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Abstract 

Background:  The total-body positron emission tomography (PET) scanner provides 
an unprecedented opportunity to scan the whole body simultaneously, thanks to its 
long axial field of view and ultrahigh temporal resolution. To fully utilize this potential in 
clinical settings, a dynamic scan would be necessary to obtain the desired kinetic infor-
mation from scan data. However, in a long dynamic acquisition, patient movement can 
degrade image quality and quantification accuracy.

Methods:  In this work, we demonstrated a motion correction framework and  its 
importance in dynamic total-body FDG PET imaging. Dynamic FDG scans from 12 
subjects acquired on a uEXPLORER PET/CT were included. In these subjects, 7 are 
healthy subjects and 5 are those with tumors in the thorax and abdomen. All scans 
were contaminated by motion to some degree, and for each the list-mode data were 
reconstructed into 1-min frames. The dynamic frames were aligned to a reference 
position by sequentially registering each frame to its previous neighboring frame. 
We parametrized the motion fields in-between frames as diffeomorphism, which can 
map the shape change of the object smoothly and continuously in time and space. 
Diffeomorphic representations of motion fields were derived by registering neighbor-
ing frames using large deformation diffeomorphic metric matching. When all pairwise 
registrations were completed, the motion field at each frame was obtained by concat-
enating the successive motion fields and transforming that frame into the reference 
position. The proposed correction method was labeled SyN-seq. The method that was 
performed similarly, but aligned each frame to a designated middle frame, was labeled 
as SyN-mid. Instead of SyN, the method that performed the sequential affine registra-
tion was labeled as Aff-seq. The original uncorrected images were labeled as NMC. 
Qualitative and quantitative analyses were performed to compare the performance of 
the proposed method with that of other correction methods and uncorrected images.

Results:  The results indicated that visual improvement was achieved after correction 
of the SUV images for the motion present period, especially in the brain and abdo-
men. For subjects with tumors, the average improvement in tumor SUVmean was 
5.35 ± 4.92% (P = 0.047), with a maximum improvement of 12.89%. An overall quality 
improvement in quantitative Ki images was also observed after correction; however, 
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such improvement was less obvious in K1 images. Sampled time–activity curves in the 
cerebral and kidney cortex were less affected by the motion after applying the pro-
posed correction. Mutual information and dice coefficient relative to the reference also 
demonstrated that SyN-seq improved the alignment between frames over non-cor-
rected images (P = 0.003 and P = 0.011). Moreover, the proposed correction success-
fully reduced the inter-subject variability in Ki quantifications (11.8% lower in sampled 
organs). Subjective assessment by experienced radiologists demonstrated consistent 
results for both SUV images and Ki images.

Conclusion:  To conclude, motion correction is important for image quality in dynamic 
total-body PET imaging. We demonstrated a correction framework that can effec-
tively reduce the effect of random body movements on dynamic images and their 
associated quantification. The proposed correction framework can potentially benefit 
applications that require total-body assessment, such as imaging the brain-gut axis and 
systemic diseases.

Keywords:  Motion correction, Total-body PET, Dynamic imaging, Kinetic modeling

Introduction
Patient motion is a long-standing problem in positron emission tomography (PET) 
imaging. Two types of movements, namely physiological movements (internal organ 
deformation, e.g., heart beating and respiration) and non-physiological movements (ran-
dom changes in the body or head position), contribute to PET image degradation [1]. 
Motion will be even more problematic when an accurate quantification is required such 
as for assessing treatment using absolute change in SUV and other kinetic parameters 
[2–4]. Motion is even more problematic for the high-resolution scanners under devel-
opment as they are vulnerable to subtle movements. As the first commercial total-body 
scanner, uEXPLORER has the capability of imaging the whole body simultaneously [5]. 
It has ultra-high sensitivity compared with conventional scanners and a resolution of 
2.9 mm in the center of the axial direction [6]. Dynamic imaging is essential for utilizing 
the full potential of such systems but could be vulnerable to patient movement, e.g., a 
patient may have trouble staying still for 60 min or more, which in turn affects not only 
the visual quality but also the accuracy of the quantification across the entire body [7, 8].

Attempts have been made to reduce the scan time in total-body PET imaging, which 
in turn reduces the likelihood of motion [9, 10]. Another way to reduce the motion is 
patient immobilization and coaching; this involves communicating the importance 
of remaining still to the patient or providing training with devices for immobilization. 
However, a downside of these prospective methods is that they often fail to eliminate the 
motion. Therefore, investigating motion correction approaches is important [11].

As stated earlier, physiological and non-physiological body motion are the two main 
types of patient motion. Researchers have previously studied extensively how to correct 
cardiac and respiratory motion in the thorax [12–17]. On the other hand, although body 
motion can be minimized by patient cooperation, it remains a challenging problem in 
PET. Most studies to resolve body motion focused on brain or cardiac PET static imag-
ing [18–22]. Other researchers attempted to resolve abdominal movement on PET imag-
ing by using MRI information simultaneously acquired in a PET / MRI session [23–26]. 
On the contrary, few studies have attempted to compensate for the effect of whole-body 
movement in PET imaging, especially for dynamic total-body imaging. One reason of 
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course is that a conventional scanner with a multi-bed protocol cannot truly simultane-
ously acquire the whole-body data. Motion tracking is an attractive option [27] that has 
been proven effective for monitoring brain and respiratory movement but may struggle 
in tracking whole-body motion due to the complex nature of the movement. An inte-
grated PET/MR solution is also not feasible as a total-body PET/MR scanner is required 
but does not exist yet.

In this study, we proposed an image-based correction framework that can compen-
sate for body movement in dynamic total-body PET imaging. We focused on random 
body shifts and deformation across the entire body, but not periodic respiratory or car-
diac movements. Little movement is assumed at the early stage of a scan for the subjects 
included in this study, and the data from the subsequent period can be aligned to the ref-
erence position. In the following context, we will first illustrate the implementation and 
then demonstrate the evaluation. Discussion about the results, limitations and future 
work will follow.

Materials and methods
Patient population and data acquisition

We studied 12 dynamic 18F-fluorodeoxyglucose (FDG) scans acquired on a uEX-
PLORER PET/CT (United Imaging Healthcare, Shanghai, China) from December 2020 
to July 2021 at Henan Provincial People’s Hospital. Detailed information on each sub-
ject is presented in Table 1. The exact location of the tumor lesion (if present) is also 
reported. The study was approved by the local Ethics Committee, and written consent 
was obtained from each subject before the scan. The scanning workflow and data for-
matting are as follows. A CT scan was first performed for attenuation correction. Then, 
a 60-min long list-mode acquisition was initiated with the bolus intravenous injection 
of 18F-FDG at the ankle. List-mode data were binned into 66 frames (5 s × 24, 10 s × 6, 
30 s × 6, 60 s × 6 and 120 s × 24) and reconstructed on the scanner workstation into a 
192 × 192 × 673 matrix with a voxel size of 3.125 × 3.125 × 2.866 mm3 by using the 3D 
ordered subset expectation–maximization algorithm (with TOF and PSF, 3 iterations, 

Table 1  Patient demographics

Subject (lesion) Gender Age Height (cm) Weight (kg) Injection dose (MBq)

001 (N/A) M 27 166 60 220

002 (lung) F 57 166 61 242

003 (lung) M 28 174 75 302

004 (N/A) M 31 170 72 289

005 (liver) M 47 178 105 387

006 (N/A) F 35 164 63 233

007 (N/A) F 30 162 73 294

008 (gastrointestinal) M 24 182 99 366

009 (N/A) M 57 175 73 278

010 (lung) F 49 165 75 301

011 (N/A) M 55 173 80 218

012 (N/A) F 58 168 60 261

Mean ± s.d 7 M, 5F 41.5 ± 12.9 170.2 ± 5.9 74.6 ± 14.4 282.5 ± 53.4
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28 subsets, 2-mm Gaussian post-smoothing). Attenuation and scatter corrections were 
performed during the reconstruction with the CT-based attenuation maps.

Inter-frame positional changes were visually identified for all scans. The motion 
mostly happened after 10 min in the scans included in this study. For each scan, 10–60-
min list-mode data were again reconstructed into fifty 1-min-long frames by using the 
same reconstruction parameters as above. This will allow a better temporal sampling in 
reconstructed frames to facilitate the motion correction. As a result, a total of 90 frames 
(5  s × 24, 10  s × 6, 30  s × 6 and 60  s × 54) constituted the new set of dynamic images. 
From this new set of images, the image-derived input function (IDIF) was extracted 
from the ascending aorta by drawing a 10-mm-diameter ROI on six consecutive slices in 
an image obtained by combining early time frames (0–60 s), where the effects of motion 
and partial volume were less prominent than in the left ventricle [28]. The uptake differ-
ence in blood and plasma was not accounted for in this study.

Implementation of the proposed correction framework

The registration of dynamic frames was performed sequentially in a manner similar 
to what has been proposed for dynamic brain PET [29, 30]. We assumed there is lit-
tle movement in the early stage (0–10  min), hence the associated frames remained 
unchanged. The last frame within the first 10 min (frame 40) was used as the reference 
image. Multiple pairwise registrations were initiated from frame 41 onwards, and the 
subsequent frames were aligned to the reference position by matching each to its pre-
vious frame. In this manner, the potential contrast difference between frames is less 
problematic for pairwise registration as in conventional image-based methods. Thus, 
similarity metrics such as normalized cross-correlation can be employed.

The pairwise registration between neighboring frames was performed as follows. 
For total-body PET imaging, the human body may shift and deform randomly in time 
and space, resulting in non-uniform intensity change across the whole body. This poses 
challenges in aligning two neighboring frames when compared with applications such 
as brain PET. Therefore, we employed large deformation diffeomorphic metric match-
ing (LDDMM), which is designed for large space–time deformation. LDDMM is a non-
parametric approach based on principles from fluid mechanics [31, 32] and has been 
successfully applied to many medical imaging applications [33–35]. Here the goal is to 
register the source image I and target image J (neighbor of I) by finding a time-varying 
field v that minimizes the energy function:

where M(I , J ) is the similarity measure, which is normalized cross-correlation. The sec-
ond L2-norm term penalizes the non-smooth velocity fields, and L is the differential 
operator. φ parameterizes a family of diffeomorphisms that can be generated by integrat-
ing a smooth velocity field, v : �× t → R

d , using an ordinary differential equation:

(1)E(v) = M(I , J ,φ1,0)+ w
1

0

�Lvt�2dt

(2)
dφ(x, t)

dt
= v(φ(x, t), t), φ(x, 0) = x
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Exploiting the fact that diffeomorphism φ can be decomposed into two components φ 1 
and φ 2, we constructed a symmetric alternative to Eq. (1); accordingly, the optimization 
problem can be expressed as

The goal is to find v1 that minimizes the variational energy from t = 0 to 0.5, whereas v2 
minimizes from t = 1 to 0.5. Gradient-based iterative updates deform I and J  along the 
geodesic diffeomorphisms φ to a midway fixed point, thus motivating the denotation of 
the registration strategy as symmetric normalization–SyN [32]. A CPU implementation 
of SyN is available in the ANTs package. Given a large number of voxels in a total-body 
PET image, we implemented it on a GPU (Nvidia GTX 2080Ti).

Upon finishing all pairwise registrations, the motion field at each frame was obtained 
by concatenating successive motion fields from all previous frames. The motion-com-
pensated frame was thus obtained by transforming the image with the derived motion 
fields. For a given scan, the above process will eventually generate a new set of frames 
aligned to the reference position defined at the early scan. We labeled this correc-
tion framework as SyN-seq in the following context. After correction, the 90-frame of 
dynamic images were summed back to 66 before performing subsequent analysis.

Comparison of different methods

The original uncorrected images were labeled as NMC. The method that performed the 
diffeomorphism registrations to align each frame to a designated reference frame was 
labeled as SyN-mid, where the reference was selected as the mid-frame (frame 70). The 
registration parameters were similar to the ones used for SyN-seq, except that the simi-
larity metric was normalized mutual information to account for the potential large con-
trast difference among the dynamic images.

Instead of SyN, the method performed the sequential affine registration was labeled as 
Aff-seq. Affine registration was used to model and estimate the motion as global trans-
formation (represented as translations, rotations and scaling). The optimization in the 
transformation parameters started from a coarse scale, which was then used to initial-
ize the registration at the next finer scale. Similar to SyN-seq, the similarity metric was 
selected as normalized cross-correlation to account for the image dissimilarity. Powell 
algorithm [36] was used for optimization with a fractional tolerance of 10−4 and 500 
maximum running iterations. The coarse-to-fine registration was repeated (three levels 
in total) until the finest scale and stopping criteria were reached.

Data analysis

All statistical analyses were performed using the Statistical and Machine Learning 
Toolbox in MATLAB R2018b. The common arbitrary threshold of 0.05 was selected 
as the level of significance. The proposed correction framework SyN-seq was com-
pared with SyN-mid, Aff-seq and NMC. For all 12 subjects, visual and quantification 
assessments were performed as described below. Motion-contaminated 10-min SUV 
images were created by combining the corresponding frames. For the five patients 

(3)

{v∗1 , v
∗
2} = arg min

v1,v2

{

∫

�

M(I ◦ φ1(x, 0.5), J ◦ φ2(x, 0.5))d�+ w

(

∫ 0.5

0

�Lv1(x, t)�
2dt +

∫ 1

0.5

�Lv2(x, t)�
2dt

)}
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with solid tumors, the lesions were delineated using a semiautomatic region grow-
ing method with a 50% cutoff threshold of the maximum intensity value, and their 
SUVmean were reported before and after correction. Mutual information and dice 
coefficient were computed between each transformed frame and the reference to 
reveal the degree of recovery. Sampled time–activity curves (TACs) of the cerebral 
cortex, kidney cortex, liver and thigh muscles (ROIs in Fig. 1) were plotted and com-
pared. Parametric Ki and K1  images were computed for each set of images by using 
fast nonlinear estimation under the assumption of an irreversible two-tissue compart-
ment model [37]. The IDIFs were measured for each set separately, as described ear-
lier in the Methods section. The fitting residual (FR) was computed as an indication of 
the goodness of fit, which should be low for the dynamic images to be better aligned:

where k and F are the index and total number of frames, respectively; j and N are the 
index and total number of voxels in a frame, respectively; and p denotes the fitted 
parameters.

To determine the inter-group variety, coefficient of variation (CV) in Ki and K1 was 
computed for the cerebral cortex, kidney, liver and thigh muscle; the low value indi-
cates the low variation in the group:

where mean and SD were computed for all subjects. A small CV value indicates low 
inter-subject variability in the group, thus indicating a better recovery of kinetic param-
eters from the effect of motion on the difference in patients.

Finally, two experienced radiologists conducted five-scale scoring for the quality 
of SUV and dynamic frames. The raters were blinded to the clinical information of 
the patients. For an SUV image, the score was determined according to the amount 
of artifacts and image resolution. As such, a successful motion correction should 
remove the positioning change when displaying dynamic frames as a movie, and a 
higher score will be given.

(4)FR =
∑

k∈F

∑

j∈N

(

Ik(xj)−
⌢

I k(xj , p)

)2

(5)CV = SD/mean

Fig. 1  Example ROIs to extract the time-activity curves that are used for quantifications
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Results
SyN-seq required an average processing time of 35 min to process a dynamic scan. In 
contrast, SyN-mid and Aff-seq required average of 60 min and 8 min, respectively. The 
selected subtraction images (to reference frame 40) at frame 66, 60, 54, 48, 41 are shown 
in Fig.  2. All frames after alignment demonstrated less intensity difference than the 
uncorrected ones. The residual contrast difference is probably mostly due to the tracer 
kinetics as the distribution has not reached equilibrium yet (indicated by the subtraction 
image between frame 41 and 40). Note that the correction failed to compensate for the 
effect of arm movement due to the truncation in the transaxial plane (arrow). (Fig. 3).

In Fig.  4, SUV images from NMC, Aff-seq, SyN-seq and SyN-mid are displayed in 
parallel for comparison. For most motion-contaminated scans, Aff-seq recovered the 
image quality to some extent, while SyN-seq and SyN-mid further removed the resid-
ual artifacts. Furthermore, visual appearance of SyN-seq and SyN-mid was comparable, 
although there are some visual differences in abdominal and other regions. This may 
partly be explained by the difference in motion fields (Fig. 3) that result in the positional 
difference for viewing. The average improvement in tumor SUVmean was 5.35 ± 4.92% 
(P = 0.047) with a maximum improvement of 12.89%. Details effects of correction on 
tumor uptake are listed in Table 2.

Fig. 2  Patient 12: subtraction images at given frames before (NMC) and after correction with the SyN-seq. 
The corrected frames have less positional difference to the reference frame 40
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SyN-seq and SyN-mid achieved the best recovery in aligning dynamic frames. 
Mutual information and dice coefficient at all frames relative to the reference are 
shown in Fig. 5. The similarity between the frames improved greatly after correction. 

Fig. 3  Patient 12: SyN-mid- and SyN-seq-corrected images and their associated motion fields (at frame 48). 
For the motion vector fields, the red, green and blue represents the three directions of the vector, and the 
saturation represents magnitude of the vector along each direction (as the color wheel shows)

Fig. 4  Effect of motion correction on SUV images for A patient 8 (50–60 min), B patient 9 (7–12 min) and 
C patient 12 (40–50 min). Red arrows indicate the motion-contaminated regions. The images in A and B 
suffered more from head and internal abdominal movement, while the one in C suffered from the irregular 
body shift mostly along the Superior-Inferior direction
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Differences in mutual information and dice coefficient before and after correction 
using SyN-seq were significant (P = 0.003 and P = 0.011). There was also a signifi-
cant difference between SyN-seq and Aff-seq (P = 0.012). However, there was no sig-
nificant quantitative difference between SyN-seq and SyN-mid. Sampled TACs from 
patient 4 and patient 12 are displayed in Fig.  6. The quantifications in the cerebral 
cortex and kidney cortex were affected by the patient’s movement in late frames, 
whereas those in the liver and muscle were affected to a lower extent as spillover was 
less prominent in the uniform region. The clear anomaly from the Aff-seq profile in 
Fig.  6B is due to the failure of the registration at frame 40, which causes all subse-
quent registrations to a wrong reference position. Parametric Ki images are shown 
in Fig. 7. Similar to SUV images in Fig. 4,  Aff-seq and SyN-mid recovered the image 
quality to some extent, while SyN-seq further improved the image quality. The resid-
ual fitting errors when performing the kinetic modeling were 3.53 ± 0.46, 3.34 ± 0.41, 
2.74 ± 0.49 and 2.88 ± 0.42 (× 106  Bq/ml) for NMC, Aff-seq, SyN-seq and SyN-mid, 
respectively. Quantification in K1 exhibited little improvement after correction as 
shown in Fig. 8 because K1 mostly depends on the early phase of the scan for which 
no correction was applied.

Table  3 shows that both SyN-seq and SyN-mid reduced the group CV of Ki in the 
cerebral cortex, liver, kidney cortex and thigh muscle (with a mean reduction of 28.9%, 
5.3%, 11.5%, 1.8%, respectively), thus demonstrating the correction successfully reduced 
the inter-subject variability. This reduction was not much different between SyN-seq 
and SyN-mid. The average score assessed by two radiologists on the SUV images were 
3.5, 3.6, 4.05 and 4.0 for NMC, Aff-seq, SyN-seq and SyN-mid, respectively. The average 

Table 2  Effects of correction on tumor SUVmean for the subject with lesions

The number in bold is the largest one among the group

Subject (time) NMC Aff-seq SyN-seq improve percentage

002 (40–50 min) 9.58 9.64 9.80 2.26%

003 (50–60 min) 4.82 4.94 5.23 5.86%

005 (40–50 min) 13.51 13.41 13.49 -0.13%

007 (20–25 min) 6.05 5.98 6.83 12.89%

008 (50–60 min) 10.92 11.13 11.56 5.86%

Mean ± s.d 8.98 ± 3.55 9.02 ± 3.52 9.38 ± 3.37 5.35 ± 4.92%

Fig. 5  Distribution plots of the mutual information A and dice coefficient B for assessing the frame 
alignment. The lines represent the means, and the shadowed areas represents the associated standard 
deviations



Page 10 of 16Sun et al. EJNMMI Physics            (2022) 9:62 

Fig. 6  TACs sampled at organs from A patient 4 B patient 12. The quantification in the cerebral cortex and 
kidney cortex is more sensitive to movement, while the relatively uniform regions in liver and thigh muscle 
are affected to a less extent
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scores on the corresponding dynamic frames were 3.2, 3.6, 4.25 and 4.23, respectively. 
The subjective assessment was consistent with the results in previous paragraphs.

Discussion
In this paper, we proposed a framework to compensate for the body shift and defor-
mation in dynamic total-body PET imaging. The proposed method is an image-based 
approach that attempts to align the densely reconstructed frames (1 min per frame). The 
results showed that the quality of SUV and Ki images improved after correction, and 
the degree of recovery varied across the subject. The tumor uptakes were also improved 

Fig. 7  Corresponding Ki images for A patient 8, B patient 9 and C patient 12 in Fig. 4. Red arrows indicate the 
motion-contaminated regions, which can be different from the ones in Fig. 4

Fig. 8  K1 images did not show visual differences before and after correction (corresponding to Fig. 7B). K1 
images from other subjects have similar conclusions
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after correction across the subjects with tumors. The performance of SyN-seq was bet-
ter than that of other correction methods in terms of quantification, although SyN-seq 
only outperformed SyN-mid slightly  in some subjects. The results demonstrate that 
not only the single-subject staging accuracy can potentially be improved, and the inter-
subject group variability can be reduced which in turn reduces the number of subjects 
required in a cross-sectional study. The successful motion correction in dynamic total-
body imaging will benefit applications that require simultaneous multi-organ imaging, 
such as imaging of the brain-gut axis [1, 38]. When computing Ki, we applied nonlinear 
estimation based on the irreversible two-tissue compartment model. Similar results are 
expected for the Ki image estimated using graphical Patlak analysis that will also benefit 
from motion correction. Note that the visual comparison between SyN-mid and others 
may not be entirely fair, as they are aligning to a different position; hence, their views in 
Fig. 4 and Fig. 7 may slightly be different.

We focused on random body shifts and deformation across the entire body, but not 
periodic physiological movements, e.g., respiratory motion. The difference between 
respiratory motion correction and total-body dynamic motion correction is three-
fold. Firstly, most respiration is periodic; hence, there are a limited number of motion 
fields, which can be estimated from a static scan by existing vendor software. While a 
total-body dynamic scan time is relatively longer, motion correction needs to take care 
of the multiple random estimation of motion fields. Secondly, short-time frame regis-
tration can be more challenging than respiratory motion correction with more counts. 
In addition, the large contrast difference between the early and late frames poses chal-
lenges. Thirdly, we think that respiratory motion fields can be represented with a limited 
number of parameters, which can be well estimated by B-spline or optical flow-based 
algorithms [16, 39, 40]. On the other hand, whole-body motion fields are arguably more 
complex and require a more complex representation such as diffeomorphism. In fact, 
we tried B-spline registration to replace SyN in our application, but it performed worse. 
Despite of above difference, it would be of great interest to correct both physiological 
respiration and non-physiological body motion simultaneously, which may be enabled 
by uEXPLORER as the frames can be reconstructed at a very high temporal resolution 
(down to 100 ms) [5] to capture the motion in a short period.

Table 3  Summary of coefficient of variation (CV) and associated variances for kinetic parameters in 
the cerebral cortex, liver, kidney cortex and thigh muscle for 12 subjects

The number in bold is the smallest among the group

NMC Aff-seq SyN-seq SyN-mid 

Ki cerebral 0.511 (0.0214) 0.395 (0.0189) 0.363 (0.0169) 0.362 (0.0172)

liver 0.486 (0.0023) 0.513 (0.0025) 0.460 (0.0022) 0.469 (0.0023)

kidney 0.522 (0.0187) 0.590 (0.01203) 0.480 (0.0113) 0.550 (0.0114)

muscle 0.221 (0.0004) 0.230 (0.0004) 0.217 (0.0004) 0.220 (0.0004)

K1 cerebral 0.349 (0.1739) 0.350 (0.1789) 0.350 (0.1760) 0.352 (0.1782)

liver 0.538 (0.0081) 0.492 (0.007) 0.500 (0.0076) 0.500 (0.0088)

kidney 0.209 (0.7026) 0.221 (0.7221) 0.241 (0.6259) 0.198 (0.6089)

muscle 0.285 (0.0055) 0.275 (0.0052) 0.283 (0.0053) 0.286 (0.0059)
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In this study, we did not compensate for the motion at the early stage (first 10 min) 
because patients cooperate and stay still at the beginning but tend to move at later 
stages in the included scans. If the patient does move during the first 10 min, com-
pensating for the motion becomes necessary, and we expect to see the change in K1 
quantification after correction [41]. In such cases, SyN-mid will likely fail for some 
very-early frames due to the dissimilarity between them and the reference image, 
considering the difficulty in selecting an optimal reference frame. For a similar 
reason, a non-FDG tracer with fast kinetics can also challenge the effectiveness of 
SyN-mid. On the other hand, SyN-seq might fail in the case where the accumula-
tion of registration errors in the sequential registration process. Another source of 
error could happen when registration failed for a large body movement happens in 
the middle of a scan, or certain frames are severely contaminated by the intra-frame 
motion [42]. As a consequence, the associated error will also propagate into the next 
registrations.

The proposed SyN-seq required an average processing time of approximately 
35 min for a dynamic total-body scan on a GPU. The exact time varied for each scan, 
depending on the difficulty in registrations. Applying a neural network-based imple-
mentation of SyN to further reduce the computation time [43] was shown equally 
effective in brain MRI registrations compared with the regular diffeomorphism-
based methods. However, the aim here is to demonstrate the possibility and the 
necessity of dynamic total-body motion correction. Therefore, the validated origi-
nal SyN registration method was applied. Related to the above discussion, a recent 
paper proposed an unsupervised automatic deep learning-based framework to cor-
rect inter-frame body motion [44]. The motion estimation network utilizes dynamic 
temporal features and spatial information to produce the image registration tasks. 
However, one common problem, at least for a supervised method, is that it often 
requires a large number of training datasets for each target tracer under similar scan 
configurations.

Despite the encouraging results, this work is not free of limitations. Firstly, we did 
not consider the attenuation correction effect. It is known that motion can cause a 
mismatch between the attenuation map and emission data; thus, attenuation correc-
tion can induce quantification error in the reconstructed image [45, 46]. However, 
the goal here was to propose an automatic image-driven method that can readily 
work on the dynamic reconstructed images. In the future, we will investigate the 
possibility of accurate attenuation correction to the existing workflow once the 
vendor supports reconstruction with a user-defined AC map. Secondly, the poten-
tial degradation from the intra-frame motion was ignored. Although most motion 
artifacts were successfully suppressed, residual artifacts could still be present in a 
1-min frame image. To deal with this, motion detection is required to first detect 
the exact time when the body starts to move and then separate the raw data in time 
accordingly. This will also reduce the required number of the image registration pro-
cess. Thirdly, as stated earlier, SyN-seq might be inaccurate in the case when reg-
istration errors propagated in the sequential registration processes. Although we 
did not observe such effect in this study, caution should be taken especially when 
one attempts to register low-quality frames. Lastly, we expect the method will also 



Page 14 of 16Sun et al. EJNMMI Physics            (2022) 9:62 

benefit for first 10-min scan at least better than conventional image-based method, 
but this remains to be investigated. Similarly, the varying contrast can be problem-
atic for a non-FDG tracer. The kinetics and the distribution of a non-FDG tracer 
could be quite different from FDG, which may prohibit accurate whole-body regis-
tration due to insufficient common information in-between frames. Therefore, fur-
ther validations of the proposed correction on non-FDG tracers are warranted.

Conclusion
In this work, we demonstrated an image-based motion correction method for dynamic 
total-body PET imaging. The proposed method can reduce the effect of body shift and 
deformation on image quality and quantification of both static and parametric images. The 
quality  improvement in the total-body PET  will benefit clinical applications that require 
simultaneous imaging at whole-body level. We plan to evaluate the feasibility of applying 
the proposed correction framework to certain applications, e.g., assessing the whole-body 
tumor burden with dynamic imaging.
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