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ANALYTIC PERSPECTIVE

Practical strategies for handling breakdown 
of multiple imputation procedures
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Abstract 

Multiple imputation is a recommended method for handling incomplete data problems. One of the barriers to its suc-
cessful use is the breakdown of the multiple imputation procedure, often due to numerical problems with the algo-
rithms used within the imputation process. These problems frequently occur when imputation models contain large 
numbers of variables, especially with the popular approach of multivariate imputation by chained equations. This 
paper describes common causes of failure of the imputation procedure including perfect prediction and collinearity, 
focusing on issues when using Stata software. We outline a number of strategies for addressing these issues, including 
imputation of composite variables instead of individual components, introducing prior information and changing the 
form of the imputation model. These strategies are illustrated using a case study based on data from the Longitudinal 
Study of Australian Children.
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Background
Multiple imputation (MI) is a popular method for han-
dling missing data. The missing data are replaced with 
multiple ( m > 1 ) imputed values to produce m completed 
datasets. Standard analysis methods are applied to each 
of the m completed datasets, and the resulting estimates 
for quantities of interest are combined using Rubin’s rules 
[1].

There are many methods for generating imputed data, 
most of which rely on complex algorithms [2]. There 
are two predominant methods for imputing missing 
data in multiple variables. The first of these, multivari-
ate normal imputation (MVNI), assumes that variables 
requiring imputation follow a joint multivariate normal 
distribution [2]. MVNI is implemented using the data 
augmentation (DA) algorithm, an iterative procedure 

that alternates between drawing imputed values for the 
missing data and drawing values of the imputation model 
parameters.

The second method is multivariate imputation by 
chained equations (MICE), also known as fully condi-
tional specification (FCS), which imputes the missing 
values on a variable-by-variable basis using a series of 
univariate imputation models, one for each incomplete 
variable [3, 4]. The univariate models are fitted itera-
tively, with each variable imputed in turn, conditioning 
on the completely observed variables and the most recent 
imputed values of incomplete variables. The algorithm 
is run multiple times in parallel to obtain m imputed 
datasets [5]. When using MICE, the univariate imputa-
tion models are tailored to the variable being imputed. In 
particular, generalized linear models are used to impute 
non-continuous variables, using maximum likelihood 
estimation (MLE) to fit these models, which also relies on 
iterative algorithms [6].

Although these two MI procedures are widely avail-
able in statistical software [7], barriers to their success-
ful implementation arise from numerical problems that 
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occur within the iterative procedures, which can lead 
to termination of the procedure without imputed val-
ues being generated [8–10]. We refer to these issues as 
“numerical problems”, “failure” or “breakdown” of the MI 
algorithms. We avoid the term “model non-convergence” 
to avoid ambiguity with other types of convergence, par-
ticularly the stabilization of iterative procedures to their 
target distribution. Guidance on assessing the conver-
gence of MI algorithms may be found elsewhere [2, 5].

The aim of this paper is to describe common causes of 
numerical problems in MI, and to provide practical guid-
ance for handling such problems based on recommenda-
tions from the literature and our experience as users of 
MI. In the next section, we motivate this work with an 
example from the Longitudinal Study of Australian Chil-
dren. We then describe perfect prediction and collin-
earity, two key issues that can lead to failure of the MI 
procedure. Finally, we present some strategies for diag-
nosing and overcoming these issues, which we illustrate 
in a case study. This paper focuses on numerical prob-
lems encountered using Stata software, and we provide 
Stata code as Additional file2.

Example: Longitudinal Study of Australian 
Children
For illustrative motivation we use data from the Longi-
tudinal Study of Australian Children (LSAC) Kindergar-
ten cohort, consisting of 4983 children aged 4–5  years 
recruited in 2004 [11]. Our analysis examined the 
association between body mass index (BMI) Z-score 
at 4–5  years of age and health related quality of life 
(HRQoL) problems at 8–9  years, adopting a simplified 
version of a published analysis [12].

Analysis model
The analysis model was a logistic regression of HRQoL 
problems on BMI Z-scores with adjustment for potential 
confounders. HRQoL was measured using the PedsQL, a 
23 item-scale that asked parents about the frequency of 
their child’s health-related problems. Responses ranged 
from 1 to 5, and were reverse scored as follows: 1 = 100, 
2 = 75, 3 = 50, 4 = 25, and 5 = 0. The items were aver-
aged to produce a total score (range 0–100), which was 
dichotomized (at 1 standard deviation above the popula-
tion mean) to produce a binary variable [13]. The expo-
sure of interest was BMI Z-score, which was derived 
using direct measurements of weight and height, and 
standardized by age and sex. The covariates in the logis-
tic regression model were mother’s education, maternal 
language, child’s indigenous status, child sex, child age 
in months, mother’s work, neighborhood disadvantage, 
mother’s psychological distress and child mental health 

(see Additional file 1: Supplementary Table 1 for further 
details).

Missing data
Twenty-four percent (1180/4983) of participants were 
missing all HRQoL items, while 7% (325/4983) were 
missing individual items. Only 3039 (61%) participants 
had completely observed data for all variables required 
for the analysis. Those with completely observed data 
were more likely to have English as their main language 
(90% vs. 81%), were less likely to be indigenous (2% vs. 
6%) or be in a sole-parent household (11% vs. 20%), and 
their mothers had higher rates of school completion (64% 
vs. 51%) compared with those with incomplete data.

Imputation model
Having decided to use MI to handle the missing values, 
all variables in the analysis were included in the imputa-
tion model [14, 15]. We imputed the individual HRQoL 
items and used these to derive the binary outcome vari-
able. We also included HRQoL measurements from 
earlier waves in the imputation model as they were corre-
lated with the incomplete outcome. In total there were 54 
variables in the imputation model: 23 individual HRQoL 
items (used to derive the outcome variable), 10 covari-
ates from the analysis model and 21 HRQoL items from 
an earlier wave included as auxiliary variables. MI was 
initially implemented using MICE in Stata 15 [16], with 
linear regression for imputation of continuous variables, 
logistic regression for binary variables and ordinal logis-
tic regression for the HRQoL items. However, the MICE 
procedure failed and no imputed values were generated.

What are common causes of numerical problems 
with imputation algorithms?
In this section, we describe perfect prediction and collin-
earity, two of the main problems that lead to numerical 
problems with MI.

Perfect prediction
When fitting generalized linear models to categorical 
data, a common cause of numerical problems is per-
fect prediction [17, 18]. Perfect prediction can occur if 
a covariate (or combination of covariates) completely 
discriminates the outcome categories. If this is the case, 
maximum likelihood estimates may not exist (or lie on 
the boundary of the parameter space), leading to numeri-
cal issues when fitting the imputation model.

To illustrate the issue of perfect prediction, consider 
the simple missing data example shown in Table  1. 
This dataset consists of a binary variable Y, and an 
unordered categorical variable X. There are missing 
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values in both variables, with observed data for both 
variables in 54/70 (77%) of cases. When we try to 
impute the missing values in Stata [16] using MICE 
(with logistic regression to impute Y and multinomial 
logistic regression to impute X), the imputation proce-
dure fails and Stata produces the message: “variables 
that perfectly predict an outcome were detected when 
logit executed on the observed data”. A logistic regres-
sion of Y on X leads to problems with perfect predic-
tion, because all cases with X = 2 have the outcome 
Y = 0.

Collinearity
Collinearity occurs when covariates in the imputation 
model are highly correlated, leading to difficulties in 
estimating separate effects for each of the correlated 
covariates, which manifest in unstable estimates with 
inflated variances [19], and which can in some cases 
lead to failure of iterative estimation algorithms.

To illustrate the issue of collinearity, we simulated a 
dataset (n = 120) with a binary outcome variable (Y) 
and four variables measured on a 5-point Likert scale 
(V1–V4). V1–V4 were designed to be highly correlated 
(Table 2) in order to produce numerical problems due 
to collinearity. There was 10% missing data in each of 
V1–V4, which we attempted to impute using MVNI 
in Stata (where the ordinal variables were each rep-
resented by four indicator variables [20]). The MVNI 

procedure failed without producing any imputed data 
and the software issued a message that there were “col-
linear imputation (dependent) variables detected”.

Challenges to MI algorithms: the large model problem
Problems such as collinearity and perfect prediction are 
more likely to occur when imputation models contain 
large numbers of variables (meaning many parameters 
to estimate) relative to the number of observations. 
In particular, collinearity can occur when imputing 
repeated measures of a variable, as this can lead to 
large imputation models with several highly correlated 
variables. The probability of perfect prediction also 
increases as sample size decreases, as the number of 
dichotomous covariates increases, and the balance of 
the dichotomous covariates decreases [17].

Although the two toy examples described in the pre-
vious sections are simplifications of real data problems, 
such issues are not uncommon in practice. If following 
MI guidelines, imputation models should include all 
variables that appear in subsequent analyses, to ensure 
that relationships of interest are preserved in the 
imputed data [14]. The model will also include auxiliary 
variables that are not of substantive interest, e.g. vari-
ables that are correlated with the incomplete variables 
(such as repeated measures) are included to improve 
the precision of MI estimates [14, 21]. If MI users adopt 
an “inclusive” variable selection strategy to avoid the 
omission of important auxiliary variables [21], then 
imputation models will contain many more variables 
than those used for substantive analyses. Given the 
size and complexity of typical imputation models, it is 
unsurprising that imputation procedures commonly 
fail.

Exploring reasons for the breakdown of the imputation 
procedure
A useful initial step when imputation procedures fail is 
to explore the data to investigate possible reasons for 
the breakdown. Table 3 provides a number of strategies 
that can be used to investigate and diagnose problems 
with imputation models.

Strategies for handling breakdown 
of the imputation procedure
After exploring reasons for imputation model break-
down, a number of strategies can be attempted to over-
come these issues, which we outline below, noting that 
individual strategies may be more or less useful for a 
particular problem. Although we have suggested possi-
ble modifications to the imputation model, it is impor-
tant to ensure that the model remains sensible. For 

Table 1  Cross-tabulation of two simulated variables Y (binary) 
and X (categorical)

Y X Total

0 1 2 Missing

0 25 17 2 6 50

1 6 4 0 1 11

Missing 5 2 1 1 9

Total 36 23 3 8 70

Table 2  Correlation matrix of simulated variables Y, V1, V2, V3 
and V4

Y V1 V2 V3 V4

Y 1

V1 − 0.09 1

V2 − 0.02 0.94 1

V3 − 0.18 0.92 0.92 1

V4 − 0.18 0.89 0.93 0.96 1
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example, variables in the substantive analysis should 
always be retained in the imputation model. It is also 
important to consider compatibility, i.e. that the impu-
tation model incorporates the same relationships as the 
analysis model [23, 24]. Further information on imputa-
tion model building is available in the literature [5, 10, 
14].

Reduce the number of auxiliary variables in the imputation 
model
It may be helpful to reduce the size of the imputation 
model by removing non-essential auxiliary variables, 
particularly if:

•	 They have large amounts of missing data, particu-
larly if auxiliary variables are missing for the sub-
group of incomplete cases [5, 25].

•	 They are not associated with the incomplete vari-
ables. If there is a main variable being imputed, one 
rule of thumb is to include an auxiliary variable if 
its correlation with the main variable is ≥0.5 (in 
absolute value) [25].

•	 They are highly correlated with other auxiliary vari-
ables. In this case, there might not be added gain in 
including both/all of the auxiliary variables.

We note, however, that removing auxiliary variables 
from the imputation model is not necessarily desirable. 
An alternative to removing variables is to use a dimen-
sion reduction technique. For example, Howard et  al. 

[26] suggest performing principal components analysis 
of the auxiliary variables, and including a small number 
of components in the imputation model instead of the 
original variables.

Impute composite variables instead of individual 
components
When working with multi-item scales (e.g., HRQoL), 
where a total score is derived from multiple items, impu-
tation models can become very large if imputing the 
individual items. If the scales are being used as auxiliary 
variables, the imputation model can be simplified by 
including the total scores or subscale scores rather than 
the individual items [27, 28].

If the total score is the variable of interest (rather than 
auxiliary variables), then it is also possible to impute 
the total score directly rather than the individual items. 
However, recommendations regarding item- and total-
level imputation are unclear. Simulation studies have 
found that imputing total scores directly can produce less 
precise estimates compared to imputing the individual 
items, although the two approaches have been found to 
have similar performance with respect to bias [29, 30]. 
Rombach et  al.[8] reported more problems with model 
breakdown when imputing at the item level and superior 
performance of total-level imputation with smaller sam-
ple sizes (< 200). In terms of compatibility of the analy-
sis and imputation models, it may be favorable to impute 
variables in the same form as they will appear in subse-
quent analysis.

Table 3  Strategies for exploring reasons for failed imputation procedures

Strategy Problem identified

Remove variables from the imputation model in turn If the model runs successfully after omitting a particular variable, this might 
provide some insight into which variable(s) is causing the problem

Create cross-tabulations of categorical variables in the imputation model 
(such as that shown in Table 1)

Look for sparse or empty cells as these may be causing perfect prediction. 
It may be necessary to explore patterns across > 2 variables, as perfect 
prediction can occur for strata produced by combinations of multiple 
variables

Explore correlations between variables This can help identify possible sources of collinearity

Examine any output the software produces prior to breakdown of the MI 
procedure e.g. interim estimates of model parameters

Look for signs of collinearity such as large standard errors and unstable 
coefficients across iterations. Omission of variables from a model might 
also signal perfect prediction or collinearity. If the imputation procedure 
iterates for a substantial amount of time, it might be advisable to run a 
small number of iterations in order to obtain some output

For problems with MICE, the univariate imputation models can be tested 
outside the MICE framework by fitting models to observed data (i.e. 
complete cases)

Check whether the software removes any variables or issues warnings 
when fitting the univariate models (as these error messages might 
provide information that is not provided after imputation model failure). 
When fitting the univariate models, it is also possible to use additional 
diagnostics such as the variance inflation factor, which provides an indi-
cation of whether standard errors are inflated due to collinearity [22]
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Reduce problems with perfect prediction
If imputing categorical variables with > 2 categories, one 
simple approach for handling sparsity is to collapse cate-
gories to produce larger cell sizes. This strategy may only 
apply in situations where collapsing categories is sensible 
from a substantive perspective, and the original categori-
zation is not required for subsequent analyses.

White et al. [9] proposed a method that augments the 
dataset with additional “pseudo-observations” to prevent 
the outcome from being perfectly predicted. This aug-
mentation procedure has been incorporated into the MI 
functions of popular statistical packages including Stata, 
R and SAS [3, 16, 31]. White et al. [9] also outline a num-
ber of alternative imputation approaches (e.g., bootstrap 
and penalised regression methods) that can avoid per-
fect prediction; however, these approaches may not be as 
convenient as the augmented data procedure. We note, 
however, that no imputation approach can recover infor-
mation on rare categories and that this may be a limita-
tion of the data at hand.

Introduce prior information
The augmented data approach can be regarded as an 
informal Bayesian method, in that it introduces addi-
tional “prior” information to stabilize estimation. More 
formal Bayesian approaches can also assist in the stabili-
zation of MI algorithms. For example, when using MVNI, 
covariance matrices may be unreliably estimated with 
large amounts of missing data or highly correlated vari-
ables [2]. A recommended approach for handling these 
problems is to specify a ridge prior distribution within 
the DA algorithm, which shrinks estimated correlations 
between variables towards zero, which can ameliorate 
problems with numerical instability [2, 16, 32]. Simi-
larly, for problems with perfect prediction, an explicitly 
Bayesian imputation method with a weakly informative 
prior distribution may be used (e.g., Student t prior dis-
tributions on regression coefficients of generalised linear 
models, which has been implemented in R) [5, 9, 33, 34].

Change the functional form of the imputation model
Changing the form of the imputation model may also 
ameliorate numerical problems. For example, if problems 
occur with MICE, one could change to MVNI. MVNI is 
generally more robust to numerical problems than MICE 
as it jointly estimates the mean vector and covariance 
matrix of the imputation model, compared to a MICE 
procedure comprising numerous univariate models.

Within MICE, if there are numerical problems using 
ordinal logistic regression to impute an ordered categori-
cal variable (e.g., due to perfect prediction), an alternative 
would be to change the form of the imputation model to 
a linear regression. Another option is to impute using 

predictive mean matching (PMM) [35]. PMM replaces 
each missing value with observed values that are bor-
rowed from donors with similar predicted values from 
a linear regression model. Alternatively, there are impu-
tation methods that assume an underlying continuous 
latent distribution for categorical variables (which can 
implemented, for example, using the “jomo” package in 
R software) [36, 37]. These alternative approaches may be 
more robust to issues with sparseness of categorical vari-
ables compared with logistic regression approaches.

Impute longitudinal data using specialized methods 
for longitudinal data
Imputation procedures often fail when imputing longitu-
dinal data, particularly when imputing in “wide” format, 
where there is one row for each individual, and repeated 
measurements are treated as separate variables. To 
reduce the size of the imputation model when imputing 
in wide format using MICE, it is possible to use “two-fold 
FCS”. Under this method, a variable at one time-point is 
imputed conditional only on information from the same 
time-point and adjacent time-points, thereby reduc-
ing the number of variables in each univariate model 
within MICE [38, 39]. One could also use a more tailored 
approach for imputing longitudinal data, such as imput-
ing the data in “long” format (where each longitudinal 
variable is represented by a single variable, with one row 
for each repeated measurement) using a multilevel impu-
tation model [37, 40, 41]. For an overview of multiple 
imputation methods for longitudinal data, we refer to 
Huque et al. [42].

Application of strategies to the case study
Our case study had a number of challenges that led to 
numerical problems: multiple correlated items from mul-
tiple waves that were being imputed as ordinal categorical 
variables. We applied several of the strategies described 
above to the LSAC example, either alone or in combi-
nation (see in Additional file 1: Supplementary Table 2). 
We overcame imputation model breakdown by imput-
ing the binary HRQoL outcome variable directly within 
MICE, or by imputing the continuous total score using 
MVNI (and rounding the imputed values for analysis). 
We were also able to impute the individual HRQoL items 
using either linear regression or PMM univariate models 
within MICE (instead of ordinal logistic regression), or 
by imputing the items using MVNI. Figure  1 shows the 
estimates for the log-odds ratio of interest for these five 
approaches. There was some variability in the estimates 
of the odds ratios, but the overall conclusion was similar, 
with the odds of HRQoL problems increasing by around 
15% per unit of BMI Z-score.
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Conclusions
In this paper, we described common problems that lead 
to breakdown of imputation algorithms. We also out-
lined methods for diagnosing the cause of imputation 
model failure, as well as strategies for overcoming the 
underlying issues. We demonstrated how these strate-
gies were used to overcome numerical problems in a 
case study. Although we were able to successfully gener-
ate imputations in our case study using a number of the 
strategies outlined, a limitation with a real data analysis 
is that it is difficult to know which imputation method 
is likely to produce the most valid results. In practice it 
may be useful to perform sensitivity analyses by using a 
few imputation strategies and examining the robustness 
of the results as we have done here. A further limita-
tion is that we have focused predominantly on numeri-
cal issues encountered when using MI in Stata software, 
although the issues would be similar in other packages. 
Some trade-offs are likely to arise when applying the 
suggested strategies for alleviating numerical problems. 
For example, removing auxiliary variables or imputing 
the total scores may enable the imputation model to 
run, but this might be at the expense of precision of the 

estimates. In addition, although we have suggested pos-
sible modifications to imputation models, we emphasize 
the importance of considering whether these modifica-
tions are sensible [5, 10, 14]. In particular, it is impor-
tant that the imputation remains compatible with the 
analysis model. Finally, we recommend that MI users 
check that iterative imputation procedures have con-
verged/stabilized [2], and also check imputation models 
as far as possible to ensure that imputed values and the 
resulting inference(s) are sensible [43, 44].
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