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Abstract
Coupled with geological and geographical history, climatic oscillations during the Pleistocene period had 
remarkable effects on species biodiversity and distribution along the northwestern Pacific. To detect the 
population structure and demographic history of Odontamblyopus lacepedii, 547-bp fragments of the mito-
chondrial DNA control region were sequenced. A low level of nucleotide diversity (0.0065 ± 0.0037) and 
a high level of haplotype diversity (0.98 ± 0.01) was observed. The Maximum Likelihood (ML) and Bayes-
ian Inference phylogenetic trees showed no significant genealogical structure corresponding to sampling 
locations. The results of AMOVA and pairwise FST values revealed some significant genetic differentiation 
among populations, and the isolation by distance (IBD) analysis supported that the genetic differentiation 
was associated with the geographic distances. The demographic history of O. lacepedii examined by neutral-
ity tests, mismatch distribution analysis, and Bayesian Skyline Plots (BSP) analysis suggested a sudden pop-
ulation expansion, and the expansion time was estimated to be around the Pleistocene. We hypothesize that 
the climate changes during the Pleistocene, ocean currents, and larval dispersal capabilities have played an 
important role in shaping contemporary phylogeographic pattern and population structure of O. lacepedii.
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Introduction

Odontamblyopus lacepedii (Temminck & Schlegel, 1845), commonly referred to as “eel 
goby” or “worm goby,” is an elongated, mud-dwelling benthic fish (Murdy and Shibu-
kawa 2003). This air-breathing goby can spawn thousands of eggs at once (Dotsu 
and Takita 1967; Wu and Zhong 2008). However, it was misidentified in most of the 
Chinese literature as O. rubicundus (Hamilton, 1822) (Chen and Zhang 2016), which 
is so far distributed only in the coastal waters of India. Actually, the coastal waters and 
intertidal zones of East Asia are mainly inhabited by O. lacepedii (Gonzales et al. 2006; 
Chen and Zhang 2016). Previous studies of this goby have been dedicated to design 
models about the intertidal burrows (Gonzales et al. 2008a, b), taxonomic studies 
(Murdy and Shibukawa 2001; Tang et al. 2010) and phylogenetic analysis (Agorreta et 
al. 2013; Liu et al. 2018). However, little has been known about its population genetic 
structure and demographic history.

The complex interactions of post geological-history events, life history, and ocean-
ographic condition as evolutionary processes played an important role in shaping pop-
ulation genetic structure and biodiversity of marine fishes (Santos et al. 2006; Hu et 
al. 2011; Gao et al. 2020). The East China Sea, including Yellow and Bohai seas, and 
South China Sea constitute the marginal oceanic regions of China. The East China Sea 
has one of the widest shelves in the world, and it was separated from the Pacific Ocean 
by the Ryukyu Islands Arc during the last glacial maximum when the sea level was 
130–150 m lower than today (Xie et al. 1995; Xu and Oda 1999). However, during 
the postglacial warming period, the barrier disappeared (Ujiié and Ujiié 1999) with the 
sea level rise (Siddall et al. 2003; Liu et al. 2006), and the isolated marginal seas were 
reconnected (Liu et al. 2006). Those changes during glacial cycles had dramatic effects 
on intraspecific genetic diversity and population structure of marine species (Avise 
1992; Hewitt 2000; Liu et al. 2007).

Studies have indicated that intraspecific genetic differentiation within widely dis-
tributed marine organisms is particularly reduced, mainly due to the high potential of 
dispersal ability over large areas (Nielsen et al. 2010; O’Donnell et al. 2017). Dispersal is 
very important to population biology, behavioral ecology, and conservation (Koenig et 
al. 1996). Most marine organisms have a pelagic larval stage that has tremendous poten-
tial for dispersal (Mora and Sale 2002). High dispersal potential may allow eggs, larvae, 
or adults to travel long distances, yielding high connectivity and population heterogene-
ity (Liu et al. 2007; O’Donnell et al. 2017). For example, larvae dispersal of Synechogo-
bius ommaturus (Richardson, 1862) was inferred to promote gene flow among popula-
tions, thus having a major effect on its phylogeographic pattern (Song et al. 2010). This 
is not the case for Odontamblyopus lacepedii. The demersal eggs and benthic adults of 
O. lacepedii indicates limited swimming ability, but until now no studies about its larval 
dispersal ability have been reported. The otolith microchemistry analysis for this species 
showed that it can adapt to a wide range of salinity habitats, and the life history stages 
of individuals hatching in different habitats emerged as different life history types (Lu et 
al. 2015). Therefore, it is difficult to predict the phylogeographic pattern of O. lacepedii.
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Although Odontamblyopus lacepedii has low economic value and is usually not 
the main fishing object, it still may experience high fishing pressure in the form of 
by-catch. In this study, the control region of mitochondrial DNA was employed to in-
vestigate the demographic history and the population genetic structure of O. lacepedii 
from four adjacent marginal seas, Bohai Sea, Yellow Sea, East China Sea, South China 
Sea, and Ariake Bay. The results of the present study will have important implications 
for fishery management and conservation efforts.

Materials and methods

Sampling and sequencing

All specimens were collected along the coast of China Sea and Ariake Bay from 2013 to 
2015 (Table 1; Fig. 1). Muscle tissues were preserved in 95% ethanol or directly used 
to extract DNA. Genomic DNA was isolated and extracted by proteinase K digestion 
followed by a standard phenol-chloroform method (Sambrook and Russel 2001).

A 547 bp fragment of mitochondrial DNA control region was amplified using the 
primers OLF: CGCTGCTTCAAAGAAGGGAGATT (forward) and OLR: CTCC-
CTTGTCAACTTGCCTTAG (reverse) (Liu et al. 2018). The polymerase chain reac-
tion (PCR) was carried out in 25 μL reaction mixture containing 17.5 μL of ultrapure 
water, 2.5 μL of 10×PCR buffer, 2 μL of dNTPs, 1 μL of each primer (5 μM), 0.15 μL 
of Taq polymerase, and 1 μL of DNA template. The PCR amplification was carried 
out in a Biometra thermal cycler under conditions referred to Zhao et al (2020). PCR 
product was purified with a Gel Extraction Mini Kit. The purified products were used 
as the template DNA for cycle sequencing reactions performed using BigDye Termi-
nator Cycle Sequencing Kit, and bi-direction sequencing was conducted on an ABI 
Prism 3730 automatic sequencer (Applied Biosystems) with the same primers used for 
sequencing as those for PCR amplification.

Table 1. Sampling information of Odontamblyopus lacepedii examined in this study.

ID Sampling site Location Sample size Date of collection
DD Dandong Bohai Sea 38 2015.6–2015.12
TJ Tianjin Bohai Sea 30 2015.11
HH Huanghua Bohai Sea 30 2015.09
DY Dongying Bohai Sea 1 2010.05
RS Rushan Yellow Sea 1 2015.04
RZ Rizhao Yellow Sea 4 2015.03
LYG Lianyugang Yellow Sea 4 2014.10
SH Shanghai East China Sea 23 2014.11
ZS Zhoushan East China Sea 9 2015.12
RA Ruian East China Sea 24 2013.08
HZ Huizhou South China Sea 1 2015.04
AB Ariake Bay Ariake Sea 24 2014.02
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Data analysis

Sequences were edited and aligned using DNASTAR software (DNASTAR, Inc., Madi-
son, USA) and refined manually. Molecular diversity indices, such as the number of hap-
lotypes, polymorphic sites (S), nucleotide diversity (π; Nei 1987) and haplotype diversity 
(h; Nei 1987), were calculated using Arlequin version 3.5 (Excoffier and Lischer 2010). 
Gene flow (Nm) among populations was estimated by Migrate-n version 3.6.11 (Beerli 
and Palcaewski 2010). Genetic differentiation between pairs of population samples was 
evaluated with the pairwise fixation index FST (Excoffier et al. 1992). The significance 
of the FST was tested by 10,000 permutations for each pairwise comparison in Arlequin 
version 3.5 (Excoffier and Lischer 2010). Population subdivision and significant popula-
tion structure was examined using a hierarchical analysis of molecular variance (AMOVA; 
Excoffier et al. 1992) approximated by the Tamura and Nei model using a one-factor AM-
OVA with 10,000 data permutations. The populations were defined as different groups 
in three scenarios based on spatial distribution (Table 4). To test for isolation by distance, 
pairwise values of Log FST were plotted against geographical distance between sample sites.

The haplotype sequences were compared in MEGA11 (Tamura et al. 2021), and then 
the Maximum Likelihood (ML) phylogenetic tree was constructed with 1000 bootstrap 
replications based on distances calculated using the best selected model K2P. The phylo-
genetic trees were constructed with Odontamblyopus rebecca as the outgroup. The network 
of haplotypes was constructed using PopART software base on the minimum spanning 

Figure 1. Sampling locations of Odontamblyopus lacepedii in the present study.
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network (Leigh and Bryant 2015). Demographic history was investigated using mismatch 
distribution and neutrality test. First is the test of selective neutrality which is performed 
using D test of Tajima (1989) and Fs test of Fu (1997) based on the infinite site model. Fu’s 
Fs has been shown to be especially sensitive to departure from population equilibrium as in 
case of a population expansion. The method to test demographic expansion is mismatch 
distribution which is the distribution of the observed number of differences between pairs 
of haplotypes based on three parameters: τ, θ0, and θ1 (τ time since expansion expressed in 
units of mutational time; θ before and after the population growth) (Rogers and Harpend-
ing 1992). The value of τ was transformed to estimates of real time since expansion with 
the equation τ = 2 μt, where τ is the crest of mismatch distribution, t is the time measured 
in generation since experiencing expansion, μ is the mutation rate per generation for the 
entire sequence. Both mismatch analysis and neutrality tests were performed in Arlequin 
version 3.5 (Excoffier and Lischer 2010). The population expansion time was estimated 
using the mutation rate of 5–10%/Myr (Song et al. 2010). BEAST v.1.7 (Drummond et 
al. 2012) was used to estimate the Bayesian Skyline Plots (BSP). To obtain the effective 
convergence, HKY + I + G model, stepwise skyline model and a strict molecular clock 
with 1×108 iterations for Markov chain Monte Carlo (MCMC) were performed in this 
study. Tracer 1.7.5 software was used to generate the skyline plot (Rambaut et al. 2018).

Results

Genetic diversity

All sequences were aligned, and 547-bp segment of the control region was obtained for 
189 specimens. A total of 83 polymorphic sites were detected and 127 haplotypes were 
defined (Table 2). All haplotype sequences were submitted to GenBank (Accession 
numbers: KX894323–KX894449). Most haplotypes were unique, of which 108 were 
singletons (haplotypes represented by a single sequence in the sample). Of the remain-
ing 19 haplotypes, 13 were shared among populations, but six haplotypes belonged 
to one population. The most common haplotype was present in six locations with 22 

Table 2. Molecular diversity of Odontamblyopus lacepedii for seven populations, based on sequence data of 
the mitochondrial control region. Number of individuals (N), number of haplotype (Nh), number of poly-
morphic sites (S), mean number of pairwise differences (k), haplotype diversity (h), nucleotide diversity (π).

Population N Nh S k h π
DD 38 28 32 2.61±1.43 0.96±0.02 0.0048±0.0029
TJ 30 26 41 5.17±2.58 0.99±0.01 0.0095±0.0052
HH 30 28 32 4.31±2.20 0.99±0.01 0.0079±0.0045
SH 23 18 24 3.22±1.72 0.98±0.02 0.0059±0.0035
ZS 9 6 9 2.00±1.24 0.83±0.13 0.0037±0.0026
RA 24 18 24 3.41±1.81 0.92±0.05 0.0062±0.0037
AB 24 17 22 2.52±1.41 0.95±0.03 0.0046±0.0029
Total 189 127 83 3.59±1.83 0.98±0.01 0.0065±0.0037

http://www.ncbi.nlm.nih.gov/nuccore/KX894323
http://www.ncbi.nlm.nih.gov/nuccore/KX894449


Linlin Zhao et al.  /  ZooKeys 1088: 1–15 (2022)6

individuals (7 from DD, 3 from HH, 3 from TJ, 5 from AS, 3 from SH and 1 from 
RS), accounting for 17.3% of all samples.

Genetic diversity parameters for seven populations are shown in Table 2. Taxon sam-
pling for populations DY, RS, RZ, LYG and HZ were too small and they were used only 
in the following phylogenetic and dynamic history analyses. A low level of nucleotide 
diversity and a high level of haplotype diversity was observed. Nucleotide diversity (π) 
varied from 0.0037 to 0.0095, while the haplotype diversity (h) ranged from 0.83 to 0.99. 
The phylogenetic topology based on ML analyses revealed no significant genealogical 
branches or clusters corresponding to sampling localities (Fig. 2). The phylogenetic net-
work showed that haplotypes in each geographical population presented a mixed distribu-
tion pattern, and the evolutionary relationship showed multiple stellate radiation (Fig. 3).

Population genetic structure

The pairwise FST values among different populations ranged from -0.009 to 0.243 
(Table 3). The strong and significant genetic differentiation mainly existed among 
populations from different groups. The AMOVA performed under three patterns 
of gene pools (Table 4), and the results showed that the main variation was within 
populations. To test the relationship between genetic differentiation and geographic 

Table 3. The pairwise FST among seven populations of Odontamblyopus lacepedii, based on partial mi-
tochondrial control region sequence data. Asterisks represent significance levels: *P ≤ 0.01, **P ≤ 0.001.

Population DD TJ HH SH ZS RA AB
DD
TJ 0.012
HH 0.018 0.010
SH 0.044** 0.032 0.015
ZS 0.207** 0.103 0.097 * 0.037
RA 0.103** 0.062** 0.044* -0.001 -0.009
AB 0.028** 0.030 0.033* 0.075** 0.243** 0.123**

Table 4. AMOVA analysis of Odontamblyopus lacepedii populations based on partial mitochondrial con-
trol region sequence data.

Source of variation d.f.
Sum of 
squares

Variance 
components

Percentage of 
variation

Φ-Statistics P

One gene pool (DD, TJ, HH, SH, ZS, RA, AB)
Among populations 6 23.653 0.088 Va 4.76 ΦST = 0.048 0.000 
Within populations 171 299.679 1.753 Vb 95.24
Two gene pools (DD, TJ, HH, RA, SH, ZS) (AB)
Among groups 1 4.186 0.00904 Va 0.50 ΦCT = 0.004 0.429
Among populations within groups 5 19.225 0.08448 Vb 4.64 ΦSC = 0.047 0.000
Within populations 171 295.651 1.72895 Vc 94.87 ΦST = 0.051 0.000
Three gene pools (DD, TJ, HH) (SH, RA, ZS) (AB)
Among groups 2 14.379 0.09552 Va 5.18 ΦCT = 0.052 0.016
Among populations within groups 4 9.032 0.02122 Vb 1.15 ΦSC = 0.012 0.045
Within populations 171 295.651 1.72895 Vc 93.67 ΦST = 0.063 0.000
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Figure 2. Maximum Likelihood tree is shown based on the control region haplotypes of Odontamblyopus 
lacepedii. The species of O. rebecca was used as the outgroup.
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distance, IBD analysis was performed. The results showed that there was significant 
relationship (r = 0.54 P < 0.05) between Log FST and geographic distance, indicating 
that geographic distance can explain 54% of the genetic variation.

Historical demography

The observed mismatch distribution of Odontamblyopus lacepedii for all samples is 
presented in Fig. 4. There are no deviations from the expected distributions (Hri = 
0.027±0.000, P > 0.05), and SSD (PSSD = 0.001, P > 0.05), and the evident unimodal 
mismatch distribution indicated a sudden expansion event. The Tajima’s D and Fu’s Fs 
tests were negative with significant P values (P < 0.001), which supported the hypoth-
esis of population expansion (Table 4). The estimated time that O. lacepedii underwent 
population expansion was 61,700–123,000 years ago, based on the divergence rate of 
5–10%/Myr. Estimated effective female population size after expansion (θ1) was 1.4 × 
107 times higher than before expansion (θ0) for O. lacepedii. Bayesian Skyline Plots for 
all samples showed late Pleistocene demographic expansion (about 100,000 years ago) 
(Fig. 5), which was consistent with the estimate by mismatch distribution analysis.

Figure 3. Phylogenetic network of all haplotypes.
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Discussion

Mitochondrial DNA has been proven to be effective for population genetic analysis 
of marine fishes (Neethling et al. 2008; Bae et al. 2020; Zhao et al. 2020). The high 
level of haplotype diversity and low nucleotide diversity of Odontamblyopus lacepedii 
may be a signature of population expansion after founder events or bottlenecks (Grant 
and Bowen 1998; Zhang et al. 2006). The neutral test and BSP analysis supported that 
O. lacepedii may have undergone a sudden demographic expansion from its historic 

Figure 4. Mismatch distribution for demographic expansion based on mtDNA partial control region 
sequences of Odontamblyopus lacepedii.
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refugium. The time of expansion was estimated to be in the late Pleistocene. Pleisto-
cene environmental fluctuations such as sea levels and temperatures had direct effects 
on species numbers, distributions, and demographics changes (Avise 2000; Gopal et 
al. 2006; Heyden et al. 2007; Shen et al. 2011). During the last Pleistocene, lower sea 
levels were associated with Pleistocene glaciations, which resulted in that most of the 
Chinese continental shelf was exposed, and the Asian continent was separated from 
the Pacific by a series of marginal seas (Tamaki and Honza 1991; Xu and Oda 1999). 
When the glaciers retreated, with temperature and sea level rising, those populations 
sheltering in their ice-age refugium might have undergone a postglacial expansion into 
new territory. This information supports the hypothesis that O. lacepedii had experi-
enced historical expansion from a glacial refugium.

The population structure in marine species has been assumed to have low genetic 
differentiation among widespread populations due to their high potential dispersal 
ability and the absence of obvious geographical barriers (Rivera et al. 2004; He et al. 
2015). In the present study, the pairwise FST statistics were low and not significant 
between populations with close spatial distance, demonstrating high gene flow among 
populations of Odontamblyopus lacepedii. Mukai et al. (2009) found low genetic differ-
entiation of a reef goby (Bathygobius cocosensis) in the Japan-Ryukyu-Guam region, and 
the oceanic currents might contribute to the dispersal and migration of larvae of this 
species (Mukai et al. 2009). The pelagic larval dispersal ability is theoretically associ-
ated with the level of gene flow and genetic structure (Bay et al. 2006; He et al. 2015). 
The eggs of O. lacepedii were demersal and the movements of adults were restricted to 
a small area (Dotsu and Takita 1967; Gonzales et al. 2006), and therefore, it is likely 
that the adult and eggs possessed no ability to migrate long distances. Many sedentary 
organisms disperse primarily during the larval phase (Kochzius and Blohm 2005; Song 
et al. 2010). Besides, the significant population genetic differentiation was detected 
between different populations with long spatial distance. The isolation by distance 
(IBD) analysis of this study supported that the genetic differentiation was associated 
with the geographic distances. The dispersal ability of marine organisms will weaken as 
the distance increases, which often leads to the IBD patterns (Song et al. 2010).

Table 5. Tajima’s D, Fu’ Fs statistic and mismatch parameter estimates for Odontamblyopus lacepedii 
populations.

Population Number D P Fs P τ Thet0 Thet1
DD 38 -2.29 0.002 -26.55 0.000 2.643 0.002 99999.000
TJ 30 -1.84 0.016 -22.09 0.000 3.768 0.687 99999.000
HH 30 -1.69 0.026 -25.75 0.000 3.691 0.000 99999.000
SH 23 -1.89 0.015 -14.44 0.000 3.248 0.000 99999.000
ZS 9 -1.82 0.010 -2.18 0.043 2.395 0.009 10.332
RA 24 -1.74 0.023 -13.10 0.000 4.346 0.002 12.336
AB 24 -2.04 0.008 -14.09 0.000 2.428 0.000 99999.000
Total* 189 -2.29 0.000 -25.86 0.000 3.359 0.012 99999.000

* Total sequences contain all the sequences (including individuals from population DY, RS, RZ, LYG and HZ).
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Apart from historical events and life history (Li et al. 2015), environmental factors, 
especially marine currents, may greatly influence the genetic population structures of 
marine species (He et al. 2015). In this study, pelagic larval durations during from July 
to October were predicted to be linked by the connectivity of ocean currents (Dotsu 
1957). The Kuroshio Current flows in a northerly direction, and velocities were com-
monly recorded as 15–40 cm/s (Guan 1978). The West Korea Coastal Current flows in 
a southerly direction along the west Korean Peninsula, making a confluence with the 
Kuroshio Current into Tsushima Strait (Wei 2004). The prevailing wind may enhance 
the marine current dispersal distance. The ample gene flow among populations implies 
that the pelagic larval may be transported by the water exchange on these powerfully 
oceanic currents and therefore, the connectivity among populations should be high.

Conclusions

Historical events of the Pleistocene, ocean currents, and larval dispersal capabilities 
have played an important role in shaping the contemporary phylogeographic patterns 
and population structures of Odontamblyopus lacepedii. With modern exploitation and 
habitat destroyed, O. lacepedii may experience high fishing pressure. The results of the 
present study have important implications for fisheries management and conservation 
efforts and for other species with similar life history characters.
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