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Abstract: Osteosarcoma is the most common primary bone tumor, and its first line of treatment
presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70%
(if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the
need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV–Vis
radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids
have been shown to have the potential to selectively eliminate cancer cells in different tumors through
an oxidative stress-dependent mechanism. In this work, we review the current state of the art in
cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far
regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future
approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies
based on this emerging technique.

Keywords: osteosarcoma; cold atmospheric plasma; plasma treated liquids; reactive oxygen and
nitrogen species; oxidative stress; tumor microenvironment; cancer stem cells

1. Background

Osteosarcoma (OS) is the most common type of primary solid tumor originating in
bone. It predominantly affects children and young adults, whose bone cells are experienc-
ing rapid growth and higher risk of mutation, as well as adults with bone pathologies [1].
OS is usually localized in the metaphysis of long bones, particularly the distal femur (30%),
proximal tibia (15%) and humerus (15%) [2]. Approximately 20% of patients present with
metastases at early stages [3], with the lung being the most common site of metastasis and
distal bones being the second most common [4], and usually present with a high grade of
metastasis in the long term. Although OS occurs with a low incidence compared with other
solid tumors, it is ranked among the most frequent cause of cancer death in childhood,
with a 5-year survival of less than 30% in metastatic patients [5] and 20% for recurrent
tumors [6].

Today, surgery combined with chemotherapy is the first-line treatment [3,7], but it
lacks complete effectiveness and is associated with harmful effects [8]. Therefore, the
development of novel therapies is required to improve the outcomes of OS patients. In the
last several years, a new anti-cancer therapy based on the application of Cold Atmospheric
Plasma (CAP) has shown promising results in a wide range of tumor types (pancreatic,
cutaneous, lung and colon carcinomas, neuroblastoma, lymphoma, etc.) in in vitro studies,
twenty-seven in vivo studies [9] and three clinical trials, and studies are ongoing [10].

In the last few years, there has been a significant increase in the number of studies
reporting the in vitro efficiency of CAP in OS. In this context, the aim of this review is to
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comprehensively compile the existing literature in the field and to discuss whether CAP
application could be considered to treat this disease. For this purpose, we consider the
current challenges in proposing an effective therapy for OS, highlighting its possible impact
along with the different malignant features of this kind of cancer, and we discuss future
developments that will allow this therapy to advance.

2. Current Treatment in OS

The prevalent procedure for the treatment of OS is surgical resection, followed by
intravenous chemotherapy (mainly doxorubicin, cisplatin and methotrexate). In cases in
which surgery is not sufficient, radiotherapy is necessary to complete local treatment [7].
This strategy has led to a significant increase in 5-year survival rates, but survival rates for
metastatic and recurrent tumors are still very low. Furthermore, these therapies are highly
invasive, produce side effects and do not ensure complete eradication [8,11], emphasizing
the need for a better understanding of the current state of OS treatment to advance the
development of novel therapies.

2.1. Surgery

Complete surgical resection of the malignant tissue is the first option for OS treatment
(Table 1), which is critical to obtain remission and improve patient survival. For effective
surgical resection, OS tumors should be removed with accurate margins to prevent residual
disease and tumor recurrence. When tumor resection cannot be achieved without generat-
ing a non-functional limb, limb amputation must be considered. On the other hand, for
cases in which OS tumors can be resected while preserving limb function, preservation
surgery is employed [12]. In most cases, limb preservation surgery can be complex, and
bone reconstruction strategies are required [13].

Table 1. Current strategies for osteosarcoma (OS) treatment: Summary of the main mechanisms of action, benefits
and disadvantages.

BASIS ADVANTAGES DISADVANTAGES

SURGERY Limb amputation;
Surgical resection of tumor tissue

↑ Tumor remission and survival in
non-metastatic OS patients.

↑ Tumor residues, relapse and
limb disfunction.

↓ Effectiveness in metastatic OS patients.

CHEMO-
THERAPY

Methotrexate, doxorubicin and
cisplatin: inhibits DNA synthesis;
Doxorubicin and cisplatin: Free

radical production

↓ Tumor growth;
Tumor remission facilitates

surgical resection;
Eradicates tumor remnants and

distal metastasis.

Drug resistance in many patients;
Crystal nephropathy;

Systemic oxidative stress: hepatotoxicity
and cardiotoxicity;

Hepatotoxicity, cardiotoxicity, altered
bone remodeling function, side

effects.any side effects.

RADIOTHERAPY
Radiation-induced DNA damage;

Production of hydroxyl
radicals (·OH).

To control of resection margins;
Local control of OS tumors that

cannot be properly resected.

↓ Response of OS tumors and a need for
↑ doses;

Detrimental effect on normal tissue;
Systemic oxidative stress

and cytotoxicity;
Risk of a radiation-induced

secondary tumor.

IMMUNOTHERAPY
Use of components of the immune

system to increase the immune
response against cancer cells.

↓ Side effects than chemo- and
radiotherapies and risk of

tumor relapse.

↑ Capabilities of OS to ignore
immune system;

Autoimmune responses.

TARGETED
THERAPIES

Use of different kinds of inhibitors
of critical proto-oncogenes.

Targeted for OS cells;
Free of systemic effects.

↑ Difficulty to identify relevant
proto-oncogenes in OS.

Limb preservation surgery poses an increased risk of non-visible tumor remnants
in the case of localized tumors, and complete tumor eradication may not be feasible in
metastatic OS [8]. For these reasons, most OS patients receive neoadjuvant chemotherapy
before surgical resection to decrease tumor size and achieve adequate margins in addition
to receiving it postoperatively to eradicate tumor remnants and avoid metastasis [4]. In
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addition to surgery, radiotherapy can be also used to add local control and may improve
patient survival [8].

2.2. Chemotherapy

The most commonly used chemotherapeutic regimen for OS includes the systemic
administration of a three-drug combination of methotrexate, doxorubicin and cisplatin
(Table 1) [14,15]. Methotrexate acts as an antimetabolite that interferes with the metabolism
of folic acid, which is essential to produce DNA, thus interfering with cell division [16]. On
the other hand, doxorubicin and cisplatin constitute DNA-intercalating agents and thus in-
terfere with cell division. Doxorubicin inhibits the progression of the enzyme topoisomerase
II, which relaxes supercoils in DNA for transcription, thereby stopping the process of repli-
cation [17], whereas cisplatin cross-links purine residues, producing DNA adducts [18].
Data also suggest that doxorubicin and cisplatin produce free radicals that induce DNA
and cell membrane damage and interfere with mitochondrial respiration [17–19].

The combination of surgery and chemotherapy has increased the 5-year survival
for patients with non-metastatic OS from 25 to 70% [14]. However, this survival rate
has plateaued for patients with non-metastatic disease, and the prognosis is only about
20% for patients with metastases [11]. Many patients develop chemoresistance, leading
to tumor relapse and metastasis after treatment cessation. Additionally, side effects that
produce crystal nephropathy and systemic oxidative stress, which leads to hepatotoxicity
and cardiac damage [8,17–19], are associated with this therapy.

2.3. Radiotherapy

Radiotherapy damages the DNA of tumor tissues, leading to cell death. Ionizing
radiation is also able to damage numerous cell organelles, primarily through the production
of hydroxyl radicals (·OH) [20]. OS has a low response to radiotherapy, so it is not the
first option for treatment and is only considered after chemotherapy in specific cases
(Table 1) [21,22]. To elicit a therapeutic response, high doses of radiation are required,
which increases adverse effects, such as its detrimental action on normal tissue, systemic
cytotoxicity and the risk of radiation-induced secondary tumors [23–25].

2.4. Other Therapeutic Options

Due to the multiple drawbacks of the current strategies for OS, the development of
innovative therapies is of great interest. The widest body of research is focused on either
immunotherapy, i.e., the stimulation and/or use of components of the immune system to
increase the immune response against cancer cells, or on targeted therapies based on the
use of different kinds of inhibitors of critical proto-oncogenes (Table 1). In OS, different
cytokines have been investigated as immunomodulatory agents [7]. For targeted therapies,
several proto-oncogenes, such as protein kinases [26], have been proposed. Different
inhibitory agents, such as small molecules [27,28] and siRNA [29,30], have been reported
to silence these proto-oncogenes and proteins related to poor prognosis in OS.

Despite the great research efforts in these areas, the complex hallmarks that character-
ize OS make it difficult to develop effective therapies. Although the idea of stimulating
the host immune system is highly attractive, OS possesses a remarkable ability to evade
the immune system response. Moreover, immunotherapies can trigger autoimmune re-
sponses and chronic inflammation [31]. On the other hand, the increased heterogeneity and
genetic instability of OS make it difficult to find effective targets for its treatment [32,33].
In this field of research, a rising new therapy based on CAP has shown great promise
for cancer treatment, especially for OS. The advances made thus far are compiled in the
following sections.

3. CAP for Cancer Therapy

Plasma is a multi-component, chemically active and highly reactive state of matter [34]
consisting of a totally or partially ionized gas that produces several uncharged and charged
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particles (i.e., ions, electrons, atoms, molecules and free radicals), electromagnetic fields
and visible–ultraviolet (UV) radiation, with an overall neutral charge. Plasmas can occur in
nature and can also be produced artificially by placing a gas under strong electromagnetic
fields. Among the different kinds of plasmas that can be artificially generated, CAPs are
generated at room temperature and at atmospheric pressure, usually from noble gases
(i.e., helium and argon), molecular gases or air directly [34], making them suitable for
biomedical applications (Figure 1). Through different physicochemical processes, plasmas
lead to environments that are rich in reactive oxygen species (ROS), including the hydroxyl
radical (·OH), superoxide anion (O2

−), singlet oxygen (1O2) and hydrogen peroxide (H2O2),
among others. In addition, reactive nitrogen species (RNS) are also generated, such as
nitric oxide (NO), peroxynitrite (ONOO−) and other members of the NOx family [35].

Figure 1. (A) Atmospheric pressure plasma jet (APPJ) in operation. (B) illustration of the principle of generation of plasma,
where a power discharge is applied to two electrodes in between a gas (usually He or Ar) flows through a dielectric tube.
This generates the plasma discharge that can then be applied directly to OS tumors in vivo, cells in vitro or used to produce
plasma-treated liquids that can in turn be used to treat tumors or cells.

CAPs have been demonstrated to produce biological effects such as blood coagula-
tion [36], sterilization [37,38] and wound healing [39,40] due to their ability to generate
reactive components that lead to complex biochemical interactions with cells. CAPs have
also induced a variety of effects on mammalian cells, ranging from increased cell prolif-
eration to cell death [41], indicating promising clinical uses. An emerging possibility for
the clinical application of CAPs is their use to target cancer cells and, therefore, tumor
progression. CAPs have shown in vitro efficiency in a large number of cancer cell lines [9]
and the ability to reduce tumor size in vivo in animal models [42,43] and a few clinical
trials [10,44]. The rich composition of CAPs can induce cytotoxic effects on cancer cells,
depending on the time of exposure [45–47]. An important advantage of the use of CAP
for cancer therapy is that it can affect cancer cells without damaging healthy cells and
surrounding tissues, in contrast to conventional chemo- and radiotherapy [48].

3.1. Application Methods of Cold Atmospheric Plasma (CAP)

The administration of CAP into the body is an important aspect of the in vivo treat-
ment of tumors. In terms of applicability, two distinct methods are reported in the literature
(Figure 2): the direct application to cells or the tumor tissue, where all plasma components
are present, and indirect treatment based on the administration of an aqueous solution
previously treated by CAP. Both kinds of application have shown efficiency in targeting
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different types of cancers both in vitro and in vivo [49–53], but there is often a need to
increase treatment times in indirect treatments to produce similar cytotoxic effects to the
direct treatment [52,53].

Figure 2. Strategies to apply Cold Atmospheric Plasma (CAP) in cell culture and tissues. In the direct CAP application
to cancer cells and tissues, all plasma components (i.e., electromagnetic fields, ultraviolet (UV), total RONS and different
particles) can interact with cells, but limitations include the limited depth of penetration. In the indirect treatment, based
on plasma-treated liquids, only the most stable reactive species and ions have an effect, while they allow local delivery
by injection.

On the one hand, in the direct treatment, all plasma components (electromagnetic
fields, UV, visible light and short- and long-lived reactive species) act simultaneously on
the biological target. For this reason, direct treatment usually induces greater cytotoxicity
than indirect treatment as a result of the physical components and short-lived reactive
species [52,53]. However, direct CAP has some shortcomings, such as a limited depth of
penetration [54], restricting it to superficial types of cancer or requiring direct exposure of
the tumor site by open surgery.

In parallel, CAP can be used to generate different reactive species in aqueous-based
solutions through diffusion and/or reaction of excited particles from the plasma with
the liquid and the transport of RONS generated in the plasma gas phase into the liquid
phase [55,56]. The composition and quantity of reactive oxygen and nitrogen species
(RONS) are highly dependent on the biochemical composition of the liquid and the plasma
parameters employed [56–58]. Therefore, these plasma-treated liquids containing more
stable long-lived RONS can be applied to cells in vitro or can be locally injected in the
tumor in an in vivo situation with a minimally invasive approach, avoiding the need for
open surgery.
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3.2. Anti-Cancer Mechanism of CAP

As previously discussed, CAP contains diverse biochemically active agents. However,
the anti-cancer effect of CAP largely depends on the production and the synergistic action
of a wide diversity of RONS [59–61], along with the additive effects of the physical compo-
nents (electromagnetic fields and UV in direct treatments). Several RONS are known to
play a role in the biological effects of CAP, although H2O2 and NO2

− are the most often
discussed and quantified for practical reasons [56]. H2O2 is well-known as an effective
inducer of DNA damage and apoptosis in CAP treatment [62], while NO2

− is a precursor
to the intracellular formation of NO, which induces protein and lipid oxidation [63]. The
evidence of the synergistic effects of RONS in plasma treatment is that N-acetyl-cysteine
(NAC) and carboxy-PTIO, which are H2O2 and NO scavengers, respectively, are able to
inhibit the cell death triggered by CAP treatment [64,65]. Different studies have shown
that the H2O2 and NO2

− generated by CAP treatment are able to react and produce perox-
ynitrite (ONOO−), which is considered a key mediator of cell membrane peroxidation and
increased cell permeability, among other effects [66].

To affect cancer cells, these CAP-generated RONS react with membrane lipids and/or
penetrate the cellular membrane, increasing the level of intracellular RONS and triggering
oxidative stress [67,68]. This high level of intracellular RONS after exposure to CAP can
damage cellular components such as DNA, proteins and lipids. In fact, high expression
of PH2A.X, a phosphorylated histone that is used as a DNA damage reporter, has been
detected after CAP treatment [60,69]. RONS produced by CAP have been shown to react
with amino acids and oxidize lipids present in lipidic bilayers, resulting in cell membrane
and organelle damage [70–72]. The resulting cellular damage leads to specific signaling
cascades that ultimately trigger cell death, mainly by an apoptotic mechanism [73–75]. The
different CAP-induced signaling pathways are reported to mainly converge in mitochon-
dria, which act as the regulator of apoptosis [64,76–81]. As a result of this convergence of
different biochemical signals or direct damage induced by CAP-produced RONS, mito-
chondria increase their transmembrane potential, promoting the release of pro-apoptotic
factors that mediate cell death [82,83].

3.3. Advantages of Using CAP

The main advantage of using CAP for cancer therapy that has fostered research in this
direction is their selectivity, with them having been shown to eliminate cancer cells without
damaging healthy cells and surrounding tissues [9]. To explain this, different theories
propose cancer cells to be more sensitive to oxidative stress than normal cells due to an
elevated metabolic rate, high mitochondrial energetics and alterations of the mitochondrial
electron transport chain, all of which lead to the overproduction of intracellular RONS. As
a result, a further increase in the concentration of exogenous RONS produced by CAP is
thought to overwhelm the tumor cell antioxidant system, leading to oxidative damage,
in contrast to what happens in healthy cells, which can manage this increase [84]. It has
also been proposed that singlet oxygen produced by CAP inactivates catalase, which is
overexpressed on the surface of tumor cells [85], increasing the influx of H2O2 by aquaporin
transporter channels (also overexpressed in cancer) [86], inducing the subsequent depletion
of intracellular defenses (i.e., glutathione) and triggering apoptosis [85,87].

The rich composition of RONS produced by CAP also constitutes another advantage
over conventional chemo- and radiotherapy, the action of which is also partly based on
producing reactive species. Radiotherapy [88] and drugs such as doxorubicin or cisplatin
exert part of their effect by increasing intracellular ·OH, so they are limited to its effect and
are likely to cause systemic toxicity and side effects [89]. Contrary to these conventional
therapies, CAP is applied locally and produces a wide range of RONS that lead to the
synergistic effects previously described. Moreover, RNS produced by CAP may also
produce specific effects in cancer cells; i.e., NO can disrupt cytochrome C oxidase, resulting
in increased levels of ROS, followed by the induction of mitochondrial apoptosis [90].
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4. Potential Application of CAP in OS

The two possible approaches to applying CAP, as described in Figure 1, have different
implications in terms of their possible translation to clinics for OS treatment. Direct
CAP has been proven to reduce the growth of small and localized tumors in in vivo
animal models of melanoma and breast cancer [91,92]. However, OS tumors are mostly
detected in advanced stages, presenting large volumes [32], which can limit the efficiency
of CAP. Moreover, as previously discussed, OS is highly metastatic and may appear
disseminated [93]. Considering this, direct treatment may be more indicated in OS at the
early stage of localized tumors (Figure 3A) [94]. On the other hand, because a common
treatment of OS is a surgical resection of the tumor, direct treatment can also be applied to
treat resection margins to eliminate remaining tumor tissue and allow for more conservative
surgery (Figure 3A) [54]. The exposure to electromagnetic fields in direct treatment may
lead to an increase in cell permeability or cell membrane disruption, which can improve
the in situ uptake of RONS [95,96] and drugs [73,97,98]. Moreover, it has been suggested
that the destruction of the tumor extracellular matrix (ECM) may improve the response of
tumors to chemotherapy or other treatments [99], reducing the effective doses needed for
postoperative regimens.

Figure 3. Methods of application of CAP treatment in an OS clinical situation. (A) Schematic model
of direct treatment of an OS tumor in the early stages of tumor progression or after surgical resection
of the tumor. (B) Indirect treatment via injection of plasma-treated liquids in the early stages of OS or
inside the defect generated after tumor resection.

The indirect method allows the tumor site to be reached by injection in a mini-
mally invasive approach and enables repeated doses. The administration of multiple
doses of plasma-treated liquids reduced in vivo tumor progression in preclinical mod-
els of colorectal and ovarian cancer [100–102], allowing for the control of the RONS
administered [56,103,104]. Plasma-treated liquids also offer the possibility of being part
of a combined or co-adjuvant therapy and have been demonstrated to effectively target
different kinds of cancers (i.e., melanoma, ovarian and pancreatic cancer) when combined
with drugs [53,102,105], nanoparticles [106] and different cytotoxic molecules [107]. How-
ever, plasma-treated liquids may be rapidly washed away from the tumor site, and the
presence of ECM antioxidants can cleave the RONS produced, affecting their cytotoxic
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potential [47,75,104]. To address this scenario, the storage and delivery of plasma-generated
RONS in the form of hydrogels is currently under investigation. These biomaterials have
been demonstrated to be suitable vehicles for controlled drug release, so this is being
approached in CAP therapies by using injectable polymeric hydrogel solutions that are
able to cross-link in vivo, opening the door to local and controlled delivery of RONS to the
tumor site (Figure 3B) [108–111].

5. In Vitro Effects of CAP in OS

In recent years, an increasing (but still limited) number of studies have produced CAP
anti-cancer effects in different OS cell lines by employing direct CAP and plasma-treated
liquids (Table 2). In the following sections, we review the two different modes of CAP
application in OS cell lines and discuss its potential and the challenges to be faced.

Table 2. Summary of in vitro studies on CAP applications for OS treatment.

Cell Lines CAP Device Cell Response Refs

DIRECT CAP TREATMENT→ floating cultures except α

SaOS-2, hMSCs
hOBs α He APPJ * Cytotoxicity of cancer cells to CAP rather than healthy bone cells. [112]

U2-OS, 3T3
Maxium®

CAP Coagulator 1000
kINPen MED

Differential ↓ in proliferation depending on the plasma jet. [113]

U2-OS, MNNG/HOS

kINPen MED
MiniJet-R Plasma jet-dependent response; ↓ cell proliferation; activation of caspase-3/7. [114]

kINPen MED

↓ Cell proliferation; p53 phosphorylation; DNA condensation and
nuclear degradation. [115]

↓ Cell proliferation and peroxiredoxin expression; NAC-mediated reduction
of CAP cytotoxicity. [116]

Cell line-dependent chemokine and cytokine modulation. [117]

↑ Cell membrane permeability. [118]

↓ Cell proliferation and cell membrane permeability; apoptotic cell death. [119]

INDIRECT CAP TREATMENT (PLASMA-TREATED LIQUIDS) adherent cultures except β

HOS, SaOS-2, 143B

DBD *

Mitochondrial network aberration, ↑ autophagy. [120]

HOS, SaOS-2, 143B, hFOB,
LM8, K7M3, MC-3T3

Cytotoxic effect in transformed cells; mitochondrial network aberration;
caspase-independent cell death; cell membrane depolarization; Ca2+

homeostasis disruption.
[121]

SaOS-2, hMSCs,
hOBs

He APPJ

↑ Cytotoxicity of CAP to cancer cells than healthy bone cells and apoptosis; ↓
focal adhesions. [112]

SaOS-2, hBM-MSCs Selective cytotoxic effects depending on H2O2 generated and the presence of
pyruvate, ↑ DNA damage and apoptosis, phospho-kinase alterations. [104]

SaOS-2, MG-63, U2-OS,
hBM-MSCs

He APPJ
kINPen IND

Selective cell death depending on plasma jet and RONS concentration,
induction of intracellular ROS increase, DNA damage and apoptosis between

healthy and cancer cells.
[122]

Tumors produced from
MOS-J β He APPJ ↓ Proliferating cells and viability. [122]

* APPJ: Atmospheric Pressure Plasma Jet; DBD: Dielectric Barrier Discharge. α Adherent cultures. β Floating tumor tissues.

5.1. Direct Treatment in OS

Direct application of CAP in OS cells has been reported to produce cell membrane
disruption and increase cell permeability, which is considered a key factor in the cellular
uptake of CAP-derived RONS [118,119]. In other tumors, this effect has been related to
the electrical fields from CAP, which produce similar effects to electroporation [123]. As
for other tumors, CAP-generated RONS have been proposed as key mediators of CAP
cytotoxicity in OS cells [113,114], as has been confirmed by the alteration of peroxiredoxin
expression [116]. Moreover, direct application of CAP is able to produce DNA condensation
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and fragmentation, followed by activation of p53 [115] and caspase-3/7 [114,115] and
then the induction of apoptotic cell death [119] (Figure 4). The selectivity of direct CAP
for cancer cells has also been described for OS [104,112,122]: exposure to CAP induces
cytotoxic effects, mainly in OS cells, while an increase in cell proliferation with the same
treatment is observed in normal bone cells [112]. Conversely, it has also been shown that
CAP upregulates different molecules related to OS progression, such as interleukins (ILs),
chemokines and growth factors (Figure 4) [117]. In particular, IL-22, which is related to
OS invasion [124], is overexpressed, as are chemokines such as CXC, CC, CX3C and C
chemokine ligands related to angiogenesis and metastasis in many solid cancers [15], so
this aspect deserves careful study. Conversely, vascular endothelial growth factor (VEGF),
related to angiogenesis and poor prognosis in OS, is downregulated [125].

Figure 4. Summary of the main in vitro mechanisms of CAP in OS. Green boxes indicate increase or upregulation, while
red boxes indicate decrease or down-expression. CAP containing ultraviolet (UV) and electromagnetic fields produce
RONS in liquids. In the cell, pyruvate scavenges hydrogen peroxide. CAP induces cell membrane disruption, which
facilitates the transport of RONS into the cell, inducing an increase in intracellular RONS and oxidative stress, which can be
attenuated by antioxidants. On the one hand, oxidative stress increases peroxiredoxin expression and modulates protein
phosphorylation and transcription factor activation, which determines cell death or survival. CAP-derived RONS can also
alter the expression pattern of cytokines, chemokines and growth factors related to OS progression. On the other hand,
CAP produces DNA damage that is related to p53 activation and caspase-dependent apoptosis. CAP can also produce
mitochondrial injury directly or cause it indirectly by increasing the RE-mitochondrial calcium influx. CAP is also reported
to induce mitochondrial autophagy, which may decide between cell death and survival.



J. Clin. Med. 2021, 10, 893 10 of 23

5.2. Indirect Treatment in OS

Due to the limitations of the direct application of CAP for OS discussed in Section 2.1,
indirect treatment has been gaining interest over the last several years, and several works
have investigated this topic. Plasma treatments with two main types of liquids have been
investigated: cell culture media and saline solutions (Table 2). Canal et al. demonstrated
the preferential cytotoxic effect of plasma-treated medium in SaOS-2 cells over healthy
bone cells [112]. Mechanistically, plasma-treated medium produces an intracellular ROS
increase, DNA damage and apoptosis preferentially in OS cells [104,122] rather than in
healthy cells. Suzuki-Karasaki et al. evaluated the ability of plasma-treated medium to in-
duce mitochondrial network aberration and detected autophagy and caspase-independent
cell death in different OS cell lines [120,121]. They also reported the induction of cell mem-
brane depolarization and the disruption of Ca2+ endoplasmic-mitochondrial homeostasis
(Figure 4). These data suggest that, as in other tumor types [126], apoptosis induced by
plasma-treated medium can be associated with a mitochondrial pathway in OS (Figure 4).

For the indirect treatment, the CAP parameters employed to produce plasma-treated
medium, such as gas flow, distance from the liquid surface, treatment time and the pres-
ence of scavengers, such as pyruvate, in the culture medium, have a high impact on the
composition of RONS, e.g., H2O2 production, which has been demonstrated to mediate the
selectivity between OS and mesenchymal stem cells (MSCs) [104]. In this sense, a balanced
composition of plasma-generated RONS in the medium is key to achieving the desired
plasma selectivity.

Tornin et al. demonstrated that exposition of SaOS-2 cells to non-lethal doses of
RONS from plasma-treated medium induced the activation of oxidative stress resistance
pathways, such as C-JUN and AKT [104], which are involved in OS progression [127–129].
Plasma-treated medium also alters cell signaling, which is related to poor prognosis in OS,
such as STAT3 [130] and AMPKs [131]. Interestingly, it also induces the downregulation
of focal adhesion kinase (FAK), related to invasion and metastasis in OS (Figure 4) [132].
These results show that the cell signaling effects caused by plasma-treated liquids are
largely dose-dependent.

In addition, other studies have investigated the cytotoxic potential of saline solutions
treated by CAP, which have the advantage of being suitable for clinical application. Cold
plasma-treated Ringer’s saline decreased OS cell viability as a function of the concentration
of RONS in the liquid phase, and it was shown that high doses of H2O2 masked the effects
of other RONS and led to the loss of anti-cancer selectivity. To date, only one study has
investigated the effects of plasma-treated liquids in an ex vivo situation with a real tumor.
This work related the RONS delivered in saline solutions to decreased viability in mouse
organotypic cultures of OS [122].

6. Challenges of CAP for OS Therapy

Currently, less than 5% of the effective treatments against OS tested in vitro have
succeeded in clinical trials [133–135]. This can be explained by the inability of these
in vitro models to recapitulate the in vivo tumor complexity [133]. OS originates in a
highly active and rich bone microenvironment, whose composition plays a major role
in tumor progression [136]. Moreover, genetic instability and an elevated mutation rate
produce a high grade of tumor heterogeneity, which constitutes a key factor in treatment
failure [33]. In addition, the prevalence of a tumor subpopulation, namely, OS Cancer
Stem Cells (CSCs), has a great impact on drug resistance, tumor progression, relapse and
metastasis [137]. These three characteristics explain the poor outcomes in OS treatment
(Supplementary Figure S1). For this reason, in the following sections, we discuss how
CAP-based therapies could impact these aspects of OS, based on previous research on CAP
therapies in other kinds of cancer.
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6.1. Bone Microenvironment in OS

OS arises in a complex bone microenvironment and interplays with bone cells by
releasing extracellular signals in order to promote tumor progression, thereby affecting
bone homeostasis [138]. On the one hand, OS is known to disrupt bone remodeling,
which is regulated by the balance of osteoblasts, which produce the bone matrix, and
osteoclasts, which conduct bone resorption. OS cells disrupt this balance by increasing
bone resorption and the release of ECM growth factors, which, in turn, promote tumor cell
proliferation [139].

On the other hand, tumor growth and metastasis depend upon the ability to induce
nutrient and oxygen supply, so angiogenesis is essential for tumor progression. OS cells
respond to conditions such as hypoxia and inflammation by producing stimulating factors,
including VEGF, platelet-derived growth factor and endothelin-1 [140]. In parallel, MSCs
associated with OS mediate proliferation, metastasis and drug resistance in OS [141–144]
and can acquire a specific cancer-associated fibroblast (CAF) phenotype. Furthermore,
MSCs encourage tumor cell growth by secreting a large number of cytokines and growth
factors, such as IL-6, TNF-α and IFN-γ; promote angiogenesis by secreting VEGF; and help
to evade the immune system by secreting cytokines, such as TGF-β [145,146]. MSCs have
also been shown to secrete several pro-inflammatory factors, such as IL-8, and foster OS
stemness [147].

OS cells also produce pro-inflammatory factors, which contribute to tumor progression
by inducing epigenetic modifications, increasing proliferation and enhancing anti-apoptotic
pathways [148]. This deregulation of the inflammatory response is widely associated with
immune system evasion by inhibiting the expression of tumor antigens and, therefore,
inducing immune tolerance through the secretion of suppressive molecules, such as IL-10,
TGF-β and prostaglandin E2, and the expression of inhibitory checkpoint molecules, such
as PD-L1 and CTLA-4, and tumor-derived chemokines [149].

How Could CAP Affect the Bone Tumor Microenvironment?
Thus far, no studies have described the effect of CAP on the different components of

the OS tumor microenvironment, and this clearly deserves deeper investigation. Diverse
results reported in the literature may suggest the possible involvement of CAP in the OS
tumor microenvironment (Figure 5A). As described above, the cellular components of
the OS tumor microenvironment are mainly composed of osteogenic cells, endothelial
cells, MSCs, CAFs and immune system cells (Figure 5B) [136]. CAP is widely described
to exert pro-proliferative and pro-differentiative effects in some mesodermal cells [150]
and to increase osteoblast differentiation and bone formation [151–153]. However, the
impacts on bone resorption and osteoclast activity are still unknown. Nanosecond pulsed
electromagnetic fields that are produced by several CAPs [154] can induce increases in
apoptosis and the OPG/RANKL ratio in OS (key molecules for bone homeostasis), reducing
bone destruction [155].

In 2D cultures, treatment with high levels of CAP-derived ROS can affect endothelial
cells, which are more sensitive than keratinocytes and fibroblasts, and also reduce tube
formation [156]. CAP treatment can also induce cell death in fibroblasts [157], but the effects
of CAPs on CAFs have not yet been explored. On the other hand, other studies have shown
that plasma-treated media increase the proliferation of MSCs in vitro [104,112]. Given
the impact of MSCs on OS progression through the production of metabolites [158] and
interleukins [141], the effect of CAP on OS-associated MSCs needs to be deeply understood.

Moreover, CAP treatment increased T cell infiltration in pancreatic cancer, which
could be related to the activation of immunogenic cell death in cancer cells [159]. Further-
more, CAP can induce the upregulation of the M1 phenotype in macrophages, presenting
increased tumor infiltration ability [100,159]. In vitro studies also suggest that dendritic
cells are able to phagocytose pancreatic cancer cells exposed to plasma-treated saline [160].
However, the impact of immune system activation by CAP on OS remains unexplored.
Another point that remains to be investigated is the presence of the extracellular matrix,
the possible influence of the mineral phase and how it could modify the action of CAP.
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Figure 5. Possible involvement of CAP treatment in the OS microenvironment. (A) Schematic illustration of an OS tumor
and the main characteristics enhanced by the OS microenvironment that may be affected by CAP. (B) Cellular components
that are present in the OS microenvironment.

6.2. Tumor Heterogeneity in OS

OS is one of the cancers with the highest level of heterogeneity in humans. This
heterogeneity takes place both at the macroscopic and microscopic levels (at the genomic,
transcriptomic and epigenetic levels). Recent investigations have revealed the existence of
cancer cells in OS with stemness properties. In this section, we discuss some of the main
features of heterogeneity and CSCs in OS and the potential impact of CAP therein.

6.2.1. Oncogenes in OS

OS is characterized by chromosomal instability, which produces a high grade of
genetic heterogeneity between patients and within tumor subpopulations, hindering the
identification of OS-associated genes. The most common mutations in OS are in the
retinoblastoma (pRB) and p53 tumor suppressor genes. The wild-type p53 protein regulates
genes involved in DNA repair, cell cycle checkpoints and apoptosis initiators [161], and
its inactivation has been identified as an initiating event in OS onset [162]. On the other
hand, pRB is reported to promote osteogenic differentiation, and its mutations could act
synergistically with p53 inactivation in OS formation [163].

Other types of proto-oncogenes associated with OS are protein kinases such as MAPKs
and PI3K/AKT/mTOR pathways [130]. These biochemical cascades integrate signaling
inputs from the tumor microenvironment and direct the activity of different effector pro-
teins. MAPKs can constitutively activate several transcription factors, such as C-MYC
and C-FOS, which control different cell functions that promote cancer progression [164].
On the other hand, PI3K/AKT/mTOR can inactivate pro-apoptotic factors such as Bad
and Procaspase-9, increasing cell survival, and drive the expression of pro-angiogenic
factors [165].

Moreover, the previously mentioned transcription factors C-FOS, C-JUN and C-MYC
are commonly found to be overexpressed in OS [127,166]. These transcription factors,
activated from upstream pathways, bind to specific sites of DNA and promote the expres-
sion of several genes involved in different cancer hallmarks, including cell proliferation,
differentiation and survival [167–169].
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6.2.2. How Could CAP Affect Intracellular Signaling in OS?

Little is known about the effect of CAP in OS intracellular signaling, so the results
observed in other tumor types are discussed here as potential indicators of the OS cell
response. In both direct and indirect CAP-based therapies, activation of p53 is reported
to be the main mediator of cell apoptosis in different kinds of cancers [74,82,170,171].
Activating p53 is an attractive approach for blocking tumor progression. In the case of OS,
different mutations or delection in p53 are reported in approximately 50% of patients [172].
This variability is reflected in the different p53 status found in the different cell lines derived
from OS (SaOS-2, MG-63, U2-OS, etc.) [173], which might lead to heterogeneous responses
to CAP. In this sense, the consequences of activating mutant p53 by CAP in OS are not
completely clear and need further investigation.

Furthermore, MAPK signaling plays a crucial role in OS, and the effects of CAP
treatment are still poorly understood. In other kinds of cancers (i.e., glioblastoma, head and
neck, melanoma and ovarian cancers), the activation of p38 and downregulation of ERK
are widely reported to be highly related to apoptosis induced by CAP [46,76,77,174–177],
whereas healthy cells increase ERK to promote cell proliferation. In the case of OS, in
SaOS-2 cells exposed to plasma-treated medium with low cytotoxicity, phospho-ERK1/2
activation was coupled to cell proliferation, while highly cytotoxic plasma-treated medium
downregulated ERK [104], and in both cases, p38 phosphorylation was not detected. These
data seem to indicate that the p38/ERK pathway is not related to apoptosis induced by
CAP in OS. Moreover, plasma-treated medium induces the activation of C-JUN, which is
related to pro-tumoral signaling [104]. In this sense, the involvement of CAP treatment in
MAPK signaling in OS must be more deeply investigated. In sum, there is not yet enough
evidence to unravel the molecular mechanisms associated with the oxidative stress induced
by CAP in OS cancer cells, as the few reports related to cell signaling by CAP in other kinds
of cancers propose the same cell signaling as that affected by the classical oxidative stress
therapies [43,46,177–179].

6.2.3. Cancer Stem Cells in OS

It is well documented that mutated MSC-derived osteogenic progenitors or undiffer-
entiated MSCs under the influence of normal bone microenvironment signals act as the
cells of origin in OS [180]. Experimental evidence shows that OSs are sustained by subpop-
ulations of self-renewing cells that can generate the full phenotypes of tumor cells [137].
This subpopulation is known as CSCs, which are tumor-quiescent and possess stem proper-
ties such as self-renewal, pluripotency and cell differentiation into mesenchymal lineages.
Their characteristics include upregulated embryonic genes and drug transporters, high
aldehyde dehydrogenase (ALDH) activity and higher DNA repair capacities [181]. These
characteristics make these cells highly resistant to conventional therapies and capable of
differentiating and reforming OS tumors, and they are proposed to be responsible for
tumor relapse after treatment cessation [137].

Moreover, CSCs are suggested to contain lower ROS levels than their corresponding
non-tumorigenic cells to maintain their stem properties, which can be associated with
high expression of ROS-scavenging molecules [182,183]. In addition, CSCs can adapt to
oxidative stress by altering their metabolic profile, switching between OXPHOS, glycolysis
and pentose phosphate pathways [182]. Therefore, to develop new effective therapies
against OS, the effect on targeting CSCs must be evaluated.

6.2.4. How Could CAP-Induced Oxidative Stress Affect CSCs in OS?

Currently, there are no studies evaluating the effect of CAP in OS-CSCs, and only
a couple of studies have described the impact of CAP on cancer-initiating cells in the
case of endometrial carcinoma [184,185]. In this kind of cancer, Ikeda et al. showed that
CAP reduced high-expressing ALDH cells using both direct treatment and a plasma-
activated medium. On the other hand, there are no studies reporting how CAP treatment
affects CSC metabolism. However, a few works have addressed the effect of CAP on
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mitochondrial metabolism, showing a decrease in glycolysis in glioblastoma [186] or
OXPHOS in melanoma [80] and skin cells [187], which may elucidate a possible effect of
CAP on CSC metabolism.

Despite these promising results, the effects of CAP could be completely different for
the case of OS-CSCs. As previously mentioned, an increasing number of studies suggest
that CSCs are more resistant to RONS than normal cancer cells, which is related to their
antioxidant ability and their metabolic status [182,188]. The metabolic status of CSCs is
controversial and can be tumor or cell line-dependent. OS-CSCs rely on OXPHOS, with the
potential to switch to glycolysis depending on microenvironmental requirements [189]. In
an in vitro study, the OS-CSC phenotype had a higher glycolytic rate than the parental OS,
and OXPHOS was inhibited by treatment with cisplatin [190]. In this study, the inhibition of
PKM2, a glycolytic protein, increased the sensitivity of OS-CSC to cisplatin treatment [190].
Considering these data, there is an urgent need to study how the oxidative stress produced
by CAP can affect the metabolic reprogramming capacity and the stemness properties
of OS-CSC.

7. Future Trends

CAPs have been demonstrated to selectively induce anti-cancer effects in different OS
cell lines in vitro using both direct CAP and plasma-treated liquids [104,112–122]. Although
these promising data provide relevant information for understanding CAP applications in
OS, several key aspects of OS progression have not yet been considered.

For instance, the repercussions of patient heterogeneity, tumor subpopulations and
tumor microenvironment components need to be evaluated.

The selectivity of CAP is based on the differential levels of RONS between cancer
and normal cells, which makes cancer cells more sensitive to pro-oxidant induction by the
treatment [50]. However, this model does not consider the different vulnerabilities of OS
subpopulations to RONS, i.e., CSCs, CAFs or MSCs, and deserves careful investigation.

The cell signaling affected by CAP in OS is still poorly studied, and their possible
effects on OS progression [191] and the CSC phenotype [192] need to be deeply understood.
The previously mentioned targeted strategies against these signaling molecules have also
been demonstrated to effectively target the CSC subpopulation that can resist oxidative
stress. In OS, different small molecules [179,193], si-RNA [29,30,194,195] and CRISPR-Cas
technologies have been proposed to target several genes, such as mTOR and C-MYC. As
described by Tornin et al., heat shock protein (HSPs) expression is closely related to CAP
therapy [104], making it an interesting molecule for targeted treatments. Inhibition of
HSPs presents great potential for OS therapies [196–198]. Moreover, the combination of
CAP treatment and inhibition of HSP90, another member of the HSP family, has been
demonstrated to be effective in several cancer cell lines [199].

As reflected in Table 2, almost all studies on CAP effects on OS have been performed
in adherent or floating cell cultures. It has been amply demonstrated that cells cultured
in 2D are not representative of the cells present in tumors because they lack cell-to-ECM
interactions [134]. In contrast, 3D culture models provide a more complex scenario that
mimics the interactions between cells and ECM by employing culture systems that induce
the production of ECM (i.e., spheroid and organoid cultures) or using scaffolds composed
of several ECM components, including, in this case, the mineral matrix. In these culture
models, OS cells present more similar protein expression profiles, metabolism, signal trans-
duction, mechanical properties and responses to stimuli to those in in vivo treatment [134],
offering a more realistic tool to approximate the in vivo situation with CAP in vitro results.

Investigating the effect of CAP in OS co-cultures with OS-associated cells is also
required to evaluate the impact of CAP-based therapies on processes such as angiogenesis,
immune response and stroma interaction and bone remodeling [134,200–203]. Of course,
after suitable validation in OS in vitro 3D models, CAP-based therapies will have to be
evaluated in the preclinical in vivo scenario.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
383/10/4/893/s1, Figure S1: Main characteristics of OS tumors which may have great impact in
CAP-based therapies. Briefly, (1) the interaction with bone microenvironment, (2) the different
characteristics between OS subtypes and (3) the presence of different phenotype within OS tumors
and the presence of Cancer Stem Cells (CSC) can lead to different response to CAP-based therapies
that have to be evaluated. MSCs: Mesenchymal stem cells; CAFs: Cancer-Associated Fibroblasts.
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ALDH Aldehyde dehydrogenase
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