in a brush sequence (PE6) and a block sequence (PE7)
with neutral ones. Lastly, designs PE8 & PE9 had alkyne-modified peptoids that were used
to bind functional cargo molecules to the DNA frames. Upon mixing with the octahedral
DNA frames, the peptoids were able to coat and maintain the shape of the frame below a
N/P ratio threshold of 0.5, with higher ratios leading to aggregation, as observed by TEM
imaging. Increasing the number of neutral (N-2-(2-(2-methoxyethoxy)ethoxy)ethylglycine,
Nte) moieties in the peptoids was found to further improve the stability of the octahedra.
However, the peptoids without any cationic Nae moieties at all (PE6 and PE7) showed
no behavioral changes at different N/P ratios, hinting that the interactions between the
peptoids and the DNA frames are determined mainly by the number and arrangement of
the cationic segments.

Of the designs, only PE2 with a higher concentration of positive charges was able to
retain the shape of the octahedra in lowered Mg2+ concentrations as observed with TEM,
dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). However, all pep-
toid coatings were able to protect the DNA frames in low Mg2+ phosphate-buffered saline
(PBS)-buffer, likely thanks to the compensating Na+ concentration in the PBS. Similarly,
PE2 also conferred the most protection against DNase I degradation, while the digestion
resistance was overall improved with all peptoid designs. The PE2 coated octahedra could
also protect fluorescently labeled BSA cargo attached within the cavity of the frames from
protease digestion, and on a similar line, also decrease the drug release rate of frames
loaded with doxorubicin. Finally, Wang et al. additionally showed that by incorporating
reactive target binding groups into the peptoid sequences, the peptoids could be used to
decorate coated frames with functional molecules such as fluorescent dyes (Azide-Flour
288) or antibodies (Trastuzumab, Tz) for imaging and cell-targeting applications.

Lastly, it is worth mentioning that also other kinds of protein-DNA hybrids have
been employed for various effects, in addition to the more virus-mimicking approaches
described above. Their scope includes for example using human serum albumin (HSA) [54]
for increased serum stability, cationic HSA [55] for facilitating electrostatic coating assembly,
transferrin [56] for enhancing rectangular origami transfection, and spermidine [57] for
enabling the electrotransfection of DNA structures.

3.3. Vaccine Development Using Selective Antigen Positioning

Besides the enhanced stability and immunocompatibility of the virus-mimics, the
DNA nanostructures can be also harnessed in vaccine development. Veneziano et al. [58]
studied the B-cell activation using DNA origami as a platform for the clinical vaccine
immunogen eOD-GT8, which is an engineered outer domain of HIV-1 glycoprotein-120.
The authors investigated how the antigen spacing, copy number and the rigidity and
dimensionality of the scaffold affected the activation of B-cells in vitro. The platform DNA
origami facilitated integration of 1–60 antigen copies with different spatial organizations.

In this study, two types of DNA origami platforms were used. One was an 80-nm
long 6HB rod shape and the other was a wireframe-based icosahedron with a diameter of
~40 nm (see Figure 4d). Short ssDNA overhangs were used as anchors for complementary
and synthetic peptide nucleic acid (PNA) strands that were previously coupled to eOD-GT8
antigens. This way the number of antigens and their spatial position could be precisely
controlled (Figure 4e).
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The activation of B-cells was observed by following the intracellular calcium signaling
which expresses the full activation of the B-cell membrane-bound receptor IgM (IgM-BCR).
The authors discovered that DNA origami with none or only one eOD-GT8 bound had no
effect on activating the B-cells. The calcium signaling increased when DNA origami was
equipped with two to five eOD-GT8, however, more than five antigens did not enhance
the signaling. Importantly, the positioning of eOD-GT8 also played a role in the B-cell
activation. For the icosahedral DNA origami, the optimal distance between eOD-GT8
particles was ~25–35 nm, and 80 nm for the rod DNA origami.
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4. Discussion and Conclusions

To conclude, it can be stated that both DNA origami and viruses may serve as excellent
materials to exploit in biomedicine. They each have a variety of qualities which make them
superior to several inorganic nanomaterials in physiological conditions. DNA origami
has proven to be a safe, biocompatible and non-cytotoxic material that can carry drugs,
enzymes and other functional molecules and deliver those to target cells [23]. Viruses,
in turn, are robust, precise, naturally at the nanoscale and have evolved in nature to
penetrate inside cells. When the viruses are modified into VLPs, they lose their infectivity
and therefore are safe to use in vivo as well. Biohybrid materials formed by the union
of these viruses and DNA structures have the capability to revolutionize smart targeted
drug delivery and could be employed in both therapeutics and diagnostics. A summary
of the various selected virus-DNA nanostructure hybrids, virus-mimicking approaches,
characterization techniques and possible target applications is provided in Table 1.

https://pubs.acs.org/doi/10.1021/nn5011914
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Table 1. Selected virus and virus-mimicking protein-DNA nanostructure hybrids, their assembly methods, characterization
techniques and possible target applications/functions.

Hybrid Composition Assembly Method Characterization Technique
(s) Target Application/Function

MS2 capsids + rectangular
and triangular DNA

origami [42]

ssDNA-modified capsids + a
complementary ssDNA

overhang protruding from
DNA origami

AFM, TEM

higher-order assemblies of
viruses through conjugation

of programmable DNA
origami platforms

CCMV CPs + rectangular
DNA origami [40]

positively charged
N-terminus of CP + negatively

charged DNA origami

EMSA, TEM, confocal
microscopy

virus-encapsulation
significantly enhances the

cellular delivery rate of DNA
origami

SV40 CPs + variety of
spherical DNA origami [44]

cooperative assembly of VP1s
around DNA origami AGE, TEM, cryo-TEM

investigating the effect of
DNA origami of different

sizes as a substrate for SV40
assembly

TMV CPs + various DNA
origami [41,45]

in situ assembly of CPs
around pre-bound RNA +

toehold-operated
hybridization sites on DNA

origami

TEM, AFM, fluorescence assay
confined and programmable

assembly, complex
architectures

PEGylated lipid bilayers +
DNA origami octahedron [46]

lipid-DNA conjugates
anchored to DNA origami +

liposome addition (and
surfactant removal) for a

fused lipid bilayer

TEM, IL-6 & IL-12
immunoassays, DNase I

digestion assay, splenocyte
activation assay, flow
cytometry, confocal

microscopy, fluorescence
assay

mimicking lipid envelope of
virus, enhancing stability and

immunocompatibility

cationic multilamellar lipid
bilayer + 6HB, 60HB and plate

DNA origami [47]

electrostatic and hydrophobic
interactions

AGE, TEM, cryo-TEM, ET,
EDS

improves nuclease resistance,
a route to form

DNA-templated lipid
assemblies

de novo protein polymer
bristles + 1D or 2D DNA

origami [51]

nonspecific and
nonelectrostatic DNA binding

domain in polymer bristle

AGE, AFM, fluorescence
microscopy, DNase I digestion

assay

dense bristle coating with
modular bristles enables

tuning of the stability,
mechanical properties and
surface chemistry of DNA

structures while still retaining
accessibility for strong binders

dendron-modified BSA and
HFBI + 60HB DNA

origami [52]

positively charged dendron as
a synthetic DNA binding

domain + negatively charged
DNA origami surface

AGE, TEM, DNase I digestion
assay, IL-6 immunoassay,

confocal microscopy, FACS

BSA protein corona improves
the nuclease resistance,

immunocompatibility and
cellular delivery of DNA

origami

peptoids + octahedral
wireframe DNA [53]

positively charged moieties in
peptoid + negatively charged

DNA frame

AGE, TEM, DLS, SAXS,
fluorescence assay, molecular
dynamics simulation, DNase I

digestion assay, protease
digestion assay, magnesium

depletion assay

alignment of coating
molecules, tunable stability,

cell-targeting, display of
functional molecules

antigens + icosahedral
wireframe and rod-like DNA

origami [58]

eOD-GT8 antigens coupled to
synthetic PNA strands +
complementary ssDNA

overhangs protruding from
DNA origami

AGE, TEM, intracellular
calcium indicator dye assay

activation of B-cell
membrane-bound receptor
IgM, vaccine development

The hybrid complexes may also be used in a parallel fashion both in therapeutic
and diagnostic applications. Recently, Kwon et al. [59] studied the possibility to use star-
shaped DNA nanostructure equipped with ten aptamers targeting dengue envelope protein
domain III (ED3). The exact shape of the DNA nanostructure was designed to bind to
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ED3, thus functioning as a virus inhibitor. On the other hand, modularity of the DNA
shape opens up an option to employ it also as a simultaneous virus sensor/detector via the
aptamer-protein binding.

Biomedicine is however not the only field where DNA nanostructures and VLPs could
be exploited. Several studies in the fields of nanoelectronics, nanofabrication, molecular
computing and chemical sensing have experimented with DNA origami and VLPs [5,23].
Therefore, investigating especially the various assembly strategies of hybrid structures
can be widely beneficial. For example, it has been demonstrated that both DNA origami
and TMV viruses can be used as templates for molecular lithography [60], indicating
that even hybrid structures may be potentially used in versatile solid-state patterning at
the nanoscale.

Most of the exciting opportunities in virus-DNA hybrids research are still unexplored,
and several challenges concerning optimization for physiological conditions remain to be
solved, especially in case of DNA nanostructures [61,62]. The most prominent of these
are stability at low-cation conditions, resistance against nucleases, low pharmacokinetic
availability, low cell uptake, possible inflammatory response and accurate loading and
release of drug molecules [23,24,46,52,61–71]. Outstanding issues in virus-based nanocar-
riers are related to unknown adverse effects caused by the adaptive immunity against
the viral proteins [72]. Similarly, as DNA origami designs are based on genomic scaf-
fold strands, they may not be compatible with all medical treatments [23,73]. However,
successful immunostimulative properties have been demonstrated both with CpG-laden
bacteriophages [72] and DNA origami [74,75].

Still, these nanoassemblies are most definitely worth investigating due to their vast po-
tential, and groundwork is indeed ongoing as shown in the featured studies. Furthermore,
it has been recently estimated in a model [73] that DNA nanostructure-based treatments
may become commercially viable, if DNA nano-objects can be produced at large scale and
with high quality.
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