
Gastroprotective mechanism of
modified lvdou gancao
decoction on ethanol-induced
gastric lesions in mice:
Involvement of Nrf-2/HO-1/
NF-κB signaling pathway

Lei Xie1, Minyi Luo1, Junlin Li1, Wenguan Huang1,
Guangjun Tian2, Xiuyun Chen1, Ying Ai3, Yan Zhang4,
Haolan He5 and Jinyang He1*
1Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou,
Guangdong, China, 2Liver Diseases Center, Guangdong Provincial Hospital of Chinese Medicine,
Zhuhai, Guangdong, China, 3Artemisinin Research Center, GuangzhouUniversity of ChineseMedicine,
Guangzhou, Guangdong, China, 4First Clinical Medical College, Guangzhou University of Chinese
Medicine, Guangzhou, Guangdong, China, 5Guangzhou Eighth People’s Hospital, Guangzhou,
Guangdong, China

Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine

formula, has been put into clinical use to treat the diseases of the digestive

system for a long run, showing great faculty in gastric protection and anti-

inflammatory, whereas its protective mechanisms have not been determined.

The current study puts the focus on the protective effect and its possible

mechanisms of MLG on ethanol-induced gastric lesions in mice. In addition to

various gastric lesion parameters and histopathology analysis, the activities of a

list of relevant indicators in gastricmucosa were explored including ALDH, ADH,

MDA, T-SOD, GSH-Px, and MPO, and the mechanisms were clarified using RT-

qPCR, ELISA Western Blot and immunofluorescence staining. The results

showed that MLG treatment induced significant increment of ADH, ALDH,

T-SOD, GSH-Px, NO, PGE2 and SS activities in gastric tissues, while MPO,

MDA, TNF-α and IL-1β levels were on the decline, both in a dose-dependent

manner. In contrast to the model group, the mRNA expression of Nrf-2 and

HO-1 in the MLG treated groups showed an upward trend while the NF-κB,
TNFα, IL-1β and COX2 in the MLG treated groups had a downward trend

simultaneously. Furthermore, the protein levels of p65, p-p65, IκBα, p-IκBα,
iNOS, COX2 and p38 were inhibited, while Nrf2, HO-1, SOD1, SOD2 and eNOS
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were ramped up in MLG treatment groups. Immunofluorescence intensities of

Nrf2 and HO-1 in the MLG treated groups were considerably enhanced, with

p65 and IκBα diminished simultaneously, exhibiting similar trends to that of

qPCR andwestern blot. To sum up, MLG could significantly ameliorate ethanol-

induced gastric mucosal lesions in mice, which might be put down to the

activation of alcohol metabolizing enzymes, attenuation of the oxidative

damage and inflammatory response to maintain the gastric mucosa. The

gastroprotective effect of MLG might be achieved through the diminution of

damage factors and the enhancement of defensive factors involving NF-κB/
Nrf2/HO-1 signaling pathway. We further confirmed that MLG has strong

potential in preventing and treating ethanol-induced gastric lesions.

KEYWORDS

ethanol-induced gastric lesions, lvdou gancao decoction, ROS, vasodilation,
inflammatory response, oxidative stress

Graphical Abstract

Introduction

Excessive alcohol consumption can pose serious challenges to

a cascade of vital organs, including the liver, brain, heart, and

gastrointestinal tract (Hyun et al., 2021). Similar to chronic

abuse, acute alcohol consumption is toxic to many organs, the

stomach being particularly vulnerable in this process,

predisposing to gastrointestinal disorders, including acute

gastric mucosal lesion (AGML), gastritis, gastric ulcers, and

gastric bleeding (Gonçalves et al., 2017). The role of

gastroprotective effect in protecting the body against alcohol-

related toxicity, oxidative stress as well as inflammation response

cannot be overlooked.

Ethanol could result in severe gastric mucosal damage

through direct toxic action or free radicals to activate

oxidative stress, leading to acute hemorrhagic lesions, edema

of the mucus membrane, epithelial exfoliation and the release of

inflammatory cells (Wang et al., 2015; Li J et al., 2017). This acute

gastric mucosal damage may be attributed to the low activity of

defensive factors such as nitric oxide (NO), prostaglandins (PG),
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mucosal microcirculation, antioxidants and certain cytokines, or

is due to the overproduction of reactive oxygen species (ROS),

lipid peroxidation and infiltration of neutrophils (Escobedo-

Hinojosa et al., 2018; Magierowska et al., 2018; Zaghlool et al.,

2019). NO, working as a mixed blessing in the alimentary system,

is synthesized with the participation of nitric oxide synthase

(NOS) (Mohamed et al., 2022). It is widely recognized that, in the

digestive system, NO generated by constitutive NOS (cNOS) is

related to cytoprotective effect, whereas inducible NOS (iNOS)-

produced NO, by contrast, is cytotoxic (Motawi et al., 2007).

Excessive alcohol consumption may intensify gastric mucosal

damage via down-modulating the levels of defensive factors,

represented by NO and prostaglandin E2 (PGE2), which

contribute to the improvement of gastric mucosal blood flow

and mucosal microcirculation under normal conditions (Xie

et al., 2019).

Several studies reported that oxidative stress and

inflammatory responses play a significant role in the

development and progression of alcohol-induced gastric

mucosal damage(Arda-Pirincci et al., 2006; Pan et al., 2008;

Wu et al., 2018). As two interplaying systems regulating the

equilibrium of cellular redox status, Nrf-2/HO-1 signaling axis

and NF-κB could modulate both oxidative stress and

inflammatory response indeed (Casili et al., 2020; Kim et al.,

2021). They express at relatively low levels normally while are

upregulated under stress conditions. It is well-founded that Nrf2/

HO-1 signaling are protecting factors against oxidative stress and

inflammatory responses in gastric mucosal damage, while NF-κB
plays an opposite role (Dimauro et al., 2021). Furthermore,

Nrf2 activation and its anti-inflammatory effect are closely

related to the transcription of antioxidant factor through NF-

κB. Deficiency of Nrf2 could increase the activity of NF-κB,
leading to increased cytokine production associated with

increased oxidative stress (Sandberg et al., 2014). The

production and removal of ROS equilibrates dynamically in

the gastric mucosa under the physiology condition (Lebda

et al., 2018). Induced by a series of factors such as ethanol

exposure, inflammatory stimuli lead to the excessive

production of ROS along with the decline of antioxidative

enzymes, which disrupts the equilibrium of oxidation and

anti-oxidation systems, thereby supervening the gastric lesions

(Jeon et al., 2014). Considering the molecular crosstalk of NF-κB/
Nrf-2/HO-1 is indispensable for the ROS-mediated

inflammatory cascades and the regulation of ethanol-induced

gastric lesions, it is fair enough to believe that mitigating the NF-

κB activation or supporting Nrf2 activation may be effective

strategies for treatment of ethanol-induced gastric lesions. It is

well established that ethanol and metabolite acetaldehyde would

attack the gastric mucosa, inducing microcirculatory disturbance

and hypoxia, along with consequent propagation of the

inflammatory cascade (De Araújo et al., 2018; Yu Y et al.,

2020). ADH and ALDH, as crucial alcohol metabolism

enzymes, could oxidize acetaldehyde to harmless acetic acid to

accelerate alcohol metabolism and ameliorate the ethanol-

induced gastric lesions. Some natural plant extracts have been

shown to activate ADH and ALDH in previous studies (Martin

and Maricle, 2015; Jang et al., 2018).

Current common-used treatments for ethanol-induced

gastric lesions treatment largely include potentiating the

protective mechanism of gastric mucosa and improving the

gastric mucosal microcirculation to repair of gastric mucosa

(Association, 2015). H2 receptor antagonists, such as

cimetidine, roxatidine, ranitidine, and famotidine, continue to

be the first-line therapy for peptic ulcer disease, which has been

proven effective for AGML through suppressing gastric acid

secretion. However, in ethanol-induced AGML, some

H2 receptor antagonists could block gastric first-pass ethanol

metabolism, resulting in slightly higher blood alcohol levels than

normal after consuming alcohol (Weathermon and Crabb, 1999;

Breslow et al., 2015). Colloid Bismuth Pectin (CBP) could protect

the gastric mucosa by reacting with the complexes of biOCl and

bismuth citrate to form a protective film (Li and Sun, 2012;

Adeyemi and Onwudiwe, 2020). Nevertheless, the side effect of

CBP is not to be ignored that grumbles from the users about

constipation and other adverse reactions have gained

prominence. Therefore, it is of great significance to screen out

better drugs, particularly extracted from plants or herbs which

display higher efficiency and lower toxicity.

The research on natural products is all the rage for their great

efficacy and low toxicity, and the natural compounds they

contain have been regarded as superior compatibility with the

human body (Ashktorab et al., 2019). The first appearance of

Lvdou Gancao decoction (LGD), a famous traditional Chinese

medicine prescription, was found in Wen Cheng’s Jijiu Bianfang

in the Qing Dynasty. LGD exerts a good detoxification effect in

traditional use and has a reliable therapeutic effect against acute

organophosphorus pesticide poisoning (AOPP) (Cailin, 1999;

Wang, 2002), drug poisoning (Zhou, 2009; Wenxue, 2018),

mushroom poisonings (Zhang, 2000) and digestive system

diseases such as toxic hepatitis (Li and Tang, 1997; Wenquan,

2007; Weifeng and Jia, 2022) and acute pancreatitis (Wei et al.,

2013). Based on this classic LGD, the modified Lvdou Gancao

decoction (MLG) is made of several components and could be

effective in gastropathy (Minqing and Mingwei, 2002; Dan et al.,

2018; Yuewen and Qiang, 2018), liver complaints (Wang, 2017;

Xie et al., 2022) and alcohol-induced conditions (Sun, 2015;

Takei et al., 2015; Zhang and Zhang, 2017). Many of the herbs

applied by MLG have been put into clinical use to treat the

diseases of the digestive system for a long run and have shown

their faculty in gastric protection and anti-inflammatory (Wang

et al., 2012; Lv et al., 2018; Cao et al., 2020; Meng et al., 2020).

Although their therapeutic mechanisms have not yet been

known, their therapeutic efficacy has been speculated to be

largely related to their antioxidant effect, for example,

Dangshen(Wang et al., 1997; Li L et al., 2017), Shanyao (Qiao

et al., 2018), Dingxiang (Agboola et al., 2022), Banxia (Yu L et al.,
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2020; Fu et al., 2021), Tianma(Dong et al., 2021), and Shengjiang

(Haniadka et al., 2013). Previous studies indicated these herbs

can effectively remove free radicals and inhibit the occurrence of

lipid peroxidation, so as to protecting gastrointestinal mucosa.

Our previous study has confirmed that MLG can efficaciously

ameliorate alcohol-induced hepatotoxicity, accelerate the

metabolism of alcohol and weaken inflammatory and

oxidative stress responses in mice liver (Xie et al., 2022). The

current study shifted its focus towards demonstrating the

gastroprotective effect and mechanisms of MLG to further

explore the value of clinical applications of MLG.

Materials and methods

Preparation and composition of MLG

Modified Lvdou Gancao decoction (MLG) is similar to the

one in our previous studies (Xie et al., 2022), all herbs come from

the same preparation and share the same batch number

respectively. MLG consists of a mixture of 14 well-defined

herbs, namely, Lvdou (Vigna radiata (L.) R.Wilczek

[Fabaceae]); Gancao (Glycyrrhiza glabra L. [Fabaceae]);

Baishao (Paeonia lactiflora Pall. [Paeoniaceae]); Huang Jiezi

(Brassica juncea (L.) Czern. [Brassicaceae]); Chuanxiong

(Conioselinum anthriscoides ’Chuanxiong’ [Apiaceae]);

Gansong (Nardostachys jatamansi (D.Don) DC.

[Caprifoliaceae]); Dangshen (Codonopsis pilosula (Franch.)

Nannf. [Campanulaceae]); Lianfang (Nelumbo nucifera

Gaertn. [Nelumbonaceae]); Shanyao (Dioscorea oppositifolia

L. [Dioscoreaceae]); Dingxiang (Syzygium aromaticum (L.)

Merr. & L.M.Perry [Myrtaceae]); Jiangbanxia (Pinellia ternata

(Thunb.) Makino [Araceae]); Tianma (Gastrodia elata Blume

[Orchidaceae]); Shengjiang (Zingiber officinale Roscoe

[Zingiberaceae]) and Dazao (Ziziphus jujuba Mill.

[Rhamnaceae]). Detailed ingredients are listed in Appendix A.

These Chinese Herbal Medicine Slices were purchased from

Kangmei Traditional Chinese Medicine Pieces Co., Ltd.

(Guangdong, China) and identified by Professor Ping Ding

(School of Pharmaceutical Sciences, Guangzhou University of

Chinese Medicine, Guangdong, China). We deposited a voucher

specimen (NO. 20201127002) in the public herbaria of

Guangzhou University of Chinese Medicine. Herbal decoction

of MLG was made according to conventional TCM decocting

methods, and concentrating filtrates was extracted by condensing

and stored at 4 °C.

Animals

Kunming mice of specific-pathogen-free (SPF) grade

(6–8 weeks old, weighing 20–25 g, male and female in equal

number) were supplied and housed by the Experimental Animal

Center of Guangzhou University of Chinese Medicine (No.SYXK

(Yue) 2018–0001; No.SCXK (Yue) 2018–0034) and kept under a

constant temperature (22–24°C), invariable humidity (50–60%)

and a fixed 12 h light/dark cycle, with free access to food and

water. Animal experiments followed the guidelines of the

humane, ethical treatment of animals set forth by the World

Health Organization and were approved by the Ethics

Committee for Animal Studies of Guangzhou University of

Chinese Medicine (NO. 20210316001).

Reagents

The 56 percent liquor used in our study was provided by

Baiyunbian Wine Industry Co. LTD. (Hubei, China); Colloidal

Bismuth Pectin (CBP) was obtained from Guangdong Bidi

Pharmaceutical Co. (Guangzhou, China); Hematoxylin eosin

(H-E) staining reagents were purchased from Guangzhou

Yiqiao Biotechnology Co., Ltd. (Guangzhou, China); kits used

for determination of ADH, ALDH, T-SOD,MDA, NO, GSH-Pxt,

MPO were purchased from Nanjing Jiancheng Biotechnology

(Nanjing, China); ELISA kits for determining TNF-α (70-EK282/
4–96) and IL-1β (70-EK201B/3–96) were purchased from

MultiSciences (Lianke) Biotech Co. (Hangzhou, China); ELISA

kits for mouse PGE2 (Prostaglandin E2) (E-EL-0034c) and

mouse SS (Somatostatin) (E-EL-M1086c) were obtained from

Elabscience biotechnology (Wuhan, China). BCA protein

concentration determination kit and protein extraction kit

were provided by Beijing Beyotime Biotechnology (Beijing,

China). Trizol RNA isolation reagent, RevertAid Reverse

Transcriptase and SYBR Green Real time PCR Master Mix

was purchased from Thermo Fisher Scientific (NY,

United States). The rabbit anti-Nrf2 antibody (AF0639), rabbit

anti-HO-1 antibody (AF5393), rabbit anti-IκBα antibody

(AF5002), rabbit anti-NF-κB p65 antibody (AF5006), rabbit

anti-p-IκBα antibody (AF 2002), rabbit anti-p-p65 antibody

(AF 2006), rabbit anti-SOD1 Antibody (AF5198), rabbit anti-

SOD2/MnSOD Antibody (AF5144), rabbit anti-iNOS Antibody

(AF0199), rabbit anti-nNOS Antibody (AF6249), rabbit anti-

eNOS Antibody (AF0096), rabbit anti-Cox2 Antibody (AF7003),

rabbit anti-p38 MAPK Antibody (AF6456) and rabbit anti-

GAPDH antibody (AF7021) was obtained from Affinity

Biosciences (OH, United States).

Mice groupings and drug administration

Six mice per group were distributed among the 36 Kunming

mice: model group, MLG-H (high-dose MLG-treated group,

20 g/kg body weight), MLG-M (medium-dose MLG-treated

group, 10 g/kg body weight), MLG-L (low-dose MLG-treated

group, 5 g/kg body weight), CBP (Colloidal Bismuth Pectin

treatment group, 57 mg/kg body weight) and control
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group. Pretreatment of the mice withMLG and CBP was given by

oral gavage after 24 h of fasting, while the other groups received

the same dose of physiological saline in the same way. Two hours

later, model group, MLG-L group, MLG-M group and MLG-H

group were treated with alcohol (13.25 ml/kg body weight) by

intragastric administration, the control group received the same

volume of physiological saline. After 30 minutes, each group

were administrated orally with corresponding drugs (MLG, CBP,

or physiological saline) once again as described previously.

Evaluation of the gastric ulcer index

Using isoflurane anesthesia, all mice were euthanized 5 hours

after being given alcohol. Gastric tissues were collected and

washed clean by 0.9% pre-cooling normal saline after gastric

acidity (pH) was measured. Weight was measured for an empty

stomach, and a stomach index was calculated. Also, the surface

damage of gastric mucosa was observed, including bleeding,

erosion and ulcer; the gastric ulcer index (GUI) was calculated

macroscopically according to the Guth standard (Guth et al.,

1979; El-Maraghy et al., 2015; Raish et al., 2018): we recorded one

point for spot erosion; two points for erosion lengths up to 1mm;

three points for erosion lengths between 1 and 2 mm, four points

for those from 2 to 3 mm; five points for those more than 3 mm.

If the erosion width is greater than 1 mm, the scores are doubled.

Method for calculating ulcer inhibition rate: ulcer inhibition rate

(%) = (GUI in control group - GUI in administration group)/

GUI in control group × 100%.

Gastric tissues histopathology assay

Fresh gastric tissues were fixed for 12–24 h at room

temperature in 4% paraformaldehyde. Tissues were routinely

dehydrated, transparent, and paraffin embedded before being

sliced into sections of 4 or 5 μm thickness for haematoxylin and

eosin staining. Hetopathologists reviewed slides under a 200X

microscope under the supervision of an expert.

Gastric tissues biochemical assays

A homogenate of 10% gastric tissues homogenates was

obtained by homogenizing gastric tissues (100 mg) in 0.9%

physiological saline, and the proteins in 10% homogenate

were measured using the BCA protein assay kit (Beyotime

Biotechnology, Beijing, China). The activity of T-SOD, GSH-

Px, MDA, NO, MPO, ADH and ALDH were colorimetrically

detected in gastric tissues homogenates using commercial kits

(Nanjing Jiancheng Biotechnology, Nanjing, China) according to

manufacturer directions.

Enzyme-linked immunosorbent assay

TNF-α, IL-1β, PGE2 and SS levels in gastric tissues were

detected using mouse ELISA kits. A 96-well plate was washed

three times using PBST and subsequently incubated for 2 hours

at room temperature with either 100 μl diluted serum or a

standard. Add 100 μl of diluted detection antibody to each

well and incubate for 1 h after washing the wells three times.

The levels of TNF-α, IL-1β, PGE2 and SS levels in gastric tissues

were read at 450 nm and the antibody concentrations were

calculated based on a standard curve.

Quantitative real-time polymerase chain
reaction

Gastric tissues were homogenized in 1 ml of TRIzol and flash

frozen in dry ice and stored at -80 °C until the total RNA of all

samples were isolated according to the manufacturer’s protocol.

Total RNA samples were reverse transcribed into complementary

DNA (cDNA) with oligo dT18 primer using RevertAid Reverse

Transcriptase and then were amplified using SYBR Real time

PCR Master Mix (TAKARA, Shiga, Japan) in a Bio-rad

fluorescence quantitative PCR instrument (Bio-rad,

United States). The mRNA expression of Nrf-2, NF-κB, HO-

1, TNFα, IL-1β, and COX2 were measured using reverse

TABLE 1 Primer sequence of qRT-PCR.

Gene Forward Reverse

Nrf-2 5′-AGACATTCCCATTTGTAGATGACC-3′ 5′-CTCCAGAGAGCTATTGAGGGACT-3′
NF-κB 5′-CTGGAAGTCACATCTGGTTTGAT-3′ 5′-CAACCCTCAGCAAATCCTCTAC-3′
HO-1 5′-ACCGCCTTCCTGCTCAACATTG-3′ 5′-CTCTGACGAAGTGACGCCATCTG-3′
TNFα 5′-TGTCTCAGCCTCTTCTCATTCC-3′ 5′-GGTCTGGGCCATAGAACTGAT-3′
IL-1β 5′-TCCACCTCAATGGACAGAATATC-3′ 5′-CCGTCTTTCATTACACAGGACA-3′
COX2 5′-CGGTGGATGTGAGTCTAGCTAC-3′ 5′-CGGTGGATGTGAGTCTAGCTAC-3′
GAPDH 5′-GACAACTCACTCAAGATTGTCAGC-3′ 5′-AGTCTTCTGGGTGGCAGTGAT-3′

Nrf-2, nuclear factor-erythroid 2-related factor 2; NF-κB, nuclear factor-kappa B; HO-1, heme oxygenase-1; TNFα, tumor necrosis factorα; IL-1β, interleukin-1β; COX2, cyclooxygenase
two; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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FIGURE 1
Gross evaluation inmice gastric tissue (A); effects of MLG on gastric acidity (B), stomach index (C) and gastric ulcer index (D); H&E-stained in the
gastric tissues of mice (E), white arrows highlight inflammatory cell infiltration, black arrows highlight epithelial cell loss, and highlighted circles
indicate hemorrhage. Control: negative control group; Model: the group induced by intragastric administration of ethanol (13.25 ml/kg BW); MLG-L:
the group treated with low dose MLG (5 g/kg BW); MLG-M: the group treated with medium dose MLG (10 g/kg BW); MLG-H: the group treated
with high dose MLG (20 g/kg BW); CBP: the group treated with CBP (57 mg/kg BW). Data was expressed as mean ± standard deviation (SD), n = 6 for
each group. By one-way analysis of variance (ANOVA) test, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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transcription quantitative real-time polymerase chain reaction

(qRT-PCR) with GAPDH as internal reference gene. The

reaction conditions were set as follows: one cycle at 50°C for

2 min and 95°C for 1 min; 40 cycles at 95°C for 15 s, 60°C for 15 s

and 72°C for 30 s; with a dissolution curve being produced in the

last cycle: 95°C, 15 s; 60°C, 1 min; 95°C, 15 s. RT-qPCR data were

analyzed using relative quantification by standard curve method

based on mRNA copy number ratio (R) of target gene versus

reference genes GAPDH. The primers were designed with ABI

Primer Express 3.0 software and synthesized by Suzhou Jinweizhi

Biotechnology (Suzhou, China) and the sequences are shown in

Table 1.

Western blot

Following the homogenization of the tissue samples, a BCA

protein assay kit was used to determine the protein

concentration. Protein was isolated from gastric mucosa

isolated from mice stomach using a protein extraction kit

(Beyotime Biotechnology, Beijing, China). Equal amounts of

protein (30 mug) were separated by 10% SDS-polyacrylamide

gel electrophoresis and were transferred onto a polyvinylidene

fluoride (PVDF) membrane. Membranes were blocked in TBST

(Tris-buffered saline, pH 7.6, 0.1% Tween 20) supplemented with

5% (w/v) BSA at room temperature (RT) for 1 h before

incubation with rabbit anti-Nrf2 antibody (AF0639; 1:2000;

Affinity, OH, United States), rabbit anti-HO-1 antibody

(AF5393; 1:2000; Affinity), rabbit anti-IκBα antibody (AF5002;

1:2000; Affinity), rabbit anti-NF-κB p65 antibody (AF5006; 1:

2000; Affinity), rabbit anti-p-IκBα antibody (AF 2002; 1:2000;

Affinity), rabbit anti-p-p65 antibody (AF 2006; 1:2000; Affinity),

rabbit anti-SOD1 Antibody (AF5198; 1:2000; Affinity), rabbit

anti-SOD2/MnSOD Antibody (AF5144; 1:2000; Affinity), rabbit

anti-iNOS Antibody (AF0199; 1:2000; Affinity), rabbit anti-

nNOS Antibody (AF6249; 1:2000; Affinity), rabbit anti-eNOS

Antibody (AF0096; 1:2000; Affinity), rabbit anti-Cox2 Antibody

(AF7003; 1:2000; Affinity), rabbit anti-p38 MAPK Antibody

(AF6456; 1:2000; Affinity) and rabbit anti-GAPDH antibody

(AF7021; 1:2000; Affinity) overnight at 4°C, followed by

incubation with a secondary antibody Goat Anti-Rabbit IgG

(H + L) HRP (S0001; 1:10,000; Affinity) at RT for 1 h. The ECL

enhanced chemiluminescence Plus Western blotting detection

system was used for detecting immunoblots.

Immunofluorescence analysis

Immunofluorescence staining was performed on gastric

tissue sections for the detection of Nrf2 (rabbit anti-Nrf2,

AF0639), HO-1 (rabbit anti-HO-1, AF5393), IκBα (rabbit

anti-IκBα, AF5002), NF-κB (rabbit anti-NF-κB p65,

AF5006) proteins according to standard protocols. Fresh

gastric tissues were fixed in 4% paraformaldehyde for 24 h

at 4°C, dehydrated in 15 and 30% sucrose solutions

sequentially overnight at 4 °C. Frozen sections preserved in

OCT were cut into 10 mum sections using frozen section

machine (Leica, Weztlar, Germany). Slides were rehydrated in

PBS for 10 min, blocked in 5% BSA/PBS/0.1% Triton-X

100 for 1 h, and then with primary antibodies overnight at

4°C. Slides were washed three times with PBS for 10 min each

and incubated with Goat Anti-Rabbit IgG (H + L) FITC-

conjugated (Affinity, S0008) for 1 h at room temperature and

then mounted with DAPI counterstain (Vector Laboratories,

Burlingame, CA, United States).

Statistical analysis

Three independent experiments were conducted, and data

from one representative experiment was shown. The data were

presented as the mean ± standard deviation (SD) and were

analyzed using one-way analysis of variance (ANOVA).

Statistically significant difference was assumed to be p < 0.05,

while p < 0.01 indicated a statistically significant difference of

greater magnitude.

Result

Effects of MLG on gross evaluation in
gastric mucosa

As shown in Figure 1A, the gastric mucosal surfaces of

mice in the normal group were pink, smooth and glossy, while

the gastric mucosae of mice in model group were observed

with extensive bleeding, edema, accompanied by local ulcer

and erosion. Compared with model group, mice treated with

MLG and CBP showed varied degrees of gastric tissue injury,

most obvious in MLG-L group, but mild in the other three.

The gastric mucosa of mice treated with high-dose MLG and

CBP were light pink, with basically smooth surface and no

bleeding and erosion, which showed obviously relieved in the

injury of gastric mucosa.

Effects of MLG on gastric acidity, stomach
index and gastric ulcer index

According to Figures 1B–D, there was no significant

difference between the groups when it came to gastric acidity

(pH) values (p > 0.05). From the comparison with the control

group, strikingly higher stomach indexes and ulcer gastric

indexes are associated with acute alcohol exposure, however,

the indexes in the groups treated with MLG and CBP were

significantly lower than those of the model group (p < 0.05),
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especially in the MLG-M group (p < 0.001) and the MLG-H

group (p < 0.0001). The ulcer inhibition rate was mushroomed

markedly inMLG groups and CBP group compared to the model

group, exhibiting an obvious dose-effect relationship in MLG’s

gastroprotective effects.

Effects of MLG on mice gastric tissues
histopathology

As is shown in Figure 1E, the gastric tissue structure in

control group was normal with a continuous and integral

mucosa, and the cells were arranged neatly with clear

morphology. Gastric tissues in the Model group displayed

obvious alterations primarily caused by epithelial cell loss,

structural disorders of glandular tissues, submucosal edema,

hemorrhage, and infiltration of inflammatory cells.

Nevertheless, the pathological changes in MLG treated

groups were milder to a dose-dependent extent. Moreover,

both the MLG-M and MLG-H groups maintain

gastroprotective effects comparable to that of the CBP

group. Our results showed that MLG possessed a significant

gastric protection effect and could effectively alleviate the

pathological changes of gastric tissues in acute ethanol

exposure mice.

Effects of MLG on the metabolism of
alcohol in the gastric tissues

The activities of ADH and ALDH in gastric tissue were

slightly elevated in response to acute alcohol exposure

(Figure 2) due to the short-term and superfluous alcohol

intake, but there was no significant statistical difference

(p > 0.05). Comparatively to the model group, ADH and

ALDH levels in gastric tissue of the MLG treated groups can be

seen a remarkable upward trend, especially in MLG-M (p <
0.05) and MLG-H (p < 0.01) groups with no significant

changes showed in CBP group (p > 0.05). Our results

demonstrated MLG was extraordinarily effective on

accelerating the metabolism of alcohol.

Effects of MLG on T-SOD, MDA, GSH-Px,
NO and MPO levels in gastric tissues

As can be seen in Figure 3, acute alcohol administered in

mice significantly down-regulated T-SOD, GSH-Px, and NO

levels (p < 0.0001) but up-regulated MDA and MPO level (p <
0.0001). Whereas the mice treated with MLG and CBP,

especially in CBP (p < 0.01 or p < 0.0001), MLG-M (p <
0.05) and MLG-H (p < 0.01 or p < 0.0001) groups, had a

reversed trend in comparison to the Model group. In the

MLG-H group, particularly, the effect proved to be

comparable or even more efficient than that of the CBP

group, with T-SOD, GSH-Px and NO levels shooting up to

165.03 ± 4.08, 19.51 ± 5.06 and 2.86 ± 0.34, respectively, while

MDA and MPO level dropping to 2.14 ± 0.14 and 4.43 ±

1.24 respectively. Our results revealed that MLG could abate

the oxidative damage of gastric tissues caused by acute

alcoholism via cutting the production of oxidative damage

products and improving the levels of antioxidant enzymes.

Effect of MLG on mRNA expression of
Nrf2, NF-κB, HO-1, TNF-α, IL-1β, and
COX2 in gastric tissues

As shown in Figure 4, quantitative polymerase chain

reaction analysis indicated that acute alcohol administered

FIGURE 2
ADH activity (A) and ALDH activity(B) in mice gastric tissues. Control: the group administered zero ethanol; Model: the group administered
ethanol intragastrically (13.25 ml/kg BW); MLG-L: low-dose (5 g/kg body weight) MLG-treated group; MLG-M: medium-dose (10 g/kg body weight)
MLG-treated group;MLG-H: high-dose (20 g/kg bodyweight) MLG-treated group; CBP: the group receiving Colloid Bismuth Pectin (57 mg/kg body
weight). Each group’s data was expressed as mean x standard deviation (SD), n = 6. By one-way analysis of variance (ANOVA) test, *p < 0.05,
**p < 0.01 vs. model group; #p < 0.05, ##p < 0.01, ####p < 0.0001 versus the control group.
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in mice induced significant enhance (p < 0.0001) in the mRNA

expression levels of NF-κB, TNF-α, IL-1β and COX2, with the

Nrf2 and HO-1 mRNA expression levels, especially in MLG-

M and MLG-H groups, showing a downward trend (p <
0.0001). The mRNA expression levels of NF-κB, TNF-α, IL-
1β and COX2 in the gastric tissue of the MLG-treated mice, for

the MLG-H group particularly, dropped to 0.59 ± 0.1, 0.80 ±

0.16, 0.72 ± 0.15 and 0.78 ± 0.13, respectively, were lower than

those in the model group (p < 0.001 or p < 0.0001) and

comparable to or even lower than that of the positive

group. Meanwhile, the mRNA expression levels of Nrf2 and

HO-1 mRNA in MLG-H group raise to 0.92 ± 0.16 and 0.88 ±

0.11, were higher than those in the model group (p < 0.01 or

p < 0.0001).

Effects of MLG on TNF-α, IL-1β, PGE2 and
SS levels in gastric tissues

As determined by ELISA assays, acute alcohol exposure

significantly increased TNF-α and IL-1β protein levels (p <
0.0001) and reduced the protein levels of PGE2 and SS (p <
0.0001) synchronously (Figure 5). The levels of TNF-α and IL-1β
were dwindled in MLG treated groups (p < 0.0001), but the levels

of PGE2 and SS were remarkably increased (p < 0.01 or p <
0.0001) comparatively to the model group, which indicated that

MLG could effectively relieve the expression of TNF-α and IL-1β
to inhibit the inflammatory response of gastric tissues caused by

acute ethanol exposure, protect gastric mucosa and increase

blood supply of gastric tissues. Evidently, acute alcohol

FIGURE 3
MDA (A), T-SOD (B), GSH-Px (C)NO (D) andMPO(E) levels inmice gastric tissues. Control: negative control group; Model: the group induced by
intragastric administration of ethanol (13.25 ml/kg BW); MLG-L: the group treated with low dose MLG (5 g/kg BW); MLG-M: the group treated with
mediumdoseMLG (10 g/kg BW); MLG-H: the group treatedwith high doseMLG (20 g/kg BW); CBP: the group treatedwith CBP (57 mg/kg BW). Each
group’s data was expressed asmean ± standard deviation (SD), n = 6. By one-way analysis of variance (ANOVA) test, *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001 versus the model group, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 versus the control group.
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exposure can stimulate the secretion of inflammatory mediators,

such as TNF-α and IL-1β, and inhibit the flow of the gastric

mucosal microcirculation. In contrast, when MLG was

administered, this trend was reversed.

Effect of MLG on Nrf-2/HO-1/NF-κB
signaling pathway in gastric tissues

As illustrated in Figure 6 and Figure 7, the levels of Nrf-2,

HO-1, SOD1 (Cu/Zn-SOD), SOD2 (SOD2/Mn SOD) and eNOS

proteins were reduced after alcohol exposure (p < 0.0001) in the

mice gastric tissues, whereas the levels of p65, p-p65, p-p65/p65

(the ratio is 0.93 ± 0.09), p-IκBα, p-IκBα/IκBα (the ratio is 1.47 ±
0.14), iNOS, nNOS, COX2 and p38 were elevated (p < 0.0001). In

MLG treated groups, however, the inclination was observed to be

reversed. Our results suggested that Nrf-2, HO-1, SOD1 (Cu/Zn-

SOD), SOD2 (SOD2/Mn SOD) and eNOS expression were

significantly increased (p < 0.001, p < 0.01 or p < 0.05) in

mice gastric tissues by the treatment of MLG after alcohol

exposure, whereas p65, p-p65, p-IκBα, p-p65/p65, p-IκBα/
IκBα, iNOS, nNOS, COX2, and p38 levels decreased partially

but significantly (p < 0.0001, p < 0.001, p < 0.01 or p < 0.05). We

also found that this regulation of Nrf-2/HO-1/NF-κB signaling

pathway with the treatment of MLG was in a dose-dependent

manner. Together, the results revealed that MLG has potent anti-

oxidative and anti-inflammatory properties via the suppression

of the NF-κB phosphorylation and activation of Nrf-2/HO-

1 antioxidant pathway to attenuate the oxidative damage and

inflammatory response and improve the defensive factors in

response to ethanol-induced gastric lesions.

Effects of MLG on mice gastric tissues
immunofluorescence staining

Immunofluorescence staining was performed on gastric

tissue sections for the detection of Nrf2, HO-1, IκBα and NF-

κB proteins (as shown in Figure 8). The immunofluorescence

results showed the expression of IκBα and NF-κB was increased

while the expression of Nrf2 and HO-1 was decreased in model

group. The relative quantitative analysis of NF-κB/Nrf2/HO-

1 signaling pathway-related proteins displayed a reversal trend

after MLG treatment. The expression of Nrf2 and HO-1 were up-

FIGURE 4
Effect of MLG on mRNA levels of Nrf-2 (A), NF-κB (B), HO-1 (C), TNFα (D), IL-1β (E), COX2 (F) in mice gastric tissues. Control: negative control
group; Model: the group induced by intragastric administration of ethanol (13.25 ml/kg BW); MLG-L: the group treated with low dose MLG (5 g/kg
BW); MLG-M: the group treated with medium dose MLG (10 g/kg BW); MLG-H: the group treated with high dose MLG (20 g/kg BW); CBP: the group
treated with CBP (57 mg/kg BW). Each group’s data was expressed as mean ± standard deviation (SD), n = 6. By one-way analysis of variance
(ANOVA) test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. each group.
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regulated (p < 0.0001, p < 0.001 or p < 0.05) and simultaneously,

IκBα and NF-κB expression were down-regulated (p < 0.0001,

p < 0.001, p < 0.01 or p < 0.05), showing the results that agree

with the qPCR and western blot. Moreover, the relative

fluorescence intensity of Nrf2 and HO-1, the key components

of the cellular antioxidant defense system, in MLG-H group were

increased considerably (p < 0.001, p < 0.0001). Noticeably, the

treatment of MLG could activate Nrf2/HO-1 signaling pathway

and inhibit NF-κB signaling pathway, reversing the trend of acute

alcohol exposure.

Discussion

Ethanol-induced gastric lesion is a ubiquitous emergency

worldwide, and the request for more effective therapeutic drugs

still keeps impending. AlthoughMLG shows great competence in

treating alcohol-induced symptoms and gastric Lesions in

clinical practice, the exact mechanism remains ambiguous.

In our study, wemainly discussed that: 1) MLG could prevent

acute alcohol intoxication and promote wakefulness after acute

ethanol exposure; 2) MLG showed a significant gastric protection

effect, which is able to drastically abate the gastric ulcer index,

raise the ulcer inhibition rate and alleviate the pathological

changes of gastric tissues in mice effectively; 3) ADH and

ALDH levels in gastric tissue of the MLG treated groups

showed a upward remarkably, which revealed a significant

effect of MLG on accelerating the alcohol metabolism; 4)

MLG could reduce the oxidative damage for gastric tissues by

decreasing the production of oxidative damage products and

increasing the levels of antioxidant enzymes; 5) MLG might aid

the repair of the damaged gastric mucosa by inhibiting the release

of inflammatory mediators and accelerating microcirculation of

the gastric mucosa, NO and PGE2 possibly involved in the

process; 6) MLG could attenuate the oxidative damage and

inflammatory response and improve the defensive factors,

which might be associated with the activation of the Nrf2/

HO-1 signaling and the repression of the NF-κB signaling

pathway. In general, MLG could significantly accelerate the

metabolism of alcohol and attenuate ethanol-induced gastric

mucosal lesions in mice, which might be put down to the

activation of alcohol metabolizing enzymes, the inhibition of

oxidative damage and the maintenance of gastric mucosa

involving the regulation of Nrf-2/HO-1/NF-κB signaling

pathway. It is worth mentioning that the protection effects of

MLG for ethanol-induced gastric lesions appears to be

FIGURE 5
IL-1β (A), TNF-α (B), PGE2 (C) and SS (D) levels in mice gastric tissues. Control: negative control group; Model: the group induced by intragastric
administration of ethanol (13.25 ml/kg BW); MLG-L: the group treated with low dose MLG (5 g/kg BW); MLG-M: the group treated with medium dose
MLG (10 g/kg BW); MLG-H: the group treated with high dose MLG (20 g/kg BW); CBP: the group treated with CBP (57 mg/kg BW). Each group’s data
was expressed as mean ± standard deviation (SD), n = 6. By one-way analysis of variance (ANOVA) test, **p < 0.01, ***p < 0.001, ****p <
0.0001 versus the model group, #p < 0.05, ###p < 0.001, ####p < 0.0001 versus the control group.
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comparable to the classical gastric mucosal protection agent

Colloidal Bismuth Pectin (CBP). Moreover, MLG could

significantly accelerate the metabolism of alcohol and reduce

the toxicity of alcohol, a property not shared by CBP.

ADH and ALDH are crucial enzymes involved in alcohol

metabolism, which convert about 90% of ethanol to

acetaldehyde, and the resulting acetaldehyde is further

oxidized into harmless acetic acid. This biological process

plays a critical role in the rate of alcohol metabolism and the

detoxification of alcohol (Gizer et al., 2011; Meng et al., 2019).

We recorded the elevation of the activities of ADH and ALDH in

gastric tissues after alcohol administration in mice, which could

be considered as an adaptive response to alcohol stimulation. In

comparison, the raise of ADH and ALDH levels in gastric tissues

FIGURE 6
Effect of MLG on NF-κB/Nrf2/HO-1 signaling pathway in ethanol-induced gastric lesions mice. (A) Some representative western blot bands.
Protein levels of p-p65/p65 (B), p-IκBα/IκBα (C), p-p65/GAPDH (D), p65/GAPDH (E), p-IκBα/GAPDH (F), IκBα/GAPDH (G), Nrf2/GAPDH (H), HO-1/
GAPDH (I) in mice gastric tissues. Control: the group administered zero ethanol; Model: the group administered ethanol intragastrically (13.25 ml/kg
BW); MLG-L: low-dose (5 g/kg body weight) MLG-treated group; MLG-M: medium-dose (10 g/kg body weight) MLG-treated group; MLG-H:
high-dose (20 g/kg body weight) MLG-treated group; CBP: the group receiving Colloid Bismuth Pectin (57 mg/kg body weight). Each group’s data
was expressed as mean ± standard deviation (SD), n = 6. By one-way analysis of variance (ANOVA) test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 vs. each group. Whole page of western blot can be found in Supplementary Figures S4–S6, S9, S11–S13, respectively.
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were more significant in mice treated with MLG, and a dose-

dependent manner is showed with the increment of MLG-M and

MLG-H groups being especially arresting. The marvelous results

revealed that MLG can stimulate alcohol metabolism, which is

convincingly supported by the enhancive ADH and ALDH levels

in the gastric tissues of MLG-treated group.

Ethanol, a recognized necrotizing agent, could directly

irritate and damage the gastric mucosa, making the gastric

FIGURE 7
Effect of MLG on some protein levels in ethanol-induced gastric lesions mice. Some representative western blot bands (A). Protein levels of
SOD1/GAPDH (B), SOD2/GAPDH (C), iNOS/GAPDH (D), nNOS/GAPDH (E), eNOS/GAPDH (F), COX2/GAPDH (G), p38/GAPDH (H) in mice gastric
tissues. SOD1, Superoxide dismutase one or Cu/Zn-superoxide dismutase; SOD2/Mn SOD, superoxide dismutase 2. Control: the group administered
zero ethanol; Model: the group administered ethanol intragastrically (13.25 ml/kg BW); MLG-L: low-dose (5 g/kg body weight) MLG-treated
group; MLG-M: medium-dose (10 g/kg body weight) MLG-treated group; MLG-H: high-dose (20 g/kg body weight) MLG-treated group; CBP: the
group receiving Colloid Bismuth Pectin (57 mg/kg body weight). Each group’s data was expressed as mean ± standard deviation (SD), n = 6. By one-
way analysis of variance (ANOVA) test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. each group. Whole page of western blot can be found in
Supplementary Figures S1, S3, S7, S8, S10, S14, S15, respectively.
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FIGURE 8
Representative immunofluorescence pictures and relative quantitative analysis on mice gastric tissues of Nrf-2 (A), HO-1 (B), p65 (C) and IκBα
(D) The blue immunfluorescence is DAPI, showing nuclei. Graphs showing relative quantitative analysis of NF-κB/Nrf2/HO-1 signaling pathway-
related proteins, performed with ImageJ software. Control: the group administered zero ethanol; Model: the group administered ethanol
intragastrically (13.25 ml/kg BW); MLG-L: low-dose (5 g/kg body weight) MLG-treated group; MLG-M: medium-dose (10 g/kg body weight)
MLG-treated group;MLG-H: high-dose (20 g/kg bodyweight) MLG-treated group; CBP: the group receiving Colloid Bismuth Pectin (57 mg/kg body
weight). Each group’s data was expressed as mean ± standard deviation (SD), n = 6. By one-way analysis of variance (ANOVA) test, *p < 0.05, ***p <
0.001, ****p < 0.0001 vs. each group.
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mucosal epithelium more susceptible to degeneration and

necrosis. We observed that, compared with the model group,

MLG-treated groups exhibited lower gastric ulcer index, higher

ulcer inhibition rate and milder gastric tissue injury, suggesting

that MLG could efficaciously ameliorate ethanol-induced gastric

lesions in mice. The histopathological examination of gastric

tissues shown a similar tendency. A series of pathological changes

that indicated severe gastric lesions, including epithelial cell loss,

hemorrhage, structural disorders of glandular tissues,

submucosal edema, and inflammatory cells infiltration, could

be seen in the model group. The administration of MLG certainly

mitigated the situation in a dose-dependent manner. The

pathological changes including epithelial cell loss, structural

disorder of glandular tissues, submucosal edema and

hemorrhage were observed to a milder extent within all MLG-

treated group, and, strikingly, the effect of MLG-H group is

comparable (and even better) to CBP.

The pathogenesis for ethanol-induced gastric lesions is manifold

and complicated, but chief among them is oxidative stress-mediated

aggravated inflammatory response. It is well established that ethanol

and its metabolite acetaldehyde attack the gastric mucosa causing

microcirculatory disturbance and hypoxia, along with the

propagation of the inflammatory cascade due to the depletion of

mucus and bicarbonate, eventually resulting in cellular necrosis and

the excessive production of ROS (Périco et al., 2020). It is ROS that is

responsible for the pathogenesis of ethanol-induced gastric lesions

mediated by oxidative stress (Sistani Karampour et al., 2019), which

interferes with the antioxidant systems of endogenous cells in

mucosa, induces leukocyte recruitment and boosts inflammatory

response. In the gastric mucosa, the relation, between ROS

generation and antioxidant protection mediated through

antioxidant enzymes, maintains homeostasis. Oxidative stress

triggers a cascade, bringing on the excessive production of ROS

and the accumulation of malondialdehyde (MDA). MDA is a

significant marker of ROS peroxidation due to its role as a

primary lipid peroxidation end product, which manifests the

damage of ROS on gastric mucosal directly and is mediated by

the development of gastric lesions (Yuksel et al., 2012). ROS also

stimulates inhibitor Kappa B (IκB) kinase to trigger the proteasomal

breakdown of IκBα, the release of NF-κB p65, and, at length, the

activation of NF-κB. NF-κB serves as a catalyst for the transcription

of a host of inflammatory cytokines and chemokines, being

responsible for the high expression of inflammatory factors

including TNF-α, IL-6, and IL-1β (Wardyn et al., 2015; Mitchell

et al., 2016; Akanda and Park, 2017). TNF-α and IL-1β,
multifunctional pro-inflammatory cytokines, conduce to the

activation and migration of inflammatory cells into the gastric

mucosa as well as the gastric inflammatory process (Sugimoto

et al., 2009). The secretion of inflammatory mediators, including

TNF-α and IL-1β, is consistent with the activation of

polymorphonuclear neutrophil leukocytes, inflammatory

infiltration of lymphocytes, and macrophages in gastric tissue

after acute ethanol exposure (Bagheri et al., 2015).

When oxidative stress transpires, antioxidant defense system

acts actively as well to scavenge ROS, defend against oxidative

stress in cell and guard the body. Nuclear factor erythroid 2-

related factor 2 (Nrf2) is a crucial transcriptional regulator for

cellular defenses against oxidant-associated damage. Excessive

ROS phosphorylates Nrf2 and dissociates it from its inhibitor,

Kelch-like epichlorohydrin-associated protein 1 (Keap1); the

activated Nrf2 will translocate to the nucleus and bind with

Maf proteins, to stimulate antioxidant response elements (AREs)

and activate downstream antioxidant enzymes such as heme

oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase

(CAT) and glutathione peroxidase (GSH-Px) (Takei et al.,

2015; Kim et al., 2022). HO-1, a stress-inducible enzyme, is

considered as a reliable anti-oxidative and cytoprotective agent,

which catalyzes the breakdown of heme into equimolar amounts

of biliverdin, ferrous iron and carbon monoxide (Puentes-Pardo

et al., 2020). Signaling pathways associated with inflammation

and oxidative stress, mainly including Nrf2 and NF-κB, control
the expression of HO-1. SODs are universal and essential

enzymes for organisms that live in the presence of oxygen,

and they are widely recognized as the first hurdle in the fight

against oxygen free radicals (Wang et al., 2018). Characterized by

requiring for different catalytic metal ions, SODs are divided into

three classes in various organisms including copper/zinc SOD

(Cu/Zn SODs), manganese/iron SOD (Mn SOD/Fe SODs), and

nickel SOD (Ni SODs) (Wang et al., 2018). GSH-Px is highly

concentrated in gastric tissue, which is also a vital member of

antioxidant system, and gastric mucosa GSH loss may further

exacerbate lipid peroxidation along with cell membrane and

gastric mucosa damage (Zhang et al., 2013).

The mitogen-activated protein kinases (MAPKs) are

important cellular signaling molecules transferring various

extracellular signals to intracellular responses by sequential

phosphorylation cascades. Several distinct but parallel

subgroups have been identified, including C-Jun N-terminal

kinase (JNK), Extracellular signal-regulating kinases (ERKs)

and p38 MAPK(Bak et al., 2016). MAPKs are involved in a

variety of cell biological processes, such as cell proliferation,

differentiation, stress response, apoptosis, cell migration, and

survival. p38 MAPK is closely related to multiple pathways

related to oxidative stress, which is activated and

phosphorylated under environmental influence. It is well

founded that p38 MAPK is activated and phosphorylated by

oxidative stress. Tissue damage and other external stimuli will

trigger the secretion of multiple pro-inflammatory cytokines

such as TNF-α, IL-1β, as well as IL-6, and subsequently, the

activation of p38(Chaparro Huerta et al., 2008). The relation

between p38 MAPK and NF-κB has been reported that a variety

of pro-inflammatory factors can give rise to the modified IκBs
degradation and the p65 translocation into the nucleus directly or

via the activated p38-MAPK to activate NF-κB pathway (Xie

et al., 2019). Recent studies have found that high expression of

P38 can threaten the integrity of gastrointestinal mucosa, and, in

Frontiers in Pharmacology frontiersin.org15

Xie et al. 10.3389/fphar.2022.953885

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.953885


contrast, the inhibition of p38 MAPK phosphorylation can

regulate claudin expression, thereby improving the function of

gastrointestinal mucosal epithelial barrier (Carrozzino et al.,

2009). Increased TNF-α level leads to the disruption of tight

epithelial cells and the phosphorylation of P38. HO-1 can keep

the barrier intact by blocking tight junction disruption caused by

TNF-α and phosphorylation of ERK, P38, and JNK(Zhang Z

et al., 2021). Furthermore, MAPK cascades are found to be

involved in HO-1 activation. It has been reported that

p38 MAPK takes part in the protein synthesis of HO-1 as

well as the activation and translocation of Nrf2 to help the

body resist oxidative stress (Bak et al., 2016).

The destruction of gastric mucosal integrity can be considered as

the disequilibrium between multiple endogenous aggressive factors

(such as hydrochloric acid, leukotrienes, and ROS) and defensive

factors, including a functionalmucus-bicarbonate barrier, nitric oxide

(NO), prostaglandins (PG), mucosal microcirculation, antioxidants

and some growth factors (Ibrahim et al., 2016). Prostaglandin E2

(PGE2) and NO are postulated to be important defenders of the

gastric epithelial mucosal barrier. PGE2, a production of arachidonic

acid, is well recognized as a protective factor essential for the repair of

damaged gastric mucosa. PGE2 synthesis involves two steps:

arachidonic acid is converted into prostaglandin H2 (PGH2) by

cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and then

PGH2 is isomerized to PGE2 by prostaglandin E synthases (Kloska

et al., 2020). As a recognized vasodilator factor, PGE2 has been shown

to inhibit platelet aggregation and thrombosis, as well as increase

blood flow to the mucosa surface of the stomach, restrain gastric acid

secretion, regenerate cells, mediate adaptive immune protective

functions and promote mucosal repair (Chen et al., 2016; Fang

et al., 2019). COX isoenzymes mainly exist in two isoforms: the

constitutive form (COX-1) and the inducible form (COX-2). COX-2

is restricted at the site of inflammation, acting as a proinflammatory

enzyme, and its expression could vary drastically as reacting to

inflammatory stimuli or growth factors (Zhang J et al., 2021). It is

well known that NO plays an indispensable role in maintaining the

integrity of the gastric mucosal, which can repair damaged gastric

mucosa by regulating gastric mucosal blood flow, acid and alkaline

secretion as well as mucus secretion (Ismail Suhaimy et al., 2017).

Paradoxically, NO also triggers mucosal damage. NOS, playing a

pivotal role in the synthesis of NO by transforming L-arginine to

L-citrulline, mainly can be divided into three forms including

neuronal NOS (nNOS, type I), inducible NOS (iNOS, type II),

and endothelial NOS (eNOS, type III), whereby each of them

participates in multiple biological processes. nNOS and eNOS can

both be grouped into constitutive NOS (cNOS), characterized by

calcium dependence, while iNOS is calcium independent (Kumar

and Chanana, 2017; Mohamed et al., 2022). In the digestive system,

cNOS-generated NO and iNOS-produced NO are related to

contradictory outcomes, with the former one displaying the

cytoprotective effect and the latter being cytotoxic (Motawi et al.,

2007). eNOS-generated NO facilitates the healing of ulcer via

scavenging the damaging free radicals, eliciting angiogenesis,

increasing vasodilation, and attenuating leukocyte infiltration,

thereby aiding mucous secretion and epithelial tissue integrity

restoration (Khattab et al., 2001; Abd El-Rady et al., 2021). iNOS

usually generates NO in response to a wide range of stimuli, such as

the production of inflammatory cytokines (IL-1β, TNF-α). iNOS-
producedNO is found to be highly involved in gastric damage, which

reacts with superoxide directly to form a potent cytotoxic oxidant,

peroxynitrite (Abdel-Raheem, 2010; Kumar and Chanana, 2017).

Somatostatin (SS), an important gastrointestinal hormone, could

directly inhibit the secretion of acid and indirectly suppress the

secretion of histamine and gastrin to protect the gastric mucosa (El-

Salhy et al., 2014). Myeloperoxidase (MPO) is mainly found in

neutrophils and therefore becomes the specificmarker of neutrophils.

During the initial inflammatory response, the accumulation of

neutrophils results in high expression of MPO, and the activity of

MPO can in turn reflect the severity of inflammation in tissues (Al-

Quraishy et al., 2017). Moreover, MPO can induce oxidative stress by

stimulating the production of reactive oxygen species (ROS) and

active nitrogen (RNS) (Chen et al., 2020).

As our observation in the current study, ethanol exposure

induced a drastic augment in the MDA level, while GSH-Px and

T-SOD concentrations suffered a dramatic decline, signifying the

enhancement of oxidative stress as well as lipid peroxidation. This, in

turn, serves as a catalyst in the wreck of the antioxidant defense

system, making the gastric mucosa more susceptible to injury. MLG

has significant antioxidant activity, represented by significantly

inhibiting the elevation of MDA while promoting the T-SOD and

GSH-Px levels even in a small dose (Figures 5A–C), which effectively

reduced the production of oxidative damage products, inhibited the

activity of antioxidant enzymes, and protected the mucosa of the

stomach from alcohol-induced damage. Our results demonstrated

that MLG could inhibit the secretion of inflammatory mediators

(TNF-α, IL-1β, iNOS, MPO, p38-MAPK, and COX-2) and up-

regulate the activities of defensive factors (PEG2, NO, eNOS, and SS)

in gastric tissues after ethanol exposure, which could attenuate the

inflammation response and accelerate the flow of gastric mucosal

microcirculation to repair the damaged gastric mucosa. On this

account, we speculated that MLG could reduce the infiltration of

inflammatory lymphocyte cells in gastric mucosa, which is

consistently supported by the amelioration of inflammatory cells

infiltration in mice gastric tissue histomorphology examination of

MLG-treated groups. We found that MLG treatment markedly

blocked the NF-κB expression and suppressed the

phosphorylation of p65 and IκBα indicating that MLG alleviates

ethanol-induced gastric lesions by inhibition of the ROS-mediated

inflammatory signaling cascade. Synchronously, Nrf2 and HO-1

levels were observed up-regulated in MLG treatment groups,

which demonstrated that the cytoprotective factors were activated

to defense the oxidative stress damage and improve the gastric

healing of ethanol-induced gastric lesions at the same time. In

other words, MLG might have defensive effects on gastric mucosa

by counterbalancing ROS generation and antioxidant defense

systems in the gastric mucosa, which might rely on reducing the
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oxidative stress and strengthening the antioxidant defense

concurrently via the molecular cross-talk of NF-κB/Nrf-2/HO-1.
Taken together, our results demonstrated that MLG, as natural

antioxidants, could help protect the gastric mucosa from oxidative

stress and improve its defenses in order to moderate gastric mucosal

microcirculation and preserve gastric mucosa.

Conclusion

Taken together, our study delivered a point of view that MLG

could effectively protect the gastric mucosa of mice against the

gastric damage of ethanol-induced gastric lesions, mainly presented

as the activation of alcohol metabolizing enzymes, attenuation of

oxidative damage and inflammatory response, up-regulation of the

defensive factors and improvement of vasodilation. Most glaring of

all, MLG could remarkably accelerate themetabolism of alcohol and

reduce the toxicity of alcohol, a property not shared by CBP. The

gastroprotective effect of MLG on ethanol-induced gastric lesions

may be achieved through the weakened of damage factors (TNF-α,
IL-1β, iNOS, MPO, p38-MAPK, and COX-2) and the enhancement

of defensive factors (PEG2, NO, eNOS, and SS) in gastric tissues

involving NF-κB/Nrf2/HO-1 signaling pathway. We further

confirmed that MLG has a strong potential in preventing and

treating ethanol-induced gastric lesions.
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Appendix A: Contents of MLG.

Chinese
name

Accepted name Weight
(g)

Medicinal
part

Plantchemical composition

Lvdou Vigna radiata (L.) R.Wilczek
[Fabaceae]

50 Seeds sitosterol, beta-carotene, vitamin-e, vitexin_qt, vitexin_qtPQN

Gancao 10 Roots and
rhizomes

Glycyrol, Glycyrol, licopyranocoumarin, shinpterocarpin, Phaseol,
Licochalcone B, glyasperin F, Inermine, Vestitol, Glyasperins M

Glycyrrhiza glabra L. [Fabaceae]

Dangshen 10 Root Perlolyrine, Perlolyrine, glycitein, glycitein

Codonopsis pilosula (Franch.) Nannf.
[Campanulaceae]

Shanyao 15 Tuber diosgenin, diosgenin, Isofucosterol, Stigmasterol, hancinone C, Denudatin B,
Kadsurenone, hancinol, (-)-taxifolin

Dioscorea oppositifolia L.
[Dioscoreaceae]

Chuanxiong Conioselinum anthriscoides
’Chuanxiong’ [Apiaceae]

10 Rhizome sitosterol, Myricanone, Mandenol, wallichilide, senkyunone, PerlolyrineFA

Gansong 15 Roots and
rhizomes

(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one, acaciin, acacetin,
sitosterol, sitosterol

Nardostachys jatamansi (D.Don) DC.
[Caprifoliaceae]

Dingxiang 10 Flower Bud Strictosamide_qt, ZINC03860434, beta-sitosterol, kaempferol, Stigmasterol,
quercetin

Syzygium aromaticum (L.) Merr. &
L.M.Perry [Myrtaceae]

Jiangbanxia 10 Tuber Baicalin, (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone,
beta-D-Ribofuranoside, xanthine-9, Stigmasterol, Stigmasterol, 10,13-
eicosadienoic, Cycloartenol, beta-sitosterol, 24-Ethylcholest-4-en-3-one,
Cavidine, baicalein, coniferin, gondoic acid

Pinellia ternata (Thunb.) Makino
[Araceae]

Baishao 30 Root 11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-en-28,12beta-
olide, paeoniflorgenone, (3S,5R,8R,9R,10S,14S)-3,17-dihydroxy-4,4,8,10,14-
pentamethyl-2,3,5,6,7,9-hexahydro-1H-cyclopenta[a]phenanthrene-15,16-
dione, Lactiflorin, paeoniflorin, paeoniflorin_qt, albiflorin_qt, benzoyl
paeoniflorin, Mairin, beta-sitosterol, sitosterol, kaempferol, (+)-catechin

Paeonia lactiflora Pall. [Paeoniaceae]

Lianfang 10 Receptacle procyanidin, Hyperin, quercetin

Nelumbo nucifera Gaertn.
[Nelumbonaceae]

Tianma 10 Tuber gastrodin, P-hydroxybenzyl alcohol, Parisin E, Parisin A, Parisin B, Parisin C

Gastrodia elata Blume [Orchidaceae]

huang Jiezi Brassica juncea (L.) Czern.
[Brassicaceae]

10 Seeds Uniflex BYO, 2-(2-phenylethyl)-6-[[(5S,6R,7R,8S)-5,6,7-trihydroxy-4-keto-
2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-8-yl]oxy]chromone,
Sinoacutine

Shengjiang 5 Fresh rhizome beta-sitosterol, 6-methylgingediacetate2, Stigmasterol, Stigmasterol,
Dihydrocapsaicin

Zingiber officinale Roscoe
[Zingiberaceae]

Dazao 5 Pulp and seeds Spiradine A, Mauritine D, Moupinamide, Ziziphin_qt, Fumarine,
malkangunin, Mairin, (+)-catechin, (-)-catechin, Daechuine S6, Daechuine
S6, Daechuine S7, Stigmasterol, (S)-Coclaurine

Ziziphus jujuba Mill. [Rhamnaceae]
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https://old.tcmsp-e.com/molecule.php?qn=359
https://old.tcmsp-e.com/molecule.php?qn=2773
https://old.tcmsp-e.com/molecule.php?qn=7180
https://old.tcmsp-e.com/molecule.php?qn=7336
https://old.tcmsp-e.com/molecule.php?qn=7336
https://old.tcmsp-e.com/molecule.php?qn=7348
https://old.tcmsp-e.com/molecule.php?qn=2311
https://old.tcmsp-e.com/molecule.php?qn=2311
https://old.tcmsp-e.com/molecule.php?qn=4904
https://old.tcmsp-e.com/molecule.php?qn=4891
https://old.tcmsp-e.com/molecule.php?qn=5017
https://old.tcmsp-e.com/molecule.php?qn=4841
https://old.tcmsp-e.com/molecule.php?qn=4810
https://old.tcmsp-e.com/molecule.php?qn=1484
https://old.tcmsp-e.com/molecule.php?qn=500
https://old.tcmsp-e.com/molecule.php?qn=5007
https://old.tcmsp-e.com/molecule.php?qn=2140
https://old.tcmsp-e.com/molecule.php?qn=2140
https://old.tcmsp-e.com/molecule.php?qn=8400
https://old.tcmsp-e.com/molecule.php?qn=8400
https://old.tcmsp-e.com/molecule.php?qn=546
https://old.tcmsp-e.com/molecule.php?qn=546
https://old.tcmsp-e.com/molecule.php?qn=5440
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=5430
https://old.tcmsp-e.com/molecule.php?qn=310
https://old.tcmsp-e.com/molecule.php?qn=322
https://old.tcmsp-e.com/molecule.php?qn=5429
https://old.tcmsp-e.com/molecule.php?qn=1736
https://old.tcmsp-e.com/molecule.php?qn=359
https://old.tcmsp-e.com/molecule.php?qn=2135
https://old.tcmsp-e.com/molecule.php?qn=1494
https://old.tcmsp-e.com/molecule.php?qn=2157
https://old.tcmsp-e.com/molecule.php?qn=2151
https://old.tcmsp-e.com/molecule.php?qn=2140
https://old.tcmsp-e.com/molecule.php?qn=433
https://old.tcmsp-e.com/molecule.php?qn=1040
https://old.tcmsp-e.com/molecule.php?qn=10543
https://old.tcmsp-e.com/molecule.php?qn=1689
https://old.tcmsp-e.com/molecule.php?qn=359
https://old.tcmsp-e.com/molecule.php?qn=359
https://old.tcmsp-e.com/molecule.php?qn=13219
https://old.tcmsp-e.com/molecule.php?qn=1749
https://old.tcmsp-e.com/molecule.php?qn=358
https://old.tcmsp-e.com/molecule.php?qn=422
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=98
https://old.tcmsp-e.com/molecule.php?qn=2776
https://old.tcmsp-e.com/molecule.php?qn=6957
https://old.tcmsp-e.com/molecule.php?qn=6967
https://old.tcmsp-e.com/molecule.php?qn=6967
https://old.tcmsp-e.com/molecule.php?qn=6967
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=6936
https://old.tcmsp-e.com/molecule.php?qn=6936
https://old.tcmsp-e.com/molecule.php?qn=3578
https://old.tcmsp-e.com/molecule.php?qn=358
https://old.tcmsp-e.com/molecule.php?qn=1755
https://old.tcmsp-e.com/molecule.php?qn=2670
https://old.tcmsp-e.com/molecule.php?qn=2714
https://old.tcmsp-e.com/molecule.php?qn=519
https://old.tcmsp-e.com/molecule.php?qn=5030
https://old.tcmsp-e.com/molecule.php?qn=1910
https://old.tcmsp-e.com/molecule.php?qn=1910
https://old.tcmsp-e.com/molecule.php?qn=1918
https://old.tcmsp-e.com/molecule.php?qn=1919
https://old.tcmsp-e.com/molecule.php?qn=1919
https://old.tcmsp-e.com/molecule.php?qn=1919
https://old.tcmsp-e.com/molecule.php?qn=1921
https://old.tcmsp-e.com/molecule.php?qn=1924
https://old.tcmsp-e.com/molecule.php?qn=1925
https://old.tcmsp-e.com/molecule.php?qn=1928
https://old.tcmsp-e.com/molecule.php?qn=1930
https://old.tcmsp-e.com/molecule.php?qn=1930
https://old.tcmsp-e.com/molecule.php?qn=211
https://old.tcmsp-e.com/molecule.php?qn=358
https://old.tcmsp-e.com/molecule.php?qn=359
https://old.tcmsp-e.com/molecule.php?qn=422
https://old.tcmsp-e.com/molecule.php?qn=492
https://old.tcmsp-e.com/molecule.php?qn=5930
https://old.tcmsp-e.com/molecule.php?qn=4368
https://old.tcmsp-e.com/molecule.php?qn=98
https://old.tcmsp-e.com/molecule.php?qn=10690
https://old.tcmsp-e.com/molecule.php?qn=13037
https://old.tcmsp-e.com/molecule.php?qn=13037
https://old.tcmsp-e.com/molecule.php?qn=1697
https://old.tcmsp-e.com/molecule.php?qn=358
https://old.tcmsp-e.com/molecule.php?qn=6129
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=8698
https://old.tcmsp-e.com/molecule.php?qn=12940
https://old.tcmsp-e.com/molecule.php?qn=12992
https://old.tcmsp-e.com/molecule.php?qn=8647
https://old.tcmsp-e.com/molecule.php?qn=3410
https://old.tcmsp-e.com/molecule.php?qn=787
https://old.tcmsp-e.com/molecule.php?qn=5360
https://old.tcmsp-e.com/molecule.php?qn=211
https://old.tcmsp-e.com/molecule.php?qn=492
https://old.tcmsp-e.com/molecule.php?qn=96
https://old.tcmsp-e.com/molecule.php?qn=12980
https://old.tcmsp-e.com/molecule.php?qn=12980
https://old.tcmsp-e.com/molecule.php?qn=12980
https://old.tcmsp-e.com/molecule.php?qn=12981
https://old.tcmsp-e.com/molecule.php?qn=449
https://old.tcmsp-e.com/molecule.php?qn=1522
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