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Interactions between the lung epithelium and the immune system involve a tight regulation
to prevent inappropriate reactions and have been connected to several pulmonary
diseases. Although the distal lung epithelium and local immunity have been implicated
in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF),
consequences of their abnormal interplay remain less well known. Recent data
suggests a two-way process, as illustrated by the influence of epithelial-derived
periplakin on the immune landscape or the effect of macrophage-derived IL-17B on
epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by
damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”,
pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been
linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence
epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such
as microbiome-sequencing has allowed for the identification of a disease-specific
microbial environment. In this review, we propose to discuss how the interplays
between the altered distal airway and alveolar epithelium, the lung microbiome and
immune cells may shape a pro-fibrotic environment. More specifically, it will highlight
DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while
discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
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INTRODUCTION

The role of the immune system in the development and disease course of idiopathic pulmonary
fibrosis (IPF) has been a matter of heated debate over the last decades. Initial observations of increased
neutrophil counts in the broncho-alveolar lavage (BAL) (1, 2) alongside the histologic presence of
neutrophils, lymphocytes and macrophages in the proximity of fibrotic areas (1) led to the hypothesis
that IPF starts as an inflammatory alveolitis and progresses to alveolar septal fibrosis over time. These
observations formed the basis for the use of immunosuppressive therapies, in particular
corticosteroids, in IPF. Although randomized controlled trials evaluating the role of steroids were
missing (3, 4), observational data suggested a heterogeneous response in patients (5). In the early
2000s, the influence of immunity and immunomodulatory medication in IPF began to be questioned,
with the emergence of alveolar epithelial dysfunction as one of the main contributors to pathogenesis
(6) and the observations that, with further refinement of disease classification criteria (7), better
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characterized patients with a usual interstitial pneumonia pattern
(UIP) displayed only mild inflammation (8). Finally, a milestone
study assessing the effect of N-acetylcysteine, azathioprine, and
prednisone in IPF reported a deleterious effect of this combination
therapy (9) further weakening the “inflammatory hypothesis” in
IPF. The emergence of high-throughput technologies, such as
single-cell RNA sequencing, have allowed for the discovery of
fibrosis-specific cell populations and fueled a renewed interest for
the immune system in this disease. Thus, the place of immunity
and inflammation in the course of this pathology has evolved,
from causal to modulating (10) and unravelling the subtleties
underlying this influence could help discover new targets and
understand why immunosuppressive interventions have failed in
the past.

The distal lung epithelium forms a continuous layer of cells
responsible for gas transport and exchange as well as host
defense. A complete overview of pulmonary cell composition
can be found in (11, 12). Briefly, whereas in proximal conducting
airways, it is principally composed of ciliated, secretory and basal
stem cells, monostratified type-1 and type-2 alveolar epithelial
cells (AEC) are present in the alveoli (11) (Figure 1). As the lung
lays at the interface between host and environment, constantly
exposed to external stimulation, a tight regulation of
inflammatory mechanisms is required to preclude inadequate
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immune reactions. Lung epithelial cells participate in this
equilibrium through several mechanisms. While the
contribution of myeloid cells to lung immune mechanisms and
secondary fibrosis in IPF has been extensively studied, the
participation of the epithelium remains to be fully determined.
Although ex vivo epithelial cultures are a tedious process, notably
hampered by the rapid dedifferentiation of, for example,
monocultured alveolar type-2 epithelial cells (AEC2) (13), both
in vivo and in vitro evidence point towards the implication of the
epithelium in the aforementioned processes. In this review, we
will summarize how epithelial cells’ biology and their crosstalk
with immune cells and microbes may, under some
circumstances, conduct to aberrant, pro-fibrotic signaling in
the lung. We will discuss how epithelial cells form a physical
barrier through their secretion and removal of mucus, while
forming a continuous cell layer, and how alterations in these
mechanisms can fuel pro-fibrotic mechanisms. Furthermore, we
will review the data regarding their ability to sense and react to
danger and pathogen associated molecules and the existing links
between alterations in those mechanisms and lung fibrosis.
Finally, we will address the epithelial capacity to modulate lung
immune responses, notably through the secretion of several
soluble mediators (14, 15), and to trigger the recruitment,
polarization and activation of pro-fibrotic myeloid cells.
FIGURE 1 | The normal lung epithelium composition changes along the respiratory tree from proximal airways to alveolar areas. Secretory cells produce the mucus
lining the airways, which is moved upstream by the ciliated beats originating from ciliated cells. Basal cells have a local progenitor function, possessing the ability to
differentiate into several cell types, including secretory and ciliated cells. In small airways, basal and secretory cells are progressively replaced by club (ex-Clara) cells,
which can serve as local facultative progenitors (besides basal cells), secrete components of the bronchiolar lining fluid, and play a detoxifying role through their
expression of cytochrome p450. In the alveoli, alveolar type-1 epithelial cells (AEC1) are responsible for gas exchange, while alveolar type-2 epithelial cells (AEC2)
produce surfactant and serve as local progenitors. Epithelial cells are connected by tight- and adherens junctions, forming a continuous layer separating the intra-
luminal content from the submucosal environment and regulating intercellular permeability. Tight junctions are composed of integral membrane proteins like claudins
and occludins, which are linked to the cytoskeleton through cytosolic protein complexes such as Zonula Occludens (ZO). Adherens junctions, formed by E-cadherin
proteins, linked to the cytoskeletion by catenins are responsible for the maintenance of cell-cell adhesion while being involved in many intracellular signaling and
transcriptional pathways. MCC, mucociliary clearance.
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THE EPITHELIUM AS A
PHYSICAL BARRIER

Mucins and Mucociliary Clearance
The mucus layer covering the respiratory tract epithelium is able
to trap and remove noxious stimuli thanks to mucociliary
clearance and cough, forming the lung’s first line of defense in
the airways (16). Mucins are glycosylated proteins that help
constitute this visco-elastic layer, isolating the underlying
structures from the outer world. The human lung expresses 16
different types of mucins, which can be separated into two
families, namely secreted (predominantly MUC5AC and
MUC5B) and membrane-bound mucins (mainly MUC1,
MUC4 and MUC16) (17). Mucins fulfill multiple roles,
forming a mesh hampering epithelial access to noxious stimuli,
acting as lubricant as well as (decoy) receptors for pathogens,
associating with several cytokines and growth factors, and, for
membrane bound mucins, influencing intracellular signaling
pathways such as NFkB or b-catenin (18–22). Mucin
expression is regulated by numerous signals, including
cytokines such as TNF-a, IL-1b, IL-6, IL-13 or IL-17, growth
factors like EGF, Damage-Associated Molecular Patterns,
bacterial and viral products or proteases (23–28). Of note,
membrane-bound mucins consist of 2 non-covalently linked
a- and b-chains, which, when exposed to physical stress,
inflammatory mediators or changes in their ionic environment,
can separate, causing the release of the a-chain (29).

Mucins seem to play a favoring role in the development of
lung fibrosis and its subsequent course. Indeed, the most
important genetic risk factor associated with IPF is the single
nucleotide polymorphism (SNP) rs35705950 in the promoter
region of MUC5B (30). This common allelic variant, present in
38% of IPF patients and 9% of controls (30), is both predictive
and prognostic in lung fibrosis (31), as it is associated with a
significant increase in the risk of having pulmonary fibrosis in
the Framingham Heart Study population (32) and decreased
mortality in 2 IPF cohorts (33). This polymorphism is linked
with an increased expression of MUC5B (30) and its
homonymous mucin protein (34). Furthermore, independently
of their genetic background, IPF patients display increased levels
of MUC5B in the distal airways (35, 36) and MUC5B is the main
mucin present in honeycomb cysts (36). How MUC5B
accumulation influences lung fibrosis is still not completely
determined but could involve decreased mucociliary clearance
with local inflammation or abnormal epithelialization.
Supporting the former, a recent link between C3, a component
of the complement cascade, the MUC5B polymorphism and IPF
has been described (37). Additionally, distal overexpression of
MUC5B in mice leads to a thickened mucus layer, impaired
mucociliary clearance, augmented honeycomb cyst size and
increased fibrosis after bleomycin challenge (38, 39). In vivo
data indicates a crucial role for MUC5B in the maintenance of
healthy interactions between the host and bacteria, as Muc5b-/-

but not Muc5ac-/- animals display impaired survival related to
respiratory infections (40). Impaired mucociliary clearance,
present in both Muc5b-/- and Muc5b overexpressing animals
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could result in suboptimal clearance of organisms and increased
epithelial-bacterial contact. Besides, although currently no causal
relationship can be established, IPF subjects with increased
bacterial loads display worse survival (41) while the presence
of the rs35705950 SNP is associated with lower bacterial burden
(41) and improved outcomes (33). Much less is known about the
potential implication of MUC5AC in IPF. Recently, a single
nucleotide variant inMUC5AC was described (42), but the exact
effects on protein expression and clinical outcome remain to be
determined. Independently from this observation and similarly
to MUC5B, MUC5AC expression is increased in the distal IPF
lung (36) and is expressed within HC, albeit at a much lower level
(35, 36). Similarly to their secreted counterparts, the expression
of MUC1 and MUC4 is increased in IPF lungs (43, 44). These
mucins are involved in lung fibrosis through their a- and b-
chain. In fact, the MUC1 and MUC16 extracellular domains
contain the KL-6 and CA125 epitopes respectively, which have
been linked with disease progression (45, 46). Furthermore, KL-6
can promote fibroblast proliferation and migration while
exerting anti-apoptotic activities (47, 48) and was implicated in
an in vivo experimental model of lung fibrosis (49). Finally,
implication of the cytoplasmic tails of both MUC1 and MUC4 is
suggested by the fact that their genetic and pharmacologic
modulation is sufficient to protect bleomycin treated mice and
by their role in TGF-b1-induced EMT or myofibroblast
differentiation (43, 44).

Intercellular Junctions
Tight junctions (TJ) and adherens junctions (AJ) act as apical
junctional complexes, connecting adjacent cells, regulating the
transport of solutes, allowing cell polarity and permitting the
separation of the airway lumen and the underlying mucosa
through a physical barrier (50, 51). Briefly, TJ are composed of
integral membrane proteins, such as claudins and occludins and
cytosolic protein complexes comprising Zonula Occludens
proteins (ZO-1, 2, 3) (52) linked to actin binding proteins and
the cytoskeleton (Figure 1) (51, 53). Claudin expression varies in
function of the tissue (54) and these proteins can be divided in
two groups based on their permeability properties, with claudins-
2, -7, -10, -15 and -16 promoting paracellular flux, while
claudins-1, -4, -5, -8, -11, -14 and -18 have a sealing function
(55, 56). Within the human lung, claudin expression is variable,
the main bronchiolar claudins being claudin-1, -2, -3, -4, -5 and
-7, while alveolar cells are positive for claudin-3, -4, -7 and -18
(57–59), suggesting tailored expression in function of the
localization. AJ are especially important for the maintenance of
cell-cell adhesion but are also involved in many intracellular
signaling and transcriptional pathways. In the alveolar
epithelium, the hallmark structure of AJ consists of a complex
formed by the E-cadherin cell adhesion molecules linked to the
actin cytoskeleton thanks to catenins (Figure 1) (51). b-catenin,
in particular, serves important signaling functions, linking
structural junctions with the Wnt pathway. At last,
desmosomes, specialized membrane complexes, help maintain
the mechanical integrity of tissues and are particularly
represented in tissues undergoing high mechanical stress, such
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as the lungs (60). They are composed by desmosomal cadherins,
Armadillo proteins and plakins, and are present throughout the
bronchial and alveolar epithelium (61). Lungs of patients affected
by IPF present several signs of epithelial integrity disruption,
with basement membrane denudation (62) and downregulation
of several junctional proteins, suggesting that alterations in one,
or several, of these structures are present.

Tight junctions are altered in IPF, with immunohistochemical
observations showing an increased expression of occludin,
claudin-1, -2, -3 and -7 and a downregulation of claudin-18
within regions of abnormal epithelialization (57–59). Discrepant
results exist for claudin-4, with reports of increased (58, 59) or
decreased expression (57) but this can at least partly be explained
by differences in epithelial classification between studies, since
alveolar and bronchiolar zones were not always separated.
Measures of lung epithelial permeability through 99m-labelled
diethylenetriamine penta-acetic acid (99mTc-DTPA)
measurement, although quite non-specific, shows that patients
have faster clearance than control subjects, suggesting increased
epithelial permeability (63). Similarly, intraperitoneal bleomycin
injections, resulting in lung fibrosis, lead to decreased pulmonary
expression of claudin-5 and -18 as well as occludins (64) while
claudin-4 is upregulated after experimental acute lung injury
(65). The mechanisms underlying these alterations are unclear;
however, TGF-b1, one of the main profibrotic cytokines involved
in IPF, is capable of inducing TJ disassembly (64), increases
claudin-4 (66) and decreases claudin-18 expression (67).
Interestingly, genetic deletion of cldn18 results in (pathologic)
epithelial regeneration efforts with alveolar enlargement,
impaired barrier function, alveolar type-1 epithelial cell
(AEC1) injury, AEC2 expansion and YAP activation, a
proliferation/differentiation protein activated in IPF alveolar
cells (68–70). Furthermore, preserved epithelial barrier
integrity and polarization permit modulation of the interaction
between growth factors or cytokines and their receptors, further
implicating TJ in innate immune processes and epithelialization.
For instance, expression of heregulin, a Human Epidermal
growth Receptor (HER) ligand, is normally restricted to the
apical surface of the lung epithelium, separated from its
coreceptor HER2/3 at the basal level by intact TJ (71). Upon
disruption of TJ integrity, the ligand is able to gain access to its
receptor, prompting downstream signaling implicated in
experimental pulmonary fibrosis (72). Although these lines of
evidence point towards a role for TJ dysfunction in lung fibrosis,
it is still uncertain whether TJ alterations can directly influence
this process or are mere bystanders of abnormal epithelialization,
necessitating further mechanistic studies before definitive
conclusions can be drawn.

Loss of E-cadherin and gain of N-cadherin is a salient feature
of epithelial-mesenchymal transition (EMT), a process by which
epithelial cells gain mesenchymal characteristics, as observed in
IPF. Accordingly, the IPF lung epithelium displays alterations in
the expression of these AJ proteins, with decreased basal cell
expression of E-cadherin and co-expression of E-cadherin and
N-cadherin in hyperplasic pneumocytes (73). Additionally,
treatment with bleomycin, either in experimental models of
Frontiers in Immunology | www.frontiersin.org 4
lung fibrosis or on an alveolar epithelial cell-line reduces E-
cadherin expression (74, 75). Similarly to TJ, TGF-b1 seems to be
one of the main mediators of AJ alteration, as it has the ability to
downregulate E-cadherin (76, 77). A complete overview of the
role of EMT in IPF is proposed by Salton et al. (78). Finally, lung-
specific deletion of E-cadherin in mice results in loss of airway
epithelial cells, epithelial denudation, and increased presence of
a-smooth muscle actin (a-SMA) expressing cells alongside
increased alveolar diameters (79).

Periplakin and desmoplakin, two plakins linking the
desmosomal plaque with intermediate filaments have also been
implicated in lung fibrosis. Recently, variants of DSP, the gene
coding for desmoplakin, were associated with IPF while mRNA
levels are elevated in diseased lungs (80). Periplakin was initially
identified as a potential contributor to pulmonary fibrosis due to the
presence of anti-periplakin antibodies in the serum of 40% of IPF
patients, and alterations in its alveolar expression (61). Further
mechanistic insights show that these antibodies impact epithelial
migration and wound closure while BAL of IPF patients
downregulates Ppl mRNA in murine alveolar cells (61, 81).
Furthermore, Ppl-/- animals are protected from experimental lung
fibrosis, display altered downstream signaling in pro-fibrotic
pathway synchronously to an anti-inflammatory alveolar
environment and decreased, pro-fibrotic, alternatively activated
macrophages (81). No alterations of other cell junctional
components could be observed, arguing against a loss of epithelial
integrity and for a direct role of periplakin as modulator of its
immune milieu and downstream profibrotic signals.
THE LUNG EPITHELIUM SENSES AND
REACTS TO DANGER SIGNALS

Aside from disrupting the physical barrier separating the basal
membrane and submucosal tissue from the luminal content,
epithelial injury also leads to the release of danger signals, so
called Damage-Associated Molecular Patterns (DAMPs). This
results in the activation of inflammatory pathways and the
promotion of damaged structures clearance in a process of
“sterile inflammation” (82). A wide variety of proteins can act
as DAMPs, sharing the feature of being either mislocalized or
altered. High Motility Group Box 1 (HMGB1) is the first
described DAMP following the “danger theory” (83) and is
normally spatially restricted to the nucleus, where it regulates
DNA organization and transcription, but can act as a strong pro-
inflammatory stimulus when passively released in the
surrounding milieu by necro(pto)tic cells (83). Next to passive
release, HMGB1 can also be actively secreted by non-necrotic
cells of the immune system and intestinal epithelial cells after
immune stimulation (84, 85). Similarly, the production of
hyaluronan fragments from extracellular matrix high-
molecular weight (HMW) hyaluronan can tr igger
inflammatory pathways (86). Furthermore, disruption of
physical defense mechanisms will also lead to increased contact
with bacterial and viral products named Pathogen-Associated
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Molecular Patterns (PAMPs), such as lipopolysaccharides, ds/
ssRNA or unmethylated CpG DNA (87). Both DAMPs and
PAMPs downstream signaling is mediated through Pattern
Recognition Receptors (PRR), intracytoplasmic and membrane
receptors consisting of 4 classes, Toll-Like Receptors (TLR),
NOD-Like Receptors (NLR), C-type Lectin Receptors (CLR)
and RIG-I-Like receptors (RLR) (88). These receptors are
present on cells from the immune system, but also expressed
by lung epithelial cells (15) and can trigger a wide array of effects,
resulting in activation of NFkB, MAPK and interferon pathways.

The Epithelium as Source and Target of
DAMPs in IPF
Although DAMPs primarily serve an inflammatory function,
they are increased in IPF and, based on experimental results,
seem to be involved in fibrogenesis. As stated previously, DAMPs
can originate from necro(pto)tic cells, and increased levels of
RIPK3, a regulator of necroptosis have been observed in IPF
lungs and in experimental, bleomycin-induced pulmonary
fibrosis, particularly within alveolar epithelial cells (89).
Further implication comes from the observation that HMGB1,
uric acid or extracellular ATP (eATP), all recognized DAMPs,
are increased in both human BAL as well as in vivo and in vitro
experimental conditions (89–93). Although the origin of these
signals is multiple, distal lung epithelial cells contribute to this
altered environment as they show staining for HMGB1 and
bleomycin-stimulated alveolar cells produce high levels of
HMGB1 and eATP (90, 93). Additionally, inhibition of
HMGB1 by a neutralizing antibody, of uric acid levels by a
xanthine-oxidase inhibitor and interference with eATP signaling
all decrease bleomycin-induced lung fibrosis (90, 92, 93). The
exact mechanisms implicating DAMPs in fibrosis are currently
incompletely elucidated but include direct interactions with
fibroblasts as well as epithelial cells and promotion of IL-1b
production, a cytokine involved in lung fibrosis (94). Indeed,
addition of HMGB1 to fibroblasts promotes cell viability and
myofibroblast differentiation (90, 95) while decreased IL-1b
levels are observed in bleomycin instilled mice treated with
anti-HMGB1 antibodies (90). HMGB1 also influences
epithelial behavior, as it enhances scratch-wound closure by
AECs through the production of IL-1b and activation of TGF-
b1 (96), potentially fueling frustrated repair mechanisms in the
alveoli, and promotes epithelial-mesenchymal transition in
bronchial cells (97). Finally, HMGB1 can shape the immune
contribution to fibrosis as it prompts macrophages to produce
high levels of IL-1b, which could influence collagen deposition
(98) and triggers the release of chemokines such as MCP-1/CCL2
by lung epithelial cells (99), a molecule known to enhance
fibrocyte recruitment (100). Additionally, epithelial cells
exposed to this molecule produce higher levels of TNF-a,
which has been linked with TJ disassembly (101), fibroblast
apoptosis (102) and EMT (103, 104). The latter pro- and anti-
fibrotic effect are mirrored by in vivo data, reporting both
protective and promoting roles of this cytokine in lung fibrosis
(105, 106). Likewise, extracellular application of ATP is able to
provoke an upregulation of TGF-b1, collagen and fibronectin
Frontiers in Immunology | www.frontiersin.org 5
mRNA in cultured fibroblasts (107), increases fibroblast
migration and proliferation (108) while P2X� =�

7 mice, a
knock-out model for a receptor of eATP, are protected from
fibrosis and show lower IL-1b levels than control animals (93).

PAMPs and the Lung Epithelium
PAMPs are similarly capable of influencing cell behavior and
ultimately fibrosis. Lipopolysaccharides (LPS), membrane
components of gram-negative bacteria, recognized by the
membrane receptor TLR4, have been involved in experimental
lung fibrosis (109, 110), are capable of promoting fibroblast
proliferation in vitro (111) and induce the early secretion of
IL-1b, MCP-1/CCL2 or IL-8 by AEC2 (112, 113). Additionally,
bacterial and viral DNA contains hypomethylated CpG zones,
and treatment of UIP lung fibroblasts and healthy peripheral
monocytes with CpG oligodeoxyribonucleotides (ODN), results
in increased myofibroblast as well as fibrocyte differentiation
respectively (114, 115). Moreover, fibroblasts from rapidly
progressive IPF patients show an enhanced susceptibility to
CpG stimulation, probably due to an increased expression of
its cytosolic receptor TLR9 in these subjects (115). Epithelial cells
are also capable of sensing and responding to CpG, with most
experiments linking CpG, lung epithelium and fibrosis
conducted in the alveolar A549 cell-line. Both TLR9-dependent
and -independent mechanisms could be implicated. Indeed, the
induction of EMT observed after CpG treatment of alveolar cells
is absent after TLR9 silencing (115) but their upregulation of
CCN1, a matricellular protein with pleiotropic functions
implicated in IPF and experimental lung fibrosis (116), is
predominantly linked to CpG-induced endoplasmic reticulum-
(ER) stress (117). Interestingly, integrin aVb6, an epithelial cell
surface receptor implicated in the activation of latent TGF-b, is
simultaneously upregulated, potentially linking this with
increased TGF-b1 signaling. Conversely, experiments in mice
showed that addition of CpG after bleomycin instillations
reduced fibrosis (118), possibly reflecting immunological
species differences.

Implication of TLR in Lung Fibrosis
Additional evidence implicating these pathways and epithelial
cells arise from clinical, in vivo, and in vitro studies showing
alterations of PRR in lung fibrosis. Firstly, polymorphisms
affecting PRR, more specifically, TLR have been associated
with IPF. In 2013, the L412F TLR3 polymorphism was linked
with respiratory decline and mortality in IPF and shown to
influence fibroblast proliferation (119). The same year, SNPs in
the TOLLIP genetic locus, resulting in lower TOLLIP expression
levels, were associated with IPF susceptibility and for one of them
disease course and mortality (120). TOLLIP codes for the Toll-
interacting protein (TOLLIP), an inhibitory adaptor protein of
downstream TLR2/4 signaling, hampering NF-kB activation
(121). In addition, epithelial expression of TOLLIP is
associated with resistance to in vitro bleomycin induced
apoptosis and is locally increased in an aberrant basaloid cell
population in IPF (122). Furthermore, TLR2/4 expression is
increased at the epithelial level in patients with an UIP pattern
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(123). Secondly, evidence from knock-out experiments show
differential effects in experimental lung fibrosis. TLR2 and -4
are membrane PRR recognizing DAMPs (for example HMGB1
or hyaluronan fragments) and PAMPs from Gram-positive
(lipoproteins) and -negative bacteria (LPS) respectively (124).
They have seemingly paradoxical effects as TLR2 alteration
exerts a protective, and TLR4 alteration a promoting effect on
lung fibrosis. In fact, TLR2 deficiency is associated with
improved survival and decreased fibrosis in an experimental
model, attenuating the pro-fibrotic TH2 environment (125),
altering immune cell recruitment (125, 126) and diminishing
IL-17 production through epithelial IL-27 production (126).
TLR2 is expressed by both epithelial and immune cells, and
further involvement of lung epithelial cells was shown by
chimeric experiments revealing that epithelial TLR2 expression
is probably the main contributor to these findings (126).
Conversely, TLR4-/- animals show augmented deposition of
collagen in the lungs when challenged with different fibrotic
stimuli (127), and display a shift towards a TH2 immune milieu
as well as decreased autophagy, potentially impacting collagen
degradation (127). Illustrating the complexity and the interplay
between these different mechanisms, hyaluronan low molecular
weight fragments are responsible for the production of
chemokine by macrophages and redundantly signal through
TLR2 and 4 whereas high molecular weight hyaluronan only
need TLR4 to promote AEC regeneration and renewal (128,
129). Contradictory results, suggesting a protective role of TLR4
inhibition have also been published (110) and further studies are
sorely needed to evaluate the exact contribution of each
component of these complex systems.
MODIFIED LUNG BACTERIAL
LANDSCAPE COULD INFLUENCE
EPITHELIAL BIOLOGY

Fueled by negative results of culture-based assessments, the lungs
were until recently considered as a sterile environment. The advent of
high throughput bacterial sequencing has allowed the identification of
a diversified bacterial flora in healthy human lungs which showed
modifications in chronic respiratory diseases (130). Current
techniques are based on the sequencing of highly conserved genes,
such as the 16S ribosomal RNA gene, to identify and quantify
bacterial communities and cluster them into operational taxonomic
units (OTU) (131, 132). In the healthy lung, bacterial composition
resembles the oropharyngeal flora and its structure is regulated
through three mechanisms, namely the amount of bacterial
immigration, the rate of elimination and the reproduction rate of
local bacteria (133). Architectural changes and disruption of these
homeostatic pathways in disease cause the genesis of niches
permitting the emergence of select bacterial populations, resulting
in changes in composition and diversity of airway bacteria (134–137).
The epithelium from the respiratory tract can influence the two last
determinants through mucus production, mucociliary clearance,
secretion of inflammatory mediators as well as alterations of the
local micro-environment (133, 138).
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Airway bacterial composition is altered in IPF, with patients
displaying increased bacterial loads and decreased diversity (41,
139). Additionally, patients with the highest bacterial burden have a
markedly worse prognosis than those with lower loads, further
supporting a link between bacteria and IPF (41, 140). Of note, this
correlation could not be found in a recent study evaluating chronic
hypersensitivity pneumonitis patients, suggesting disease specific
features (139). Prior observations had identified Streptococcus sp.,
Prevotella sp., and Veillonella sp. as the most identified bacteria in
IPF lungs, questioning the association between bacterial
composition and disease. Several studies have suggested a relation
between certain genera and OTUs, host defense pathways (140,
141), fibroblast behavior (141) or clinical outcomes (139, 142, 143).
Although descriptive, these data suggest that changes in the local
bacterial landscape could lead to epithelial injury as well as influence
the fibrotic and immune response. Further implication of the
bacterial landscape in lung fibrosis development can be gathered
from animal studies in which the flora can be controlled to express
no or selected bacteria. Indeed, germ-free animals instilled with
bleomycin display lower mortality (140, 144) and indices of fibrosis
(144). Although this data suggests a potential role of bacteria in the
development of fibrosis, studies demonstrating a causal link are
scarce. In one study, macrophages exposed to outer membrane
vesicles from gram-negative bacteria released IL-17B through
TLR2/4 sensing, subsequently inducing the secretion of
chemokines and growth factor by alveolar epithelial cells,
resulting in the development of pulmonary fibrosis (144). Next to
influencing immune-epithelial crosstalk, certain bacteria could
directly harm the epithelium by secreting cytotoxic compounds.
Indeed, streptolysin (a pore-forming cytotoxin) producing
Streptococcus and corisin (a recently discovered cytotoxic
compound) secreting Staphylococcus had direct effects on
experimental lung fibrosis, increasing AEC2 apoptosis (145) and
hampering anti-fibrotic mechanisms (146). The interactions
between the microbiome, the epithelium and the immune system
have just started to be unraveled and form an exciting prospect for
research in the coming years. Understanding the mechanisms
underlying these interactions could help to identify prognostic or
therapeutic targets, especially in patients developing acute
exacerbations of the disease.
THE EPITHELIUM AS A MODULATOR OF
LUNG IMMUNITY

Epithelial Injury can Promote a TH2
Polarized Environment
T-helper 2 (TH2) lymphocytes, type 2 innate lymphoid cells (ILC2)
and alternatively active macrophages (M2) shape a type 2 immune
landscape and form the basis of complex crosstalk networks
between epithelial, mesenchymal, innate, and adaptive immunity
cells. Studies conducted in typical type 2 pathology such as asthma,
have revealed a major role for the airway epithelium in the genesis
and maintenance of this immune milieu (147), through the
recruitment, polarization and activation of myeloid cells. This
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environment has been involved in mechanisms of tissue repair
through TGF-b1-dependent and -independent pathways.
Furthermore, studies initially conducted in S. mansoni infected
mice allowed to show that the development of fibrosis was linked
with a TH2 environment, involving cytokines like IL-4 and IL-13
(148). These cytokines are mainly produced by TH2 lymphocytes,
ILC2 and macrophages. In IPF, IL-4 as well as IL-13, are elevated in
the BAL of patients (149), suggesting a role in lung fibrotic
processes. Congruently, overexpression of GATA3, a transcription
factor implicated in TH2 differentiation leads to augmented lung
collagen deposition (150) while animals in which IL-4 and IL-13 has
been modulated, are protected from bleomycin-induced lung
fibrosis (151, 152). Nonetheless, IL-13 seems to be the main
fibrotic driver as on the one hand overexpression of IL-13 but not
IL-4 induces spontaneous lung fibrosis (153, 154) and on the other
hand IL-13-/- mice but not IL4-/- are protected from FITC-related
fibrosis (155). Furthermore, IL-13 promotes fibrosis by enhancing
TGF-b production by macrophages and epithelial cells, influencing
TGF-b activation (154), and directly impacting myofibroblast
differentiation (156). Although the bases of epithelial cell
implication in type 2 immunity have been extensively studied in
asthma, several links can also be established in the distal lung with
regards to IPF and lung fibrosis.

First of all, epithelial cells can recruit immune cells partaking
in type 2 immunity and by extension IL-13 secretion. Indeed,
they can secrete chemokines such as CCL17 and CCL22, acting
on TH2 cells and ILC2, next to the eotaxins CCL11, CCL24 and
CCL26 (147). Both CCL17 and CCL22 are increased in the BAL
of IPF patients as well as bleomycin treated mice and are
expressed by hyperplasic (alveolar) epithelial cells (157–159).
Intriguingly, CCL17 but not CCL22 inhibition leads to decreased
lung collagen deposition even though they both share the same
receptor, CCR4 (159). The implication of eotaxins in lung
fibrosis are poorly understood, nonetheless, CCL11 is increased
in experimental lung fibrosis while CCL11 deficient mice are
protected and both CCL11, CCL24 and CCL26 are able to
influence fibroblast behavior (160–162).

Secondly, the epithelium can influence the behavior of
surrounding immune cells through the secretion of IL-25,
Thymic Stromal Lymphopoietin (TSLP) or IL-33, several type-
2 promoting components. IL-25 can be released by different cell
types, including AEC and bronchial epithelial cells (163, 164). T-
cells and ILC2, are some of the targets of this cytokine and
respond by expansion and secretion of type 2 cytokines like IL-4
and IL-13 (163, 165). Its potential role in disease is suggested by
the fact that IPF subjects have higher IL-25 levels in their BAL
compared to controls (166). This cytokine can be involved in
fibrosis by both its direct effects on fibroblasts as well as its
indirect influence on IL-13-dependent fibrosis. Indeed, in vitro
data shows a direct influence on fibroblast differentiation,
cytokine and growth factor secretion (167, 168). Moreover, IL-
25 overexpression is associated with perivascular fibrosis in an
IL-4 and IL-13 dependent manner (169) and IL-25-/- animals are
protected from S. Mansoni and bleomycin-induced lung fibrosis
due to ILC2 related IL-13 production (166), emphasizing its
upstream role in type 2 immunity mediated fibrosis.
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Similarly, TSLP can be produced by a wide range of cells,
including epithelial and mesenchymal cells, similarly promoting
a pro-TH2 environment (170, 171). Staining for TSLP in IPF
lungs reveals the presence of this protein in alveolar epithelial
cells and fibroblasts within fibroblastic foci (172). Additionally,
its concentration in the BAL of patients is significantly elevated,
showing an upregulation in this disease (173). Bleomycin
instillation induces the expression of TSLP in bronchial and
alveolar epithelial cells, but contradictory results have been
published regarding the protective character of TSLP deletion
in mice (174, 175). Furthermore, stimulation of primary human
fibroblasts with this cytokine results in the secretion of CCL2 and
chemotaxis of monocytes to the site of injury (172) while AEC
undergo EMT (176). The role of TSLP thus seems complex with
seemingly contradictory in vivo observation and further studies
are needed to evaluate its exact role in the fibrotic cascade.

After injury or necrosis, epithelial full-length IL-33 (flIL-33)
will be released from the cell nucleus in the surrounding
environment, where neutrophil and mast cell proteases will
cleave it to its modified form (mIL-33) (177). mIL-33 binds to
cells expressing its receptor, ST2, such as ILC2, TH2
lymphocytes, macrophages, dendritic cells or mast cells, and
promotes a pro-TH2 environment (178). Similarly to IL-25 or
TSLP, IL-33 can be found in increased concentrations in the BAL
and lung tissue of IPF patients (173, 179) and is upregulated in
experimental lung fibrosis (179). Both full-length and the
modified form seem to be involved as addition of either
recombinant protein enhances collagen deposition after
bleomycin challenge (179, 180). The processes underlying this
effect are ill-defined but seem to be both ST2 dependent and
independent. On the one hand, flIL-33 affects lung fibrosis by
modulating the innate immune landscape, directly or indirectly
increasing the presence of MCP-1/CCL2, IL-6, TGF-b1 and
DAMPs such as HSP70, independently of ST2, IL4 or IL-13
(179). On the other hand, mIL-33 provokes the polarization of
lung macrophages, ILC2 expansion and subsequent IL-13
secretion, relying on ST2 to do so (180). Interestingly,
peripheral recruitment of ST2 positive cells by IL-33 seems to
be one of the prevalent factors driving this observation, as
selective bone-marrow ST2 deficiency was sufficient to protect
mice from bleomycin lung fibrosis (181).

Next to these cytokines, other DAMPs like HMGB1 or uric
acid can promote the formation of a TH2 driven environment.
Indeed, addition of HMGB1 enhances the expression of GATA3
by TH2 cells and increases the levels of IL-4 and IL-13 (182) and
uric acid is implicated in the release of IL-33 and TSLP by airway
epithelial cells and the production of IL-13 after respiratory
syncytial virus infection (183).

Finally, a TH2 environment can in turn affect epithelial cell
biology. Indeed, continuous exposure of bronchial cells to IL-13
results in an increase in MUC5AC production and induces
collagen deposition by fibroblasts in a co-culture model (184).
Additionally, IL-13 alters the integrity of the bronchial epithelial
barrier by downregulating TJ (185). In the distal lung, AEC2
serve a progenitor function in the alveolar epithelium and are
capable of renewing AEC1. Exposure of these cells to IL-13
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results in impaired AEC1 differentiation and development of a
bronchiolar transcriptomic phenotype (186) aside from
increased in vitro apoptosis (187), potentially affecting the
development of lung fibrosis.

This suggests that the lung epithelium is capable of actively
and passively altering its immune environment towards a type-2
polarization and thus exert a pro-fibrotic influence through an
additional mechanism. Despite the fact that overwhelming
evidence exists regarding the role of type 2 immunity in lung
fibrosis, these findings should be contrasted with the
disappointing results of therapeutic trials of IL-13 and dual IL-
4/IL-13 inhibition in IPF, which both failed to meet their
therapeutic endpoints (188, 189). Arguably, these results could
be explained by the fact that IL-4/IL-13 are mediators of an
upstream fibrotic process of which type 2 inflammation is only
one of the (redundant) aspects, resulting in the observed lack of
efficacy. This is illustrated by the fact that pirfenidone, one of the
two currently validated treatments of IPF with broad anti-fibrotic
effects, decreases IL-4 and IL-13 concentrations in the BAL of
ovalbumin challenged mice (190).

Epithelial Cells Are Implicated in Alveolar
Homeostasis and Pathologic Monocyte/
Macrophage Recruitment
Alveolar macrophages (AM) are a self-renewing population of the
distal lung, maintaining lung homeostasis through their role in
surfactant recycling, repair following injury and tightly controlled
inflammatory processes (191). To exert their many functions,
macrophages can notably polarize into different subsets, namely
classically activated macrophages (M1) and alternatively activated
macrophages (M2). Although historically, they have been divided
into two subtypes, macrophage polarization should be approached
as a reversible continuum rather than a definitive dichotomic
classification. Briefly, M1 macrophages are induced by LPS, IFN-g
and TNF-a, produce pro-inflammatory cytokines such as IL-1b,
TNF-a, IL-12, IL-23 and promote a TH1 response, displaying
enhanced pathogenicidal properties. M2 macrophages are
promoted by TGF-b, IL-4, IL-13 and secrete pro-fibrotic chemo-
or cytokines like TGF-b, PDGF, or CCL18, promoting tissue repair
and immunomodulation (192, 193). Damaged AEC can release a
range of signals promoting the recruitment and activation of
macrophages to the site of injury, fueling a pro-inflammatory
environment. In a normal response, this phase would be
subsequently followed by a self-limited anti-inflammatory repair
stage, characterized by M2 polarization and the production of TGF-
b1 or PDGF (194). Pathologic perpetuation of these processes leads
to an aberrant wound response with excessive collagen deposition
and ultimately organ function impairment. AEC2 dysfunction is
one of the hallmark features of IPF and in vivo experimental data
has shown that AEC2 injury is sufficient to trigger lung fibrosis
(195). Furthermore, this triggers the influx of monocyte-derived
macrophages (Mo-MA) possessing a pro-fibrotic phenotype via an
interaction with CCR2, the MCP-1 receptor (196). Accordingly, in
vivo models have subsequently demonstrated the importance of
alveolar epithelial cells MCP-1/CCL2 secretion in lung fibrosis (197,
198). MCP-1/CCL2 is a chemotactic factor for myeloid cells such as
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monocytes, macrophages and fibrocytes (198, 199), which can also
influence fibrocyte as well as fibroblast migration, proliferation, and
differentiation in vitro (200–202). The exact link between epithelial
injury and CCL2 secretion are not fully determined, but stimulation
with TGF-b1 or tunicamycin (mimicking ER-stress), 2 components
implicated in AEC2 dysfunction in IPF, directly upregulate CCL2
secretion by isolated AEC2 (197). Mo-MAs can replace the native
AM after depletion of this compartment, for example after
bleomycin administration (203), and are one of the drivers of
experimental lung fibrosis (203). In line with their monocytic
origin, they express high levels of Ccr2 mRNA (204), suggesting
that CCL2 (partly) mediates the recruitment of these cells. Evidence
reinforcing this interaction comes from a model in which AEC-
specific deletion of CCL12 (the murine equivalent of CCL2) was
able to ablate the recruitment of these cells after bleomycin
challenge (197). It is unclear if this mechanism similarly mediates
the recruitment of a recently discovered macrophage subpopulation
in IPF (205). Of note, monocytic myeloid-derived suppressor cells
(M-MDSC), a population of immunosuppressive, pro-fibrotic cells
also express CCR2 (206) and emerging evidence points towards
their implication in IPF (207). Furthermore, IPF patients display
increased concentrations of CCL2 in their BAL (208) and
immunostainings have shown a partly epithelial origin for this
chemokine (209). Based on overwhelming evidence implicating
CCL2/CCR2 in (experimental) pulmonary fibrosis, a trial with
carlumab, an anti-CCL2 antibody was conducted in IPF.
Unfortunately, no effect of this treatment could be observed, and
the study was halted prematurely (210). Of note, free CCL2 levels
rose in the treatment, but not the placebo group (210), suggesting
the activation of compensatory mechanisms.
CONCLUDING REMARKS

Alveolar epithelial dysfunction due to repetitive injury in
susceptible/ageing lungs forms the current paradigm of IPF
pathogenesis. Experimental evidence supports the involvement of
the immune system in (pathologic) repair attempts and collagen
deposition. The pulmonary epithelium, laying at the forefront of
mucosal immunity plays a crucial role in lung homeostasis,
inflammation, and subsequent repair mechanisms. It is thus
capable of sensing and reacting to danger stimuli to ultimately
regulate lung responses at the level of both structural and immune
(myeloid) cells (Figure 2 and Table 1). Aberrant alveolar epithelial
biology represents a hallmark of IPF, also potentially impacting
immune mechanisms. Determining the exact contribution of these
mechanisms remains a challenge, as they are at the cross-point of
multiple regulatory networks also involving myeloid and
mesenchymal cells. For example, whether differential expression
of co-stimulatory molecules such as B7 complex (including PD-L1)
may interfere with the crosstalk between epithelium and immune
cells remains elusive. Importantly, trials evaluating
immunosuppressive medications have yielded disappointing
results until now, questioning our understanding of the
mechanisms at stake. Nonetheless, in-depth understanding of the
epithelial contribution to the immune-fibrotic paradigm should
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FIGURE 2 | The IPF lung epithelium displays increased concentrations of secreted and membrane-bound mucins, as well as altered junctional complexes,
potentially influencing local barrier mechanisms and fibrosis through impaired mucociliary clearance (MCC), promotion of epithelial to mesenchymal transition (EMT)
and increased epithelial permeability. Lung epithelial cells are also confronted to an increased bacterial burden and pathogen-associated molecular patterns (PAMPs).
Furthermore, epithelial damage will result in the production of damage-associated molecular patterns (DAMPs), triggering pro-inflammatory pathways and TH2
polarizing cytokines. These cytokines exert a pro-fibrotic influence by directly affecting mesenchymal cells and polarizing macrophages towards an alternatively
activated phenotype (M2). Finally, epithelial dysfunction will result in the release of CCL2, a chemokine directly affecting fibroblasts as well as fibrocyte recruitment
and differentiation while mediating the recruitment of monocytes to the site of injury. The latter will differentiate into monocyte-derived macrophages (Mo-MA), which
have been implicated in lung fibrosis. AEC1, alveolar type-1 epithelial cell; AEC2, alveolar type-2 epithelial cell; Mo-MA, monocyte-derived macrophage; MCC,
mucociliary clearance; ILC2, type 2 innate lymphoid cell; TH2, type 2 helper T-cell.
TABLE 1 | Summary of the epithelial-immune interactions in IPF.

Observations in IPF Putative mechanisms (experimental data)

Physical barrier properties
- Mucus production ↑MUC5B (35, 36) ↑MUC1 (43) ↑MUC4 (44) MUC5B: ↓MCC (38)

MUC1/4: TGF-b1 signaling, fibroblast differentiation, EMT (43, 44)
- Intercellular junctions ↑claudin-1, -2, -3, -7 (57–59)

↓claudin-18 (57)
↓E-cadherin (73)

↑epithelial dysfunction (69, 70)
↑polarized receptor-ligand interactions (71)
↑epithelial denudation (79)

Environmental sensing
- PRR

- DAMPs
- Bacterial PAMPs

↑TLR2 ↑TLR4 ↑TLR9 (123, 211)

↑HMGB1 ↑eATP ↑uric acid ↑HA (90–93, 212)
↑Bacterial load ↓diversity (41)

TLR2-/-: ↓fibrosis, ↓TH2 environment, altered immune cell recruitment, ↓IL-17 production (125, 126)
TLR4-/-: ↓↑fibrosis, ↑TH2 environment, ↓autophagy ↓AEC2 proliferation (110, 127, 128)
TLR9: ↑EMT ↑myofibroblast differentiation (114, 115)
↑EMT ↑IL-1b ↑CCL2 ↑fibroblast proliferation and differentiation (90, 95, 97–99, 108)
LPS: ↑fibroblast proliferation (111) ↑IL-1b ↑CCL2 (112)

Modulation of the immune environment
- TH2 environment
promotion

↑CCL17 ↑CCL22 ↑IL25 ↑TSLP ↑IL-33 (158,
166, 173)

↑Recruitment of TH2 and ILC2, ↑fibroblast proliferation, differentiation and collagen synthesis,
↑EMT (167, 176, 180)

- Recruitment of
myeloid cells

↑CCL2 (208) ↑Recruitment of Mo-AM (197)
Frontiers in Immunology | w
ww.frontiersin.org
MCC, mucociliary clearance; EMT, epithelial-mesenchymal transition; eATP, extracellular ATP; HA, hyaluronan; LPS, lipopolysaccharide; TSLP, Thymic Stromal Lymphopoietin; Mo-AM,
monocyte-derived alveolar macrophages.
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help to appreciate the reasons underlying these clinical failures and
design more targeted and effective therapies.
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