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Transcription Factor Activation Profiles (TFAP) identify
compounds promoting differentiation of Acute Myeloid
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Repurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug
development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data
from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors
that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation
potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds,
which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may
be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to
different drug repurposing projects.
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INTRODUCTION
Pharmaceutical companies experience considerable hurdles in the
development and marketing of new drugs [1]. This is because of
the escalating cost and time required for preclinical research,
clinical trials and regulatory requirements [2]. Thus, the process of
drug development is today much slower than could have been
anticipated from the rapid increase in our understanding of the
molecular bases of human diseases. The identification of new
therapeutic uses for drugs that are approved for different medical
indications - process known as drug repositioning or repurposing -
has attracted considerable interest reducing drug development
time [3]. Approximately 40 drugs are approved each year by the
Food and Drug Administration (FDA) for different therapeutic uses
and in 2019 over 20,000 chemicals or biologicals are validated for
use in humans. In principle a complete understanding of a
pathology and a detailed annotation of each drug effects and
side-effects should allow the design of new rational treatments to
revert a disease phenotype. In practice such a direct approach is
often not possible and the most successful cases of drug
repurposing to date are the result of serendipitous observations
and not of rational design or systematic approaches. Nevertheless,
systematic approaches are still useful, as they can be applied on a
large scale, and considerable effort is put in this direction. The
validation of drugs that are candidates for repurposing requires
labor-intensive preclinical procedures involving cell assays and
testing on animal models before evaluation of efficacy in phase II
clinical trials. Thus, the necessity to develop hypothesis generation
approaches to identify drugs that are likely to be efficacious. This

would limit the number of compounds that are worth considering
for carrying over to more time-consuming steps. Different
computational and experimental approaches have been devel-
oped for assisting in drug repurposing [3]. Computational
approaches involve the integration of different data types to help
formulate new hypotheses [4]. Gene expression profiles obtained
by RNA-seq or proteomics approaches, chemical structures and
electronic health records have been used for this purpose [5].
Drugs causing similar gene expression changes (similar

signatures) are likely to have similar phenotypic effect while
drugs that have a signature that correlates negatively with the
signature of a disease are candidates for “curing” the disease
phenotype. This approach has been used with some success to
group drugs according to signature or to identify candidates for
reverting a disease phenotype [6–11]. Such a strategy has received
a considerable boost from the Connectivity Map (CMap) project
which yielded expression profiles for a large number of cell states
caused by chemical perturbations in different cell lines [12].
However, large-scale generation of gene expression profiles, as
many other omics approaches, yield noisy data and more robust
approaches to the analysis of gene expression data should be
explored.
Here we present a novel method that, instead of characterizing

a perturbation gene signature, uses these data to estimate the
activation of transcription factors (TFs). Several online resources
integrate experimental datasets and/or computational approaches
to compile lists of genes whose expression is modulated by a TF
[13]. This information permits to convert a gene expression profile
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into a Transcription Factor Activation Profile (TFAP) by estimating
TF activities from the expression of their target genes. It is then
possible to infer the impact of a drug on activation of a TF by
looking at the fraction of target genes that are up- or down-
regulated after drug treatment. This procedure is often referred to
as TF enrichment analysis. We show that this approach is less
sensitive to experimental noise when compared with conventional
expression profile methods and we used it to infer drugs that are
likely to induce myeloid differentiation of HL-60, a cell line derived
from a patient with acute myeloid leukemia.

RESULTS
Identification of compounds promoting differentiation in
Acute Myeloid Leukemia by TFAP approach
Repositioning strategies based on comparison of transcriptional
signatures have encountered some success [7]. However, they
suffer from experimental noise, which characterizes high through-
put experiments.
We reasoned that comparison of drug profiles, defined as lists

of transcription factor (TF) activation levels, rather than transcrip-
tional profiles, could offer a more robust strategy. TF activation
can be deduced from a large number of measurements of the
different target genes and as such it is less sensitive to the
experimental variability of each single gene-expression data point.
In this strategy (Fig. 1) activations of TFs are not derived from the
levels of their messenger RNAs (mRNAs), as mechanisms other
than modulation of transcription are in many cases at the basis of
their activation. TF activations are rather deduced from the
differential expression of the mRNAs of their target genes (see
Material and Methods). Target genes can be associated to TFs by a
variety of criteria. These include literature-curation, chip-seq, co-
expression and in silico prediction of TF binding sites [13, 14]. To
build drug-TF activation signatures we have used the ChEA3
resource (see Material and Methods).
To test the premise that TF activation profiles are effective in

filtering noise we first devised a pilot study. The rational of the test
is schematically illustrated in Fig. 2 where we have represented as
two-dimensional tSNE maps [15] the multi-dimensional dataset
represented either as feature vectors of gene expression levels or

TF activation. tSNE (t-distributed stochastic neighbor embedding)
is a dimensional reduction algorithm. Generally, these methods
allow to reduce high dimensional data (i.e., gene expression) in
order to directly observe some similarity among samples and
eventually evaluate the correlation with some biological features,
for example sample tissues or treatments. In particular, tSNE
algorithm belongs to the non-linear techniques that allow to
identify also non-linear relationship of high dimensional data [15].
We applied our analysis to the CMap dataset, which consists of
transcription profiles after perturbation by ~1078 drugs in three
different tumor cell lines. The gene expression profiles of the cell
lines are rather different and the response to the same drug needs
not be necessarily similar as it is likely to have some cell-type
specificity [16]. Thus, in tSNE map representation expression
profiles tend to cluster according to cell type rather than
according to drug (Fig. 2A; Supplementary Figure 1A). On the
other hand, the conversion of the transcriptional profiles into TF
activation profiles is surmised to make the perturbations by the
same drug on different cell lines more similar, at least for some
drugs, as a drug targets the same transcriptional circuit in all cell
types (Fig. 2B; Supplementary Figure 1B). To test this hypothesis
we measured, in the tSNE map, the distance between the points
corresponding to the same drug perturbation. This measure is
taken as a proxy of profile similarity. The expected and observed
distance distributions are shown in Fig. 2C and 2D respectively. In
Fig. 2D the observed distance distributions obtained by applying
the gene expression (top) and TF activation profiles (lower plot)
are compared with the distributions obtained by performing the
same analysis on randomized transcription and TF profiles. In both
cases the observed distributions are significantly different from
the one based on randomized transcription profiles, the observed
one being more shifted toward short distances as would be
expected if many drugs would produce similar perturbations of
the transcriptional profiles of the different cell lines. On the other
hand, the distribution curves of the analysis using as features TF
activation (lower plot), are evidently more different. This observa-
tion is quantitatively confirmed by a Kolmogorov-Smirnov test
(Fig. 2E) supporting the notion that the approach based on the
inference of TF activation is less sensitive to data noise as it is
capable to recognize similar effects in the perturbations of

Fig. 1 Workflow of the proposed strategy. Step 1 Drug-specific gene expression profiles are derived from the Connectivity Map resource and
lists of up- and down-regulated genes are compiled. Step 2 Transcription factor (TFs) Enrichment analysis with the ChEA3 tool. The results are
represented as two matrices (Drugs x TFs) where significantly activated and inactivated TFs are shown with a red and blue background
respectively. The two matrices are integrated; the TFs whose targets are enriched in both gene lists are not considered and labelled with a
grey background in the matrix. Step 3 The matrix was simplified by focusing on those TFs that are involved in the biological function of
interest, in our case monocyte and granulocyte differentiation.
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different cell lines with the same drug, in a larger number of
instances.

Identification of drugs that activate master regulators of
myeloid differentiation
To prioritize drugs for testing their ability to promote myeloid
differentiation we applied the newly developed strategy to the
HL-60 CMap dataset. HL-60 is relevant for our goal of identifying
drugs that promote differentiation in AML as it is a human
leukemia cell line [17] that can be induced to differentiate into
monocytes and granulocytes. We first aimed at listing significantly
up- and down-regulated genes when HL-60 cells are treated with
1078 different drugs in the CMap dataset. Only for 475 of these
perturbation experiments it was possible to compile lists of
significantly modulated genes. These lists were used as input in
the ChEA3 resource to identify transcription factors that are likely
to be up- or down-regulated by each drug. This approach yielded
a matrix of 475 compounds times 1632 TFs, where drug-activated
and inactivated TFs are labelled in red and blue background
respectively in Fig. 3A. Next, we screened the literature searching

for experimental evidences about the regulatory circuits involved
in haematopoiesis. The differentiation steps are regulated by a
complex interplay among numerous transcription factors [18]. We
focused on 7 of these that either play a major role as key
regulators of haematopoietic stem cells (HSCs) differentiation and/
or are activated in the terminal steps controlling granulocyte and
monocyte differentiation (Supplementary Table 1).In order to
identify the drugs that affect the activity of these seven master
regulators of myeloid differentiation, we first simplified the matrix
considering only 107 chemicals that, according to the ChEA3
resource have an effect on the seven TFs involved in myeloid
differentiation. The resulting reduced matrix is shown in Fig. 3B
where we have ordered the compounds according to the number
of pro-differentiation TFs that they activate. The ranking method is
described in the Materials and Methods section. In Fig. 3C we have
shown an enlargement of the section of the matrix listing the top
30 compounds in the rank list. Among the 107 selected
compounds, we notice, in the high-ranking positions, tretinoin, a
known differentiation inducer of leukemic cells [19] thus providing
confidence in the potential of the approach.

Fig. 2 Comparison of the transcription-profile perturbations caused by different drugs in different cell lines. A Schematic representation
of bidimensional tSNE maps of the multidimensional transcriptional profiles of different cell lines incubated with different drugs (same data
point-symbol). Cell lines are represented with different colors while different drugs have different shapes. B Schematic representation of
bidimensional tSNE maps after the transformation of the expression profiles into TF activation profiles. In supplementary material Fig. 1 the
real tSNE maps are reported. C Inferred distribution of distances between profiles of different cell lines incubated with the same drug.
D Experimental distribution of tSNE distances when profiles are defined as gene expression vectors (top) or TF activation vectors(lower plot).
The distance distributions observed in randomized datasets are shown with a gray background. E Kolmogorov-Smirnov test of the
significance of the differences between profile distances in experimental and random datasets.
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Experimental validation of drugs inferred to induce
granulocytic differentiation
To validate our strategy, we set out to test some of the inferred
pro-differentiation drugs by evaluating their potential to induce
differentiation of HL-60. To this end we tested 22 of the top-
ranking compounds highlighted in in Fig. 3C. HL-60 were treated
with the selected drugs for four days (Fig. 4A) and granulocyte

differentiation was assessed by the nitroblue tetrazolium (NBT)
assay. In Fig. 4B we have graphically summarized these results
by labelling in the matrix of Fig. 3C the compounds that did or
did not show a pro-differentiation effect with orange and yellow
backgrounds respectively. Interestingly, 10 of the 22 drugs
significantly induced granulocytic differentiation in HL-60 as
shown by NBT quantitation and staining (Fig. 4C and E).

Fig. 3 Transcription factors activated or inhibited by drugs in HL-60. A Matrix reporting the results of the ChEA3 analysis of genes up- and
down-regulated by incubation of HL-60 cells with 475 drugs. Each row corresponds to a drug while transcription factors are in columns. A red
background denotes that the transcription factor in the column is activated by the chemical in the row. Conversely a blue background
indicates inactivation. B The matrix in A was simplified by maintaining only the results related to the seven transcription factors that promote
monocyte and granulocyte differentiation. Only the data of the 107 chemicals that have an effect on transcription factors involved in
haematopoiesis are shown. Chemicals were ordered according to a “pro-differentiation score” computed by adding up, for each chemical, the
number of activated transcription factors and subtracting the number of the inhibited ones. C Close up of the top-ranking pro-differentiation
compounds. The chemicals that have been tested experimentally have a light green background.
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Quantitation showed that, in addition to tretinoin, our positive
control, nine additional drugs were able to induce significant
differentiation in HL-60 (Fig. 4C). After treatment, viability was
measured by the trypan blue exclusion test to evaluate drug

toxicity in these conditions. Three of the 22 compounds showed
a toxic effect as fewer than 20% of the cell survived the
treatment. These compounds were not characterized further
(Fig. 4D). To further verify the robustness of the computational
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strategy, we randomly chose 14 drugs (Supplementary Figure
2B) from the 1078 drugs considered in the computational
screening and we tested them for toxicity and for the ability to
induce granulocytic differentiation in HL-60 by the trypan blue
exclusion test (Supplementary Figure 2E) and the NBT assays
(Fig. 4F, Supplementary Fig. 2D). No such drug showed
significant toxicity. Similarly, none of the randomly selected
drugs was able to induce HL-60 differentiation into granulo-
cytes. This result was confirmed by quantitation of the NBT assay
(Fig. 4F). Thus, randomly chosen drugs, differently from those
inferred by the computational approach have negligible
probability to induce a significant differentiation of HL-60
(Fig. 4G). We conclude that this approach, being sensitive and
specific is suitable for inferring drugs able to induce granulocytic
differentiation.

Drugs that are high in the ranking list increase the levels of
surface markers expressed by differentiating HL-60 cells
The increase in the expression of specific cell surface markers
correlates with the differentiation of HL-60 into mature granulo-
cytes. Thus, we measured the levels of the integrin alpha M
(CD11b), that is expressed in mature granulocytes and regulates
cell adhesion and migration [20]. We monitored CD11b expression
by flow cytometry after four days of treatment with the
compounds that scored positive in the NBT assay. The histograms
in Fig. 5A reports the flow cytometric analysis of CD11b expression
in HL-60 treated with the different drugs. We observe that 7 of the
10 compounds significantly express CD11b thus confirming their
ability to promote cell differentiation (Fig. 5B). We also monitored
the expression of the transferrin receptor protein 1 (TfR1; CD71),
an integral membrane protein expressed in proliferating cells
[21, 22]. Moreover, we evaluated the levels of the cyclic ADP ribose
hydrolase (CD38) a glycoprotein that is expressed by HL-60 only
when cells are treated with retinoids [23] (Fig. 5C). Not all the pro-
differentiation compounds induce expression of CD38, notwith-
standing their ability to induce differentiation in HL-60 (Fig. 5D). Of
note, the compounds that induce more efficiently differentiation,
cause a decrease of CD71 expression (Fig. 5E) according with the
notion that differentiated cells loose proliferation potential [24].
We also looked at the expression of Carcinoembryonic antigen-
related cell adhesion molecule 8 (CD66b), a cell adhesion molecule
expressed by granulocytes [25]. Most samples treated with the
compounds contain cells expressing this marker, albeit at low
levels (Fig. 5F) and only three compounds promote a significant
increase in CD66b expressing cells (Fig. 5G). This is not unexpected
as in mature granulocytes the expression of CD66b is low and
combined treatments with different stimuli are necessary for a full
expression of this marker [26]. We conclude that top-ranked drugs
promote the expression of cell surface markers that characterize
granulocytes.

Drugs that induce a DNA damage response also promote a
differentiation program in HL-60
By looking at the properties of compounds promoting cell
differentiation, we noticed that some are known inducer of the
DNA damage response. Among them, (i) 8-azaguanine, a purine
analogue that incorporates into ribonucleic acids and interferes
with physiological biosynthetic pathways [27], (ii) mebendazole
that binds to the colchicine-binding domain of tubulin thereby
inhibiting its polymerization [28] and (iii) etoposide that triggers
the DNA damage response by inhibiting topoisomerase II [29]. We
set out to further investigate the potential causal link between
DNA damage response and myeloid differentiation. We know from
experiments in our group that idoxuridine promotes osteogenic
differentiation of mesangioblasts inducing DNA damage by
incorporating into the DNA [30]. Hence, we tested idoxuridine in
our model system to strengthen the hypothesis of a link between
DNA damage and differentiation. After 4 days of treatment with
10 µM idoxuridine the number of cells that stain blue in the NBT
assay increases significantly (Fig. 6A and B). Moreover, idoxuridine
treatment leads to a marked increase in CD11b and CD66b
expression (Fig. 6C, H) and a decrease in CD71 expression (Fig.
6E–G) while, as observed earlier for 8-azaguanine and mebenda-
zole, it does not induce the expression of CD38 (Fig. 6E–F),
suggesting a different differentiation mechanism when compared
to tretinoin. These results, taken together, confirm a causal link
between the DNA damage response and differentiation of
leukaemic stem cells.

The selected drugs are also efficient in inducing
differentiation in a non-promyelocytic cell line
One of the limits of the drugs inducing leukaemic cell differentia-
tion is that they are not equally efficient in inducing differentiation
of all AML cell types. Thus, we tested the potential of some of the
drugs that we have identified to trigger differentiation in a second
cell type. To this end we chose THP1, a human monocytic cell line
isolated from a patient with acute monocytic leukemia [31]. This
cell line was classified as FAB M5 subtype and can differentiate
into macrophage-like cells [32]. We performed the NBT assay in
THP1 cells after four days of treatment with the drugs (Fig. 7A).
While no drug showed significant toxicity (Fig. 7B), they induced
macrophage differentiation in the THP1 cell line as shown by NBT
staining (Fig. 7C). These analyses demonstrated the potential of
the newly identified pro-differentiation drugs to induce differ-
entiation of, at least, two human leukemia cell types.

DISCUSSION
Drug repurposing has attracted increasing attention in recent years
[33–36] and several drugs have been repurposed for new
therapeutic uses, e.g., sildenafil, minoxidil, aspirin [33, 37–39]. In

Fig. 4 Experimental validation of inferred pro-differentiation and randomly selected drugs in HL-60. A Time line of the experiment to test
the pro-differentiation activity of drugs on HL-60 cells. B Top 30 ranking compounds with corresponding experimental outcomes. Compounds
are ranked according to their “pro-differentiation score”. Compounds that have shown or not a significant activity on HL-60 differentiation are
labelled with orange or yellow background respectively. A compound that was toxic at the concentrations used in the assay is labelled with a
grey background. C Quantitation of NBT assay of HL-60 treated with the drugs listed in Supplementary Figure 2A. All drug treatments were
carried out for four days. The concentration for each drug is reported in Table 1 in Materials and Methods section. The NBT assay results were
plotted as percentage of positive cells over the total cells. D Cell viability after four days of selected drug treatment. Cell viability was assessed
by the Trypan blue exclusion test. E Representative light microscope images of NBT staining in HL-60 after four days of drug treatment. Scale
bar is 50 μm. F Quantitation of the NBT assay of HL-60 treated with the randomly selected drugs listed in Supplementary Figure 2B. The
concentration for each drug is reported in Table 1 in the Materials and Methods section. The NBT assay results were plotted as percentage of
positive cells on the total cell number. G Dot plots of the results of NBT assays on HL-60 treated with randomly selected compounds (blue
circles) or predicted compounds (red squares). Each circle or square represents the mean of the percentage of NBT positive cells over total
cells of three biological replicates. Statistical significance was evaluated using a Student t-test (n= 3). Data are presented as mean ± SEM. *p ≤
0.05, **p ≤ 0.01, ***p ≤ 0.001. Data in (C), (D) and (F) are represented as means of three biological replicates (n= 3) ± SEM. Statistical analysis
was performed using One-way ANOVA. Significance *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 and are related.
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this context, we developed a new strategy to screen drugs in silico
looking for compounds that could be candidates for differentiation
therapy in Acute Myeloid Leukemia (AML). AML is a heterogeneous
and aggressive disease with poor survival rate [40]. Its main
characteristic is the inability of haematopoietic stem cells to

terminally differentiate [41]. Current therapy approaches, based on
chemotherapy, albeit somewhat aggressive, do not completely
revert the adverse pathological outcome in AML patients. These
considerations stimulated alternative approaches such as for
instance differentiation therapy. The efficacy of All-Trans Retinoic
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Acid (ATRA) as differentiation agent in AML subgroups treatment
[19] underscores the potential of this approach [42] and motivates
the identification of additional compounds that promote the
differentiation of leukemic stem cells. To this end, we set out to
develop a novel computational approach in order to relocate
compounds with the potential to reprogram leukemic stem cells.
By interrogating the Connectivity Map (CMap), we performed a
differential gene expression analysis of the human leukemia cell
line HL-60, treated with several drugs. We focused on compounds
that enhance the expression of genes regulated by the transcrip-
tion factors that are known to play a crucial role in myeloid
differentiation. The strategy that we have developed allows to
overcome some of the limitations of standard drug repurposing
approaches based on the screening of a large number of
compounds by cell assays [43, 44]. Our strategy, however, has
some limitations as the CMap resource has incomplete drug
coverage and the data were obtained by using a microarray
platform, a technology that is by now obsolete [45]. In spite of this,
the method has proven to have value as it provided us with a list of
potential pro-differentiation compounds that include drugs already
used in differentiation therapy. In order to validate the effect of
candidate pro-differentiation drugs, we performed differentiation
assays in vitro. The observation that 10 of the 22 inferred drugs,
could promote granulocytic differentiation of HL-60, supported the
value of the computational method and estimated ~50% the
frequency of false positives. Moreover, to evaluate the frequency of
false negatives, we randomly selected 14 drugs that had a low
position in the ranking list. None of them showed a significant
potential to stimulate differentiation thus establishing a higher limit
of approximately 10% in the frequency of false negatives. Among
the pro-differentiation compounds, we identified mebendazole, an
anti-helminthic agent recently proposed by Yulin Li and colleagues
as a drug for AML differentiation therapy [46]. The authors
elaborated a computational approach to define the changes in
differentiation state of haematopoietic malignancies based on their
gene expression profiles. This approach similarly to ours also used
the CMap and compared transcriptional profile instead of
transcription factor activation profiles. The approach produced a
list of putative drugs that were subsequently tested in vitro. Despite
being the two approaches based on the same experimental
dataset, we consider our computational strategy more efficient and
sharper in identifying pro-differentiative compounds. Indeed, by
comparing the list of the pro-differentiative drugs obtained by the
two approaches, the strategy proposed here identified additional
compounds not recognized by the Yulin Li approach. These include
8-azaguanine, alprostadil and methylergometrine. This underlines
the power of our strategy that is, in addition, highly versatile as it
can be relatively easily adapted to different biological processes
and drug repurposing projects. Moreover, we observed that drugs
that induce differentiation more efficiently also trigger a DNA
damage response. The DNA damage response has already been
discussed as a target to modulate differentiation of myeloid
leukemia cells [47–49]. This consideration prompted us to further
investigate the correlation between DNA damage and myeloid
differentiation. To this end, we tested idoxuridine (IdU), a molecule
that promotes cell differentiation by triggering DNA damage

response in a completely different cell type and experimental set
up [30]. We observed that IdU induces myeloid differentiation with
a potency that is comparable to that of ATRA. Possibly IdU triggers
HL-60 granulocytic differentiation via a mechanism that is different
from that of ATRA, as shown by the different CD38 expression.
Several lines of evidence suggest that CD38 may be a key driver of
ATRA induced differentiation given that, after ATRA treatment, HL-
60 shows a dramatic upregulation [50, 51]. We observed that, by
contrast, IdU does not induce an increase in CD38 expression in
HL60, despite being able to promote granulocytic differentiation,
suggesting a different mechanism of action [52]. Further investiga-
tions in primary human AML cells may be helpful to assess the
potential of the selected drugs for use in differentiation therapy of
AML, possibly in combination with already approved drugs. In
conclusion, this work further emphasizes the potential of
repurposing strategies and the contribution that computational
approaches provide in accelerating the drug development process.

MATERIALS AND METHODS
Connectivity map
The Connectivity map is a resource (CMap build 02) [12] collecting 6100
gene expression profiles of 5 human cell lines treated with 1309 Food and
Drug Administration (FDA) approved compounds. One of the cell lines
used in this project is HL60, a human leukemia cell line whose expression
profiles was determined after treatment with 1078 compounds. However,
the number of drug treatments and control samples are not always
compatible with statistical analysis. As a consequence, we were only able
to determine a significant perturbation of the transcriptional signature for
475 compounds. The expression data were processed and normalized.
Differential gene expression analysis was performed by using the R Limma
package [53]. For each drug treatment this procedure generated two lists
of significantly up- and down-regulated genes, which were used as input in
the TF enrichment tool ChEA3.

ChEA3 and integration of TF enrichment results
The analysis of the transcription factors whose target genes are enriched in
the list of genes that are up/down regulated after drug treatment was
obtained by the ChEA3 tool (https://amp.pharm.mssm.edu/chea3/). To
estimate the TF target enrichment ChEA3 uses seven different resources
(ARCHS4 Coexpression, ENCODE, ChIP-seq, EnrichrQueries, GTExCoexpres-
sion, Literature, ReMapChIP-seq) each using a different method to compile
list of genes that are controlled by each transcription factor. Each resource
uses different methods to compile list of genes that are controlled by each
transcription factor. For each chemical perturbation, they return a list of
activated transcription factors ranked according to the p-value of the
enrichment of its target genes in the lists of up/down regulated genes
under perturbation conditions. We used the MeanRank method to combine
the results of enrichment analyses in the seven different resources. For each
TF the MeanRank method computes the mean of the rank positions in the
output lists of the seven resources. This integration strategy was shown to
perform better than each single method.
The MeanRank, however, does not allow to define a p-value for a specific

position in the ranked list. We thought of an empirical method for
establishing a threshold position above which a TF could be considered
significantly “activated”. To this end for each ranking list we noted the
position of the transcription factor whose target-enrichment p-value was
just below the significance of 0.05. We next computed the average of the
threshold positions in the seven resources. Finally, the TF with an average

Fig. 5 Expression of differentiation markers in HL-60. A Representative histogram of flow cytometric analysis of CD11b expression in HL-60
after four days of treatment with the indicated drugs. B Quantification of CD11b expression in HL-60 after four days of treatment. C Scatter dot
plots representing HL-60 population analysed by flow cytometry with anti CD71 and anti CD38 fluorescent antibodies. The representative dot
plots show the percentage of CD71 and CD38 positive and negative cells after four days of treatment with different drugs. D Quantification of
CD38 expression in HL-60 after four days of treatment of three different biological replicates. E Quantification of CD71 expression in HL-60
after four days of treatment of three different biological replicates. F Representative histogram of flow cytometric analysis of CD66b
expression in HL-60 after four days of treatment. Red gate encloses CD66b positive cells. G Quantification of CD66b expression in HL-60 after
four days of treatment. Statistical analysis was performed using ordinary One-way ANOVA. Data are presented as mean ± SEM. ***p ≤ 0.001,
****p ≤ 0.0001. All the drug treatments were carried out for four days. The concentration for each drug is reported in Table 1 in Materials and
Methods section.
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Fig. 6 Idoxuridine induces differentiation of HL-60. A Representative light microscope images of NBT staining of HL-60 after four days of
treatment with idoxuridine (10 µM) and Tretinoin (1 µM). The scale bar is 50 μm. B Quantitation of the assay in A. C Intensity distribution and
quantitation (D) of flow cytometric analysis of CD11b expression in HL-60 treated for four days with idoxuridine (10 µM) and tretinoin (1 µM). E Scatter
dot plots and quantitation of the expression of CD38 (F) and CD71 (G) after idoxuridine and tretinoin treatment. H Representative dot plots of flow
cytometric analysis and quantitation (I) of CD66b expression in HL-60 treated for four days with idoxuridine and Tretinoin (1 µM). The red gate
represents CD66b positive cells. Statistical analysis was performed using ordinary One-way ANOVA. Data are presented as mean± SEM. **p≤ 0.01,
***p≤ 0.001, ****p≤ 0.0001. All the drug treatments were carried out for four days in biological triplicates. Drug concentrations are reported in Table 1
in Materials and Methods section.
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position higher than this average threshold position were deemed
“significantly activated”. At the end of this process for each chemical we
have a list of transcription factors whose targets are significantly more
numerous in the list of up- or down-regulated genes as evaluated by the
annotations in the seven different resources.

TF filtering and drug ranking procedure
The drugs that are candidates for induction of myeloid differentiation are
those that activate the TFs that are necessary for differentiation while
inactivating fewer of them. Only transcription factors specifically involved in
monocyte and granulocyte differentiation (MGD) were considered. In
particular, we focused on those seven transcription factors that promote
granulocyte or monocyte differentiation. To obtain a ranking list of pro-
differentiation compounds, for each drug we counted the number of myeloid
differentiation TFs involved in myeloid differentiation that are significantly
activated and subtracted those whose targets are enriched in the list of
down-regulated genes. This score was dubbed “pro-differentiation” score.

Cell cultures
HL-60 were purchased from ATCC (American Type Culture Collection)
(#CCL-240™) and were cultured at density of 5.0 × 105 cells/mL in T-75 cm2

flasks (Corning®, #431464U) using growth medium consists of Iscove’s
Modified Dulbecco’s Medium (IMDM) (ATCC® 30-2005™) supplemented
with 20% v/v heat inactivated Fetal Bovine Serum (FBS) (Euroclone,
#ECS0180L), 1 mM sodium pyruvate (Sigma-Aldrich, #S8636), 10 mM 4-(2-
hydroxyethyl)−1-piperazineethanesulfonic acid (HEPES) (Sigma, #H0887)
and 100 U/ml penicillin/100 μg/ml streptomycin (Thermo Fisher Scientific,
#15140122) at 37 °C in 5% CO2 atmosphere. Cultures were maintained by
the addition of fresh medium or replacement of medium every 2–3 days.
Cell concentration did not exceed 1 × 106 cells/mL. THP1 were purchased
from ATCC (American Type Culture Collection) (#TIB-202™) and were
cultivated at a density of 2.0 × 105 cells/mL in T-75 cm2

flasks (Corning®,
#431464U) in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco,
#11875093) supplemented with 10% v/v heat inactivated Fetal Bovine
Serum (FBS) (Euroclone, #ECS0180L), 1 mM sodium pyruvate (Sigma-

Aldrich, #S8636), 10 mM 4-(2-hydroxyethyl)−1-piperazineethanesulfonic
acid (HEPES) (Sigma, #H0887) and 100 U/ml penicillin/100 μg/ml strepto-
mycin (Thermo Fisher Scientific, #15140122) at 37 °C in 5% CO2 atmo-
sphere. Cultures were maintained by the addition of fresh medium or
replacement of medium every 3–4 days. Cell concentration did not exceed
8 × 105 cells/mL.

Drug treatments
HL-60 were treated with different drugs according to Gupta Et al.[54]. Cells
were diluted to 3 × 105 cells/ml in IMDM growth medium and incubated
overnight to obtain a population of exponentially growing cells. The
following day cells were centrifuged at 300 × g for 7 min at room
temperature and resuspended at the density of 3.0 × 105 cells/mL in IMDM
growth medium supplemented with the different drugs. Chemicals were
added to the growth medium at the same concentrations used in the
connectivity map protocol. The drug concentrations used for each
compound are shown in Table 1 Drug treatment was carried out for 4 days.
Drugs used for experimental validation were dissolved in dimethyl

sulfoxide (DMSO) (Sigma-Aldrich, #D2650) or in alternative in Ethanol (Et-
OH) in according to manufacturer’s instructions at a final concentration of
10mM and stored at −20 °C (see Table 1).
Compounds included in the commercial Prestwick Chemical Library®

(http://www.prestwickchemical.com), containing 1280 FDA-approved
drugs, were pre-dissolved in 100% dimethyl sulfoxide (DMSO) at the final
concentration of 10mM and stored at −20 °C (see Table 1).
For monocytes/macrophage differentiation positive control, HL-60 were

treated with PMA (Phorbol 12-myristate 13-acetate) (Selleckem, # S7791)
20 nM. DMSO 0.4% was used as negative control for all the experiments.

Cell viability
Cell viability was assessed by the trypan blue exclusion test. After 4 days of
treatment, HL-60 cells were resuspended and mixed with Trypan blue
solution dye (ThermoFisher, #T10282) 0.4%. When cell suspension is simply
mixed with the dye could be visually examined to determine whether cells
take up or exclude dye. Viable cells will have a clear cytoplasm whereas a

Fig. 7 NBT assay of THP1 cell line differentiation. A Representative light microscope images of NBT staining of THP1 after four days
treatment with the drugs. The scale bar is 50 μm. B Bar plot reporting THP1 cell viability after four days of treatment with the drugs. Cell
viability was assessed by the Trypan blue exclusion test. Data points are averages of three biological replicates. C Quantitation of the NBT
assay on drug treated THP1 samples. All drug treatments were carried out for four days. The concentration of each drug is reported in
Supplementary Table 1. The NBT assay results were plotted as the percentage of positive cells over the total cells. Statistical analysis was
performed using One-way ANOVA. Data are presented as mean ± SEM. of three biological replicates. Significance *p ≤ 0.05, ***p ≤ 0.001,
****p ≤ 0.0001 and are related.
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nonviable cell will have a blue cytoplasm. Cell mixture was incubated for
less than 3min at room temperature and then was visualized using
Countess™ II Automated Cell Counter (ThermoFisher, #AMQAX1000). For
each sample percentage of viability cells has been collected and processed
using GraphPad Prism 7 software.

Nitroblue Tetrazolium (NBT) assay
Nitroblue Tetrazolium (NBT) assay was performed after 4 days of drugs
treatment. Following treatment with different compounds, cells were
collected, centrifuged at 300 × g for 7 minutes at room temperature and
resuspended in complete IMDM growth medium or in alternative in RPMI
growth medium at the density of 3.0 × 105 cells/mL with NBT (Nitro blue
Tetrazolium Chloride) (Sigma-Aldrich, #N6876) 1 mg/mL and MA (Phorbol
12-myristaPte 13-acetate) 5 µg/mL (Selleckem, # S7791). Next cells were
incubated for 60min at 37 °C. In differentiated cells NBT is phagosomed,
the intracellular enzymes convert NBT into insoluble blue formazan
crystals. At the end of the incubation cells were collected, centrifuged at

300 × g for 7 min and washed in PBS (Dulbecco’s Phosphate Buffered
Saline, Biowest, #L0625-500). Next cells were resuspended in complete
IMDM growth medium or in alternative in RPMI growth medium and
seeded on 12 well plate (Falcon®, #353043). For each sample images were
acquired by light microscopy using an inverted microscope (Nikon, model
Eclipse Ts2 #136710). At least 200 cells for sample were counted using
ImageJ software and the percentage of differentiated cells (cells containing
blue-black formazan deposits) was calculated and processed using
GraphPad Prism 7 software.

Flow cytometry
After 4 days of treatment HL-60 were resuspended, collected and
centrifuged twice with PBS supplemented with BSA 0.5% (Bovine Serum
Albumin, AppliChem, #A1391) and EDTA 2mM at 300 x g for 10min at 4 °C.
Cells pellet were then resuspended in PBS 2mM EDTA 0.5% BSA and
stained with antibodies (see Table 2) at the concentration of 1 × 106 cells/ml
for 30min at 4 °C. After incubation cells were washed in 1mL of PBS 0.5%
BSA 2mM EDTA and centrifuged 300 x g for 10min at 4 °C. Pellets were
resuspended in 1mL of PBS 2mM EDTA 0.5% BSA. Stained cells were
visualized on Cytoflex S, 3 lasers (488 nm, 405 nm, and 638 nm) and 13
detectors. (Beckman Coulter). Live cells were gated based on side scatter
and forward scatter. Approximately 10,000 events per samples were
acquired. Quality control of the cytometer was assessed daily using
CytoFLEX Daily QC Fluorospheres (Beckman Coulter, #B53230). Data were
collected by CytExpert (Beckman Coulter) software. If needed, a compensa-
tion matrix was calculated using VersaComp Antibody Capture Kit
(Beckman Coulter, #B22804) according to manufacturer’s instructions. FCS
files were analysed using CytExpert software and the percentage of positive
cells. In order to increase the throughput of samples, we used the plate
loader of Cytoflex S for the acquisition. In this event cells were resuspended,
collected and seeded on 96 well plate (Falcon®, #353072). Next, cells were
stained with antibodies in 96 well plate as described above and finally
10,000 events per samples were acquired using a plate loader in Cytoflex S.

Statistics
All the experiments have been conducted in at least 3 independent
replicates derived from 3 cell line batches (n= 3). Data are presented as
means ± standard error of the mean (SEM). Statistical significance was
assessed using the Student’s t-test, One-Way ANOVA or Two-Way ANOVA
according to the data set. Differences were considered statistically
significant when p-value < 0.05. Plots and statistical analysis were
produced using the GraphPad Prism 7 software.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author, [FR], upon reasonable request.
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