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Abstract: Cardiotoxicity is a well-recognised side effect of cancer-related therapies with a great
impact on outcomes and quality of life in the cancer survivor population. The pathogenesis of
chemotherapy-induced cardiotoxicity in patients with gastrointestinal cancers involves various
molecular mechanisms, and the combined use of various chemotherapies augments the risk of each
drug used alone. In terms of cardiotoxicity diagnosis, novel biomarkers, such as troponins, brain
natriuretic peptide (BNP), myeloperoxidases and miRNAs have been recently assessed. Echocardiog-
raphy is a noninvasive imaging method of choice for the primary assessment of chemotherapy-treated
patients to generally evaluate the cardiovascular impact of these drugs. Novel echocardiography
techniques, like three-dimensional and stress echocardiography, will improve diagnosis efficacy.
Cardiac magnetic resonance (CMR) can evaluate cardiac morphology, function and wall structure.
Corroborated data have shown the importance of CMR in the early evaluation of patients with
gastrointestinal cancers, treated with anticancer drugs, but further studies are required to improve
risk stratification in these patients. In this article, we review some important aspects concerning the
cardiotoxicity of antineoplastic drugs used in gastrointestinal cancers. We also discuss the mechanism
of cardiotoxicity, the role of biomarkers and the imaging methods used in its detection.

Keywords: gastrointestinal cancer; cardiotoxicity; echocardiography; cardiac magnetic resonance
imaging

1. Introduction

Gastrointestinal (GI) cancer represents an important cause of cancer-related deaths
being a major public health problem that encompasses cancers of the oesophagus, stomach,
colon and rectum [1]. Colorectal cancer is the most commonly diagnosed GI cancer and
comprises 9% of the global cancer burden, while the other GI cancers are not negligible at
all [1,2].

As overall cancer-related deaths decline, chemotherapy-associated cardiotoxicity in-
creases and has a great impact on the outcome and life-quality of cancer survivor patients.
They have an important cardiovascular (CV) risk [3], and should be considered, as recom-
mended by the ACC/AHA guidelines, as a stage A heart failure (HF) [4]. Lenneman et al.
showed a rise in the number of heart transplants in patients with cardiomyopathy, due
to anthracycline therapy [5]. Others have shown that the greatest risk is in those treated
with a high dose of anthracyclines or when radiotherapy is associated. Moreover, patients
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treated with low-dose anthracyclines or trastuzumab alone, are also at high risk, especially
if they are older (>60 years), have cardiac dysfunction, previous myocardial infarction,
valvular heart disease, or multiple CV risk factors [6]. Therefore, active CV screening is
strongly advised, especially in those who are at a high risk to develop CV disease [7,8].

2. Mechanism of Cardiotoxicity

Chemotherapy-induced cardiotoxicity is defined as a reduction in left ventricle (LV) ejec-
tion fraction (LVEF) below 50%, a reduction from baseline with >10% or a Global Longitudinal
Strain (GLS) reduction of >15% from baseline [7]. It manifests as cardiac dysfunction, valve or
pericardial disease, arrhythmias, pulmonary hypertension, or other vascular abnormalities.
Doxorubicin is most frequently accounted for HF [9], while ibrutinib for arrhythmias [10],
5-fluorouracil (5-FU) for coronary spasm, vascular endothelial growth factor (VEGF) inhibitors
for arterial hypertension, and paclitaxel for conduction abnormalities.

Cardiotoxicity was initially divided in two categories based on its reversibility, but this
classification is no longer available, due to several mismatches [11]. Moreover, coronary
artery disease may occur after treatment with tyrosine kinase inhibitors (TKIs), drugs
that may increase the risk of intrastent thrombosis [12,13]. VEGF inhibitors prevent an-
giogenesis and were associated with decreased nitric oxide production, vasoconstriction
and hypertension [12,14], thus potentiating endothelial dysfunction, atherosclerosis and
thrombotic microangiopathy [15,16]. Other chemotherapeutics can cause atrial fibrillation,
QT prolongation, ventricular arrhythmias and sudden cardiac death [17,18].

2.1. Anthracyclines

Anthracyclines may produce cardiotoxicity by interacting with both topoisomerase
II (topoII) isoforms, topoIIα and topoII [19], and by enhancing cellular apoptosis and
reactive oxidant species (ROS) synthesis. Genetic analysis identified genetic loci that are
involved in cell uptake and carbonyl redox cycling, which also transport anthracyclines
within the cells [20]. Concomitant drugs which are also transported by these proteins,
such as digoxin, diltiazem, or verapamil, may increase the cytoplasmatic concentration of
anthracyclines [21]. The most common compounds used in GI cancers are doxorubicin,
daunorubicine, epirubicin and idarubicin.

Cardiac histopathological changes associated with anthracyclines are mainly rep-
resented by cytoplasmatic vacuolisation, myofibrillar and myocardial sarcomere disar-
ray [22,23].

Late-onset cardiotoxicity is the most frequently encountered. Cardinale et al. have
shown that 98% of cardiotoxicity cases occurred within the first year after treatment [24].

2.2. Fluoropyrimidines

Fluoropyrimidines may be cardiotoxic [25], even in patients without CV diseases [26].
Fluoropyrimidines (5-FU, capecitabine) is frequently used in solid tumours, as it is the
standard treatment in colorectal cancer, and increase the radiosensitivity of tumours [27]. 5-FU
acts as an S-phase antimetabolite, interfering with DNA synthesis, repair and elongation [28].

Being metabolised to 5-FU, capecitabine has similar cardiotoxicity as 5-FU [29]. Coronary
spasm is another mechanism of fluoropyrimidines’ cardiotoxicity, which was suggested not
to be endothelial-dependent [30,31]. Moreover, 5-FU increased the levels of endothelin-1 and
von Willebrand factor [32]. 5-FU cardiotoxicity may also be secondary to enhanced synthesis
of fluoroacetate and fluorocitrate, cellular apoptosis and ROS synthesis [25].

Therefore, fluoropyrimidines may cause chest pain, Takotsubo cardiomyopathy, Kou-
nis syndrome, arrhythmias and cardiac arrest. The incidence of cardiac events in high-dose
5 FU treated patients may be as high as 7.6% [25,33,34].

2.3. Platinum-Based Compounds

Platinum-based compounds are important chemotherapies in gastrointestinal tu-
mours, which is used in oesophageal cancer, colorectal cancer (FOLFOX). Cisplatin is
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another commonly used drug that is associated with significant toxicity [35], while carbo-
platin has fewer side effects. They interact with DNA and determine ROS production [36].
Additionally, cisplatin has been associated with cardiomyocyte apoptosis secondary to
activating the transmembrane protein kinase RNA-like ER kinase pathway [37].

The incidence of thromboembolic side effects was as high as 10 to 20% in different
studies. Endothelial dysfunction can also play a role in cisplatin-associated cardiotoxicity,
which is associated with increased levels of von Willebrand factor [38]. Studies have shown
an increased incidence of arterial hypertension and LV hypertrophy in patients treated
with cisplatin, in a cumulative dose-dependent manner [39].

2.4. Human Epidermal Growth Factor Receptor 2 (HER2) Antagonists

Trastuzumab, a HER2 antagonist, has recently been proven beneficial in some HER2
positive gastric and colorectal cancers [40,41]. Trastuzumab cardiotoxicity was first de-
scribed in breast cancer trials, especially when combined therapies were used [42]. Per-
tuzumab, another HER2 antagonist, used in gastric cancer, proved similar cardiotoxicity as
trastuzumab, but without the same additive toxicity [43].

Neuregulin, an ErbB receptor found in the CV system, may be involved in HER2
therapy-induced cardiotoxicity. Neuregulin, ErbB2 and ErbB4 receptor tyrosine kinases
have been documented to play important roles in cellular cross-communication and stress-
response [44]. The disruption of ErbB2 expression may cause dilated cardiomyopathy [45],
whereas the suppression of neuregulin/ErbB signal may prevent recovery from ischemic
injury [46]. Moreover, anti-ErbB2 therapy may induce ROS and cell apoptosis, and as a
consequence, increased levels of troponins I and cardiac myosin light chain-1 [47]. Recently,
it has been documented that trastuzumab may provoke endothelial and mitochondrial
dysfunction [48].

2.5. Immune Checkpoint Inhibitors (ICI)

ICI are a class of drugs that block the immune down-regulators, such as programmed
cell death-1 (PD1), PD ligand-1 (PDL1), cytotoxic T-lymphocyte antigen 4 (CTLA-4) [49].
Nivolumab and pembrolizumab are anti-PD1 agents used in colorectal and gastric cancers.
In murine models, CTLA-4 and PD1 exert cardioprotective effects. In turn, the blockage
of CTLA-4 was associated with fatal myocarditis [50]. Some pericardial antigens may be
activated by ICI, leading to pericarditis, however this is a less frequent side effect [51].

According to recent data, ICI-related myocarditis may occur in 1.14% of patients when
the drugs are used alone and in 2.4% of patients if the drugs are used in combination
therapy. Nonetheless, the risk of developing myocarditis is shown to be lower with anti-
PD1 drugs, when compared to anti-PDL1 and anti-CTLA4 drugs [52]. Studies have shown
that it usually appears after a median follow-up period of 2 to 3 months, but it can occur
anytime during treatment, having a high mortality risk [52–54]. Additionally, Takotsubo
syndrome related to ICI had been reported [55].

2.6. Angiogenesis Inhibitors

VEGFs are involved in angiogenesis, endothelial cell survival, vasomotricity and
cardiac contractile function, and their inhibitors have been associated with HF and arte-
rial hypertension [56]. Bevacizumab, an antibody-based anti-VEGF, was also associated
with atherothrombotic events [57]. Moreover, some studies reported preeclampsia–like
syndrome secondary to treatment with angiogenesis inhibitors [58]. Additionally, these
compounds were associated with irreversible diastolic dysfunction [59].

It has been shown that these drugs can increase the risk of both ischemic and haem-
orrhagic stroke, especially when bevacizumab is used. This risk is also higher in patients
with colorectal cancers, and it doubles when a double dose is used [60]. HF was encoun-
tered more frequently in those treated with TKIs, and it is caused by the tyrosine kinase,
AMP-activated kinase and platelet-derived growth factor receptors inhibition [58,61].
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VEGFs inhibitors associated cardiotoxicity is usually divided into two types: (1) On-
target toxicity, which is due to the inhibition of CV-expressed kinases and it occurs mostly
with imatinib treatment; and (2) off-target toxicity, encountered with sunitinib therapy, in
which CV side effects are due to inhibition of non-targeted kinases [62].

3. Diagnosis Methods of Chemotherapy-Induced Cardiotoxicity in GI Cancers

The evaluation of cardiotoxicity has an important role in patients treated with cancer
therapies. Detecting subclinical changes in cardiac function represents the subject of interest
of many studies. Echocardiography and cardiac magnetic resonance imaging (CMR) is the
most used techniques. Cardiac biomarkers are used to increase the sensitivity of imaging
methods in detecting cardiotoxicity, mainly in the early stages [7,63].

3.1. Biomarkers

Biomarkers are considered to be a cost-effective alternative to other diagnostic tech-
niques for screening subclinical changes in cardiac function. The most useful serum
biomarkers used for the assessment of chemotherapy-based cardiotoxicity are repre-
sented by cardiac troponins (cTn) I/T, brain natriuretic peptide (BNP), C-reactive protein,
myeloperoxidase (MPO), growth differentiation factor 15 (GDF-15), galectin-3, soluble inter-
leukin 1 receptor-like 1 (ST2) and some microRNAs (miRNA). These can be used in the risk
stratification and follow-up of cardiotoxicity and in evaluating cardio-protection. Current
guidelines recommend using such biomarkers in patients treated with chemotherapy, by
determining their value at baseline, during chemotherapy and after chemotherapy [7,64].

3.1.1. Troponins

Cardiac troponins I and T are organ-specific biomarkers used to diagnose myocardial
injury, which are also reliable in chemotherapy-based cardiotoxicity. In a recently published
meta-analysis, the significant link between cardiac troponins and chemotherapy was
proved. Studies have found that cTn was able to detect early cardiac injury more accurately
than natriuretic peptides [7]. Increased serum levels of cTn were frequently reported in
patients treated with anthracyclines, even within the first 72 h of anthracycline treatment
and at one month after therapy cessation [65]. Additionally, Jones et al. showed these
biomarkers to be significantly increased after the fourth, the fifth and even after the sixth
cycle of chemotherapy [66]. Garrone et al. found that high levels of cTn were positively
correlated with the risk of developing HF [67], while other studies demonstrated that
these biomarkers were predictors of early cardiac dysfunction, having important roles in
detecting cardiotoxicity [68–70].

Furthermore, elevations in serum cTn were observed with trastuzumab treatment and
were associated with cardiac dysfunction [70]. cTn has been shown to play important roles
even in the prediction of LV dysfunction [68,71]. Furthermore, cTn may identify subclinical
forms of ICI-based myocarditis, which are associated with a worse prognosis [52].

3.1.2. BNP

BNP, another serum biomarker, having an important role to diagnose chemotherapy-
induced cardiotoxicity, is associated with increased LV filling pressures [72]. In patients
with impaired LV function secondary to anthracycline therapy, Feola and al. documented
significantly higher levels of BNP at baseline and at follow-up, in comparison with patients
without LV dysfunction. Patients who develop cardiac side effects, due to chemotherapy,
have higher BNP levels at baseline [73]. This biomarker has an important predictive value
in documenting the development of chemotherapy-induced HF [74]. NT-proBNP levels are
directly correlated with anthracycline treatment and are also associated with an increased
1-year mortality, as shown by Iuliis et al. [75].
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3.1.3. Other Biomarkers of Use in Detecting Cardiotoxicity

MPO and GDF-15 are associated with impaired LV function and even with decreased
LVEF [76]. miRNAs are also studied in patients treated with both anthracyclines and
trastuzumab, and some studies have shown that several miRNAs are increased in the first
24 h after chemotherapy, but further studies are needed [77].

3.2. Echocardiography

Echocardiography is the main imaging method used in diagnosing cardiotoxicity,
which comprehensively evaluates heart morphology and function [7,78]. LVEF is the most
common marker of LV systolic function, which is assessed using the modified biplane Simp-
son’s method. Although, it has low sensitivity and high temporal variability [79,80], these
shortcomings may be improved using contrast echocardiography [81]. Three-dimensional
echocardiography (3DE) has increased accuracy in evaluating heart function, and the low-
est variability [82]. Other echocardiography parameters, such as myocardial performance
index (MPI), which can identify subclinical cardiotoxicity in patients treated with 5-FU
and anthracyclines, and mitral annular plane systolic excursion (MAPSE), may also be
used [83,84]. LVEF <55% was associated with a significantly increased risk to develop HF,
due to HER2 antagonists and anthracyclines [85,86].

Diastolic dysfunction was the first to occur in most of the chemotherapy-treated
patients. In some studies, the E/A ratio was impaired, due to doxorubicin, along with
changes in isovolumetric relaxation time (IVRT), even after the first dose [87–89]. IVRT
was also able to predict LVEF changes [87].

3DE has comparable accuracy with CMR and multi-gated acquisition scan (MUGA) in
terms of LVEF evaluation [90,91]. The most sensitive 3DE markers of early cardiotoxicity,
are represented by an LVEF <55%, and end-systolic volume index >29 mL/m2, and a
global longitudinal strain (GLS) <−17.5%, having comparable efficacy with CMR [92]. LV
strain is a novel technique used for monitoring cardiotoxicity, and a reduction in GLS of
>15% is considered a marker of cardiotoxicity [64]. A 6-months decrease in GLS >15%
may identify cardiac dysfunction in breast cancer patients at 12 months after stopping
chemotherapy [70].

3DE speckle-tracking imaging (STI) overcomes the limitations of 2DE STI in terms
of identifying early cardiac changes [93]. Global circumferential strain (GCS), and global
radial strain are decreased early after anthracycline treatment, despite preserved LVEF.
Global area strain curve (GAS) was also associated with subclinical LV changes [94]. In
patients treated with trastuzumab, GLS significantly changed at 6-months after chemother-
apy [95]. GLS was strongly associated with cardiac events among patients with ICI-related
myocarditis [96].

During anthracycline therapy, changes in LV torsion, twisting and untwisting occurred
earlier than an LVEF drop. Apical torsion, twisting and untwisting rates after chemotherapy,
were correlated with prolonged IVRT, but didn’t predict LVEF decrease [97].

Echocardiography is used in detecting wall motion abnormalities, due to ischemia or
evaluation of LV wall hypertrophy secondary to arterial hypertension in patients treated
with fluoropyrimidines, platinum-based chemotherapy and anti-VEGFs. Stress echocar-
diography (SE) may be used to reveal subclinical changes in LV function [98]. In patients
treated with doxorubicin, the sensitivity of resting LVEF may increase from 50% to 90%
when SE is used [99]. SE can be used to assess stable coronary artery disease [100], and in
those treated with 5-FU and bevacizumab. It can also evaluate LV’s contractile reserve, a
5-units decrease having a predictive value for future LVEF decline [101].

3.3. Cardiac Magnetic Resonance Imaging

CMR is used in evaluating cardiac structure and function, and it is the gold standard
for accurate assessment of ventricles’ functions and volumes. It may detect myocardial
oedema and fibrosis, and early changes in cardiac function [102]. Mild LV dysfunction
occurs early during treatment with anthracyclines and trastuzumab with a 3% decrease
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in LVEF at one month and 5% at four months after stopping chemotherapy. Nearly all
chemotherapy-treated patients developed RV dysfunction, an impairment that persisted
during follow-up at twelve months, even though in some patients, LV function recovered
at four months [103].

Myocardial oedema, inflammation and interstitial fibrosis, occur early before LV dys-
function and LVEF impairment [104]. Myocardial oedema can be detected by CMR, mostly
on T2-weighted signal intensity [105]. Myocardial oedema and fibrosis are associated with
higher mortality [106]. Steady-state free-precession (SSFP) CMR provides data on wall
motion segmental and global changes, and may detect subtle changes [107]. Cine-CMR
detects subtle LV morpho-functional abnormalities, even in patients treated with low dose
anthracyclines. LV mass also changes during cancer therapy, mostly in anthracycline-
treated patients [108]. Interestingly, a smaller LV mass correlated with the cumulative
dose of anthracycline, a negative prognostic factor [90,109]. An LV mass less than 57 g/m2

was associated with a higher risk of HF and CV deaths [110]. RV dysfunction was also
observed during anthracycline treatment or anthracycline-trastuzumab combination, and
it was correlated with higher mortality [111,112].

Late-gadolinium enhancement (LGE) is used in evaluating myocardial fibrosis [113,114],
and data from studies are contradictory [115]. LGE is infrequently observed in patients
treated with trastuzumab and anthracyclines, and its absence doesn’t exclude myocardial
fibrosis [116,117].

T1 mapping is used to quantify extracellular volume fraction (ECV), which indicates
interstitial fibrosis [63]. On T1 weighted sequences, abnormal gadolinium accumulation
is observed in cancer survivors [118], and may detect subclinical changes. Furthermore,
ECV was significantly associated with histologically proven myocardial interstitial fibro-
sis [119,120]. Patients treated with anthracycline had higher ECV and associated diastolic
dysfunction [116]. CMR can determine intracellular water lifetime using T1 mapping in or-
der to properly characterise the myocardial tissue [121]. Anthracycline therapy determines
a significant decrease of the LVEF, LV mass and intracellular water lifetime [119].

Early gadolinium enhancement (EGE) detects myocardial injury in patients with
myocarditis [122], is included in the Lake Louise criteria. After anthracycline treatment,
EGE significantly predicted a decline in LVEF [118]. CMR can also properly evaluate
patients with ICI-related myocarditis and preserved LVEF, especially in combination with
using LGE [123,124].

Furthermore, the myocardial consequences of arterial hypertension secondary to TKIs
can be evaluated by CMR [64]. Vascular stiffness may be assessed by CMR, by aortic phase-
contrast imaging. Pulse wave velocity (PWV) increases after anthracycline administration,
which is associated with LV dysfunction and CV adverse effects, but its impact on the
outcome of cancer patients needs further studies [108]. Lastly, T2 relaxation time is another
marker of early LV dysfunction, which occurs sooner than ECV [125], but the studies are
just at the beginning.

4. Risk Stratification and Surveillance during and after Chemotherapy

An important aspect in evaluating patients treated with chemotherapy is establishing
their baseline cardiovascular risk and their risk of developing cardiotoxicity [126]. This
approach will allow for a universal standard of care and a surveillance plan [63,64,78]
(Figure 1). According to their risk level (low, medium, high, very high), we could establish
the risk of developing cardiotoxicity, which is <2%, 2–9%, 10–19%, ≥20%, respectively [7].

According to the recently published position paper by the European Society of Cardiol-
ogy (ESC), risk factors that should be considered are represented by previous cardiovascular
diseases, co-existing medical disease, demographic traits and lifestyle factors that are ac-
counted as cardiovascular risk factors, elevated serum biomarkers before initiation of
chemotherapy and previous chemotherapy. High risk patients are considered those with
one or more high risk factors or patients with medium risk factors with a sum of >5 points.
Very high risk patients are considered those with one or more very high risk factors [7].
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Figure 1. Standard of care and a surveillance plan.

Very high risk factors are represented by pre-existing heart failure or cardiomyopathy
in patients treated with anthracycline, HER-2 targeted therapies and VEGF inhibitors.

High risk factors are represented by ischemic cardiomyopathy (myocardial infarction,
coronary artery by-pass grapht, stable angina), severe valvular heart disease, low LVEF at
baseline (<50%), age >80 years, previous chemotherapy (anthracycline or HER-2 therapies)
and radiotherapy to the left side of the chest or mediastinum [7].

Serum biomarkers are used in surveillance during and after chemotherapy, and ac-
cording to ESC position paper in high risk CV patients treated with anthracycline BNP/NT-
proBNP, cTn should be measured at baseline, before cycles 2, 4 and 6 or before every cycle
and at 3 and 6 months following chemotherapy or at 12 months after the final cycle. In
low and medium CV risk patients, these biomarkers should be determined at baseline,
before the fifth cycle and at 12 months after chemotherapy. In patients treated with HER-2
targeted therapies for gastric cancer, serum biomarkers should be measured at baseline,
before every cycle for 3–6 months and then every 3 months for the remaining treatment in
the first year. Following chemotherapy serum biomarkers are measured only if the patient
is symptomatic [126].

According to the British Society of Echocardiography and British Society of Cardio-
Oncology guidelines published recently regarding the frequency of echocardiography
during chemotherapy, high risk patients treated with anthracycline, should be evaluated
every two cycles or every cycle if the dose of doxorubicin is >240 mg/m2. In patients
treated with HER-2 targeted therapy, echocardiography should be done every two or three
cycles for three months, then to every fourth cycle in the first year [78].

5. Future Directions

There are still many uncertainties in evaluating patients undergoing cancer therapy,
especially in detecting subclinical changes. Some new imaging techniques have been
investigated to detect early cardiotoxicity, such as 3DE STI and new CMR techniques, which
proved to have promising results. With the development of these new imaging techniques,
there is a need for more clinical trials, for better cancer treated patients’ surveillance, to
improve their outcome. Resorting to cardiac imaging methods and cardiac biomarkers may
help to detect subclinical changes in cardiac function, while the damage is still reversible
and cardio-protection methods are effective.
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