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Abstract
Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill

target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been

used for several decades to treat non-malignant human myeloproliferative diseases. 32P

[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important
90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful

isotope 90Y (P� 0.001) and also caused substantially more double-stranded DNA breaks

than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P signifi-

cantly inhibited tumor growth in the syngeneic murine cancer model (P� 0.001). This effect

is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded

breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting

radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel

anti-cancer drug.

Introduction
Beta particles (electrons) emitted by radioisotopes are known to efficiently kill cancer cells.
This finding has already been clinically exploited by using 131I to treat thyroid cancer [1], a
strategy still employed successfully in more than 50% of such patients in the United States,
with over a 90% cure rate. Similarly, beta particle-emitting radiolabeled antibodies directed
against CD20, including 131I-Bexxar (tositumomab) and 90Y-Zevalin (ibritumomab tiuxetan),
have been used against non-Hodgkin’s lymphoma [2,3]. Moreover, 90Y-labeled somatostatin
receptor ligand is utilized to treat neuroendocrine tumors [4]. Electrons emitted by 32P have an
energy level intermediate between those of 131I and the more powerful 90Y, resulting in a path
length of up to 5 mm in human tissues [5]. Electrons emitted from radioisotopes can strike
thousands of cells. The resulting bystander effect amplifies the lethal potential of each beta par-
ticle emitted in or near a tumor. However, as we shall show below, we have discovered that
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among all available beta-emitting isotopes, 32P possesses a unique chemically and
radiologically-based double-strand breakage mechanism, which confers greater anti-tumor ef-
ficacy than other beta-emitters of comparable power.

Human cancer-derived cell lines established in immunocompromised mice are a valuable
tool for testing the effectiveness of candidate anti-cancer agents [6–9]. We previously found
that a single, low-dose intravenous injection of [32P]ATP significantly inhibits tumor growth
for several weeks in murine xenograft models [10,11]. Because ATP is a small naturally-
occurring molecule, its radiolabeled form poses some advantages over larger synthetic com-
pounds as a potential anti-cancer therapeutic, including lower immunogenicity, greater tumor
penetration, and superior pharmacokinetics [12]. Inorganic [32P]PO4, a simple aqueous ion,
has been used for decades as a therapeutic agent for polycythemia vera and essential thrombo-
cythemia [13]. This ion was also previously used for palliation of bone pain due to metastases,
where it was thought to be incorporated into the extracellular matrix [14]. However, aqueous
32P use has never been established as a primary anti-cancer strategy per se.

The clinical application of 32P was first attempted in the 1930’s [15–18]. Since that time, 32P
usage has generally been restricted to a colloidal suspension form, wherein 32P forms a compo-
nent of a complex, insoluble particle [19–22]. This form of 32P is typically injected directly into
the tumor, with the colloidal suspension preventing the radioisotope from leaving the intended
target and disseminating throughout the body. The administration of aqueous 32P as a primary
anti-cancer agent has not been studied, aside from its palliative use for relief of pain due to
bone metastases.

Recent experimental findings have led to the development and use of the alpha- and beta-
emitter 223Ra to selectively target bone metastases in patients with castration-resistant prostate
cancer [23,24]. Originally developed by a Norwegian company Algeta, Alpharadin was ap-
proved for use in the United States in 2013, and is now marketed by Bayer under the name
Xofigo [25]. Thus, 223Ra is the latest simple radioactive element to become an effective anti-
cancer drug.

We now report that a single, low-dose intravenous injection of aqueous 32P results in rapid,
significant growth inhibition of pre-established tumor growth in an immunocompetent (syn-
geneic) murine model. We also show that 32P is more efficient than equivalent doses of higher-
energy extracellular electrons, such as those emitted by 90Y, a beta-emitting radioisotope in
common use today. We provide evidence that this higher efficiency results from the direct in-
corporation of 32P into nascent DNA, causing double-strand DNA breakage via a combined
chemical-radiological mechanism that cannot duplicated by other beta-emitting radioisotopes,
such as 131I and 90Y. This finding has immediate ramifications for the expanded treatment of
primary human cancers.

Methods

Measurement of in vitro cell killing by 32P and 90Y
Two thousand cells of the murine BALB/c CRL2836 cell line or the human HeLa S3 cell line
were grown in complete medium in a 96-well plate and were exposed at Day 0 to either 0, 1,
2.5, or 5 μCi of 90Y radioisotope or the [32P]PO4 radioisotope in complete medium. After a
24 h incubation, the radioisotope-containing medium was removed and replaced with non-
radioactive complete medium (Day 1). WST-1 proliferation assays (Roche Applied Science, In-
dianapolis, IN) were performed on Days 1, 2, 3, 4, or 5 to directly measure cell growth. Each ex-
periment was performed in triplicate. Cell lines were obtained from the American Type
Culture Collection (Manassas, VA) and used within six months of purchase.
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Assessment of double-strand DNA breaks
Ten thousand HeLa S3 cells were seeded onto Lab-TekII chamber slides (Thermo Fisher Scien-
tific Inc., Waltham, MA). At Day 0, cells were treated with 0 or 3 μCi of 32P or 90Y in complete
medium. At Day 1, all wells were gently washed and fresh non-radioactive medium was added.
At Day 1, Day 2, or Day 3, cells were fixed with 10% formalin at room temperature for 10 min,
washed with PBS for two min, and permeabilized with 0.2% Triton X-100 with 10% FBS in
PBS for 15 min. After a rinse with PBS, primary mouse anti-human H2AX antibody at 1:1000
dilution (Millipore, Billerica, MA) was incubated for 1 h at ambient temperature, then washed
twice with PBS for 5 min. A dilution of 1:400 goat anti-mouse IgG with Alexa Fluor (Life Tech-
nologies, Grand Island, NY) was incubated for 1 h at ambient temperature and washed twice
with PBS for 5 min. Cells were stained with Hoechst solution (1:1000).

Assessement of 32P incorporated into DNA
One hundred and fifty thousand mouse CRL2836 or human HeLa S3 cells were seeded onto a
six-well cell culture plate and grown for 24 h (defined as Day 0). Cells were then either incubat-
ed overnight with 32P[PO4], grown for 2 d in non-radioactive medium and the DNA extracted
(3 Days); or grown for 24 h, incubated with 32P[PO4] for 24 h, grown for 24 h in non-radioac-
tive medium and the DNA extracted (2 Days); or grown for 48 h, incubated with 32P[PO4] for
24 hours, washed with complete medium and the nucleic acid extracted (1 Day). DNA was ex-
tracted using the DNAeasy Blood and Tissue Kit (Qiagen, Valencia, CA) and aliquots were in-
cubated with or without four units of DNase I (New England Biolabs, Ipswich, MA) for two h
at 37°C before the samples were run on a 5% polyacrylamide gel, exposed to film overnight at
4°C and developed.

Assay for apoptosis in cell lines incubated with 32P.
One hundred thousand mouse CRL2836 cells or HeLa S3 cells were seeded into each well of
6-well culture plates and grown for 24 h. Cells were then incubated with 0, 2.5, 5, 10 or 20 uCi
32P[PO4] in two ml complete medium for 24 h, and non-radioactive medium added for an ad-
ditional 24 h. Protein was extracted from each well using RIBA buffer (Cell Signaling Technol-
ogy, Boston, MA), the protein was quantified using a BCA protein assay kit (Pierce, Rockford,
IL),and identical quantities were run on a 10 to 20% polyacrylamide gel, and blotted to nitro-
cellulose. A western blot using a primary antibody to cleaved caspase-3 protein (Cell Signaling
Technology, Boston, MA) was used to assay for apoptosis. A second western blot with identical
protein quantities was probed with antibody against beta-actin (Cell Signaling Technology,
Boston, MA).

Establishment of mouse tumors
Syngeneic BALB/c mouse tumors were established by injecting 2 X 106 BALB/c tumor
CRL2836 cells (American Type Cell Culture, Manassas, VA) in a volume of 0.2 mL (50%
Matrigel, 50% 1 X PBS) subcutaneously in the left rear and right rear flank. All mice were fe-
male, 10 weeks of age, and purchased from Charles River Laboratories (Wilmington, MA).

32P-Mediated tumor growth inhibition
After ten days, during which time well-vascularized tumors became well-established, an injec-
tion of 5 μCi of the monophosphate form of 32P (Perkin-Elmer, Cat. # NEX06000, Waltham,
MA) was injected intravenously via the tail vein in 0.1 mL of 1 X HBSS. Six tumors (three ani-
mals) were studied per each group. After injection, tumor growth was measured three times
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per week with a digital caliper and the volume was determined using the formula: volume =
½(width)2 X (length). Mice were maintained at the Johns Hopkins University Facility in accor-
dance with Laboratory Animal Resources Commission standards under the supervision and
approval of the Johns Hopkins University Institutional Animal Care and Use Committee
(IACUC).

Statistical analysis
The data from the WST-1 cell proliferation were presented as means ± standard deviation, and
the significance was determined using the unpaired Student’s t test. Tumor volumes of the un-
treated and treated mice were displayed as means ± SE; no outliers were excluded for any rea-
son. Significance was determined using the unpaired Student’s t test.

Results
Cells exposed to [32P]PO4 were compared with those exposed to identical counts per minute of
the more powerful beta-particle emitter, 90Y, after which WST-1 cell proliferation assays were
performed (Fig 1). Different cell lines were expected to demonstrate varying levels of suscepti-
bility to radioisotopes. The 1 μCi dose showed that HeLa cells were less susceptible to beta-
emitting isotopes than were BALB/c mouse CRL2836 cells, which originated as an osteosarco-
ma and were isolated after it had metastasized to lung. Both the 2.5 μCi and 5 μCi doses dem-
onstrated similar results in both cell lines. Although 90Y would had been expected to be more
lethal than 32P (based on its higher-energy electrons), 32P killed cells more efficiently than did
90Y. In comparisons of the 2.5 μCi and 5 μCi doses, [32P]PO4 produced survival rates at Day 5
that were barely half of those produced by 90Y.

The H2AX assays were used to compare double-strand DNA breakage in cells incubated
with 32P vs. 90Y (Fig 2) [26,27]. This assay accurately detects breakage in both strands of DNA
at the same genomic locus. Nuclear staining of HeLa S3 cells demonstrated substantial, time-
dependent double-strand DNA breakage in cells exposed to 32P, while those exposed to identi-
cal levels of 90Y-based radiation had much less or no detectable DNA double-strand breakage.
Digestion with DNase I showed that administered 32P had been directly incorporated into cel-
lular DNA (Fig 3A). More than half of the 32P retained by the cells that were incubated with
32P[PO4]for 24 h and then grown in non-radioactive medium for 48 h before the DNA was ex-
tracted had been permanently incorporated into cellular DNA. To determine whether cell
death involves apoptosis as well as necrosis, mouse CRL2836 cells or HeLa S3 cells were incu-
bated with varying amounts of 32P for 24 hours, replaced with non-radioactive medium for an
additional 24 hours, and the cells analyzed by western blot for the presence of cleaved caspase-
3 indicating apoptosis (Fig 3B). The CRL2836 cells clearly demonstrated that apoptosis was in-
volved in cellular death, while the HeLa S3 cells showed no detectable cleaved caspase-3 (data
not shown). Antibody directed against beta-actin was used to verify equal loading of protein
amounts in the gel wells. HeLa S3 cells express E6 from HPV18 and are rendered p53 null
which severely inhibits apoptosis functions [28,29].

Previously, we demonstrated significant inhibition of HeLa S3 cell xenograft growths in
nude mice by a single low-dose intravenous (IV) injection of [32P]ATP. Here, we chose immu-
nocomponent syngeneic BALB/c mice to more closely recapitulate human malignancy. A sin-
gle IV injection of aqueous [32P]PO4 significantly inhibited established syngenic tumor growth
in BALB/c mice (Fig 4). There were no apparent detrimental effects of [32P]PO4 comparing the
weight of the treated mice to the control groups (data not shown).
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Discussion
This study documents our discovery that a single intravenous dose of the 32P radioisotope sig-
nificantly inhibits the growth of pre-established tumors in a murine syngeneic model, while si-
multaneously establishing the mechanism underlying this anti-cancer effect. Specifically, we
show that aqueous 32P is incorporated into nascent DNA, where isotopic decay shears both
strands, causing double-strand breakage as proven by phosphorylation of the histone H2-AX.
Our in vitro experiments also demonstrate that the pure beta-emitter 32P is superior to the
more powerful pure beta-emitter 90Y in tumor cytotoxicity, and finally, that apoptosis contrib-
utes to this cytotoxicity.

Fig 5 depicts a proposed mechanism for 32P-induced cell killing. In this schematic, 32P is in-
corporated directly into one strand of replicating DNA. Radioactive decay of 32P to 32S causes
chemical breakage of that same DNA strand. Next, the electron released by this decay event
needs to travel only 2 nm to reach the contralateral strand of the double helix, severing it and
thus causing a double-strand break at this genomic locus. This mechanism stands in stark con-
trast to non-incorporated beta-emitting radioisotopes, where only a small fraction of emitted

Fig 1. Inhibition of cell growth by [32P] PO4 or [
90Y]. TheWST-1 proliferation assay was done to determine the level of cell killing by 32P or by 90Y. BALB/c

tumor CRL2836 cells or HeLa S3 cells were exposed to 0 Ci, 1 μCi, 2.5 μCi, or 5 μCi in complete medium. After 24 hours, the medium was changed and cells
were grown in non-radioactive complete medium.WST-1 cell proliferation assays were done at Days 1, 2, 3, 4, and 5 in triplicate. The mean is shown plus/
minus the standard deviation. The student’s two-sided t-test determined the P value shown.

doi:10.1371/journal.pone.0128152.g001
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electrons travel in the precise orientation necessary to strike one strand plus its opposite strand
and cause a double-strand DNA break [30,31]. With 32P, the extreme proximity of the contra-
lateral target strand to the decay-produced electron makes this double-strand breakage much
more likely to occur [32].

Aqueous [32P]PO4 offers many potential advantages over other anti-cancer therapeutic
agents. Firstly, it allows for rapid systemic distribution and incorporation into primary tumors
and 32P is preferentially absorbed by rapidly proliferating cells, such as cancer cells. In addition,
[32P]PO4 improves on the previous direct injection of particulate colloidal 32P into primary tu-
mors, since aqueous [32P]PO4 allows for a simple intravenous injection [33–35].

Secondly, 32P is already an FDA-approved drug, with a known low toxicity profile [36]. Pre-
vious clinical studies of 32P-orthophosphate [PO4] in aqueous solution for polycythemia vera
and essential thrombocythemia have established tolerable dose levels, particularly with respect
to myelosuppression [36]. In this context, it is noteworthy that no obvious toxic side effects

Fig 2. Determination of double-strand DNA breaks in cells caused by exposure to [32P]PO4 or
90Y. HeLa S3 cells or mouse BALB/c CRL2836 cells

were grown in multiple sections of chamber slides and exposed to 0 μCi or 3 μCi of [32P]PO4 or
90Y in complete medium at Day 0. After 24 hours, the medium

was changed and cells were grown in non-radioactive complete medium. At Day 1, 2, or 3 the presence of double-strand DNA breaks in the cells was
determined by staining for phosphorylated H2-AX histones which indicate double-strand DNA damage.

doi:10.1371/journal.pone.0128152.g002
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occurred in any of the model systems we have studied to date. The other concern with its use in
these benign hematologic disorders has been an increased incidence of subsequent acute mye-
loid leukemia (AML) [37,38], but in patients with advanced solid tumors this is less of a con-
cern, since subsequent AML occurs in only 10% ten years after 32P treatment [39]. Moreover,
this new indication and method of use for an existing drug saves considerable time and ex-
pense, relative to the investment required for new anticancer agents.

Thirdly, in contrast to other beta-emitting isotopes such as 131I and 90Y, 32P is incorporated
directly into nascent DNA [40,41]. Our data suggest that this incorporation dramatically in-
creases the cell-killing efficiency of 32P, since the decay of incorporated 32P to sulfur chemically
breaks the first strand of the DNA and the released electron needs to travel only 2 nm to reach
its contralateral DNA strand. Thus, this process efficiently causes double-strand DNA break-
age, which is required to overcome innate DNA repair pathways and achieve cell death. In con-
trast to 32P, other electron-emitting isotopes (such as 131I and 90Y) emit electrons from
distances of 1,000 to 5,000 nm away from DNA, some 500- to 2,500-fold farther than the dis-
tance of an incorporated 32P atom from its sister DNA strand [42–44].

Fig 3. Characterization of 32P uptake by the cell. A. 32P is directly incorporated into cellular DNA. Mouse CRL2836 or human HeLa S3 cell lines were
incubated overnight with 32P[PO4] and then grown for 48 h in non-radioactive medium (lanes 1 through 4), or grown for 24 h in non-radioactive medium,
grown for 24 h with 32P[PO4], and then grown for 24 h in non-radioactive medium (lanes 5 through 8), or grown for 48 h in non-radioactive medium, then
grown for 24 h with 32P[PO4] (lanes 9 through 12). The extracted nucleic acids were incubated with DNase I, the digestion products were run on a 5%
polyacrylamide gel and exposed to film. B. Apoptosis induced by 32P in mouse CRL2836 cells. Mouse CRL2836 cells were incubated with 0, 2.5, 5, 10 or
20 μCi 32P[PO4] for 24 h, and non-radioactive medium added for an additional 24 h. Protein was extracted from each well and analyzed for apoptosis by
western blots using antibody to cleaved caspase-3 protein (Lanes 1 through 5). Antibody against beta-actin was used to verify identical amounts of protein
were loaded (lanes 6 through 10).

doi:10.1371/journal.pone.0128152.g003
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It is intriguing to note that early researchers performing Sanger sequencing with [32P]dATP
in the 1980’s noted that sequencing products required electrophoresis within two days after the
sequencing reaction, otherwise bands seemed to disperse and were difficult to interpret [45].
This same principle may operate with 32P as an anti-cancer agent. The decay of 32P to sulfur
chemically shears the strand of DNA into which it is incorporated. We hypothesize that this
event, coupled with the extremely close proximity of the incorporated radioisotope to its sister
DNA strand, results in a dramatic increase in cell-killing efficiency vs. other beta-particle emit-
ters such as 131I and 90Y, which are not incorporated into nascent DNA. The resulting implica-
tions for the potential clinical treatment of primary human tumors are obvious and far-
reaching.

Fig 4. Inhibition of BALB/c syngeneic tumor growth by [32P]PO4. Syngeneic BALB/c CRL2836 tumors were established in the rear flanks of BALB/c mice
at Day 0. After ten days, during which the tumors became well vascularized, mice received an injection of 5 μCi of [32P]PO4 intravenously via the tail vein. The
tumor volumes are shown as the mean of six tumors plus/minus the standard error of the mean. The student’s two-sided t-test determined the P value shown.
Inset: Representative picture at 35 days post CRL2836 cell injection, showing two control mice on the left, and one mouse that received one 5 uCi [32P]PO4

dose (right).

doi:10.1371/journal.pone.0128152.g004
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